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Abstract

The aim of this article is to study the relationship between two popular Cau-
tious Learning approaches, namely: Three-way decision (TWD) and conformal
prediction (CP). Based on the novel proposal of a technique to transform three-
way decision classifiers into conformal predictors, and vice-versa, we provide
conditions for the equivalence between TWD and CP. These theoretical results
provide error-bound guarantees for TWD, together with a formal construction to
define cost-sensitive cautious classifiers based on CP. The proposed techniques
are then applied and evaluated on a collection of benchmark and real-world
datasets. The results of the experiments show that the proposed techniques
can be used to obtain cautious learning classifiers that are competitive with,
and often out-perform, state-of-the-art approaches. Further, through a quali-
tative medical case study we discuss the usefulness of cautious learning in the
development of robust Machine Learning.

Keywords: Three-way Decision, Cautious Learning, Conformal Prediction,
Set-valued Prediction, Decision Support

1. Introduction

In this article, we study the problem of Cautious Learning [7]. This latter
is a generalization of supervised learning in which the Machine Learning (ML)
models are allowed to express set-valued predictions. The set-valued predictions
allow the ML models to highlight a possible state of uncertainty, that should
require further intervention from a human decision maker [5].

Recently, such techniques have been advocated as a promising approach [17]
to develop reliable ML-based decision support in so-called decision-critical do-
mains, e.g. medicine, social policing. Indeed, in all these settings, errors induced
by ML models could have high-impact consequences. Therefore the decision
makers could accept less precise, but more reliable predictions. Set-valued pre-
dictions could then be used by the decision-maker either to take a decision, if the
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risk of doing so is not assumed to be too high; or to prompt the need to collect
more information, so as to foster human-in-the-loop decision-making [14, 23].

Cautious learning methods clearly entail a trade-off between different quality
dimensions, that should be properly evaluated so as take into account different
desirable properties. These may include:

• Cost-sentitiveness [10]: that is, whether the model properly takes into ac-
count information about the utilities and costs of the different alternative
decisions;

• Validity [35]: that is, whether the performance of the model can be reliably
bounded, usually through a theoretical analysis;

• Efficiency [36]: that is, whether the set-valued predictions provided by
the model are as informative as possible.

In recent years, many different cautious learning techniques have been pro-
posed to strike a balance among these properties. These include models based on
imprecise probabilities [41], or belief functions [27]; selective classification [12];
three-way decision [43] (TWD); and conformal prediction [35] (CP).

While all the mentioned models have been successfully employed in empirical
settings, their theoretical characterization largely remains an open problem.
First, there is a lack of works attempting to characterize the validity of cautious
learning methods (with the exception of CP [35]); second, the relationships and
similarities among different approaches have not yet been investigated.

In this work, we address these gaps by focusing on two popular approaches,
namely three-way decision (TWD) and conformal prediction (CP):

• TWD, inspired by Rough Set theory and human decision making [43], is
a generalization of decision-theory to the setting of set-valued predictions.
Intuitively, given a new instance and a loss function, a TWD-based classi-
fier would assign the instance to the set-valued prediction associated with
minimal loss;

• CP, by contrast, is a technique to obtain calibrated confidence predictors.
For each new given instance, a conformal predictor would return a nested
collection of set-valued predictions, each with an associated error proba-
bility lower bound [35]. A cautious learning algorithm can then be defined
from a conformal predictor by selecting a specific probability threshold.

These differences notwithstanding, the two methods also share some sim-
ilarities [6]. Indeed, both methods can be applied as a post-processing step
to any standard (i.e., non-cautious) learning method [2, 5]; both methods are
distribution-free; and both methods make relatively weak assumptions. See
Figure 1 for a graphical representation of TWD-based classifiers and CP, in
comparison with a standard (i.e., single-valued) ML model.

The aim of this paper, then, is to study the relationships among these two
models, and to characterize when these two different approaches can be con-
sidered equivalent. To this purpose, we first define techniques to transform a
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Figure 1: A graphical representation of standard (classification) ML models, TWD models and
CP models. Given an input instance x, a standard classifier would provide as output either a
single class (in the example, Class 1) together with a confidence score, or a confidence score
distribution. By contrast, a TWD classifier would provide as output the set of labels (in the
example, Class 1 or Class 2) which is optimal w.r.t. a specific loss function, possibly together
with an aggregated confidence score. Finally, a conformal predictor provides as output a
nested collection of sets of labels, each with an associated (lower) probability bound.

TWD-based ML model into a CP one, and vice-versa. Harnessing this relation-
ship, we investigate two main theoretical questions:

• Under which conditions a TWD-based model is guaranteed to be valid,
and with which error bounds? We answer this question through Theorems
2 and 3, by which it is shown that, under very general assumptions, TWD
classifiers are valid;

• Under which conditions TWD and CP methods are equivalent? We answer
this question through Theorems 4 and 5, by which conditions for the
equivalence between TWD and CP methods are provided.

Moreover, by means of a set of quantitative experiments, we show that, when
the above mentioned assumptions do not hold, the proposed techniques can be
used to improve the validity of TWD classifiers.

The rest of this article is structured as follows. In Section 2, the necessary
technical background on Machine Learning, TWD in the ML domain, and CP
is provided. In Section 3, we study the relationship between TWD and CP.
Specifically, in Section 3.1, TWD is used as a basis to define a CP. Through this
construction, the validity of TWD-based ML models is formally established.
Conversely, in Section 3.2 we discuss how TWD can be used to define cost-
sensitive cautious learning methods based on CP algorithms. Through these
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constructions conditions for the equivalence between TWD and CP are estab-
lished. In Section 4, the empirical performance of the proposed constructions is
investigated, through a set of experiments on real-world datasets. The results
of these experiments are then discussed in Sections 4.2 and 4.3; while in Section
5 a short medical case study is discussed. Finally, in Section 6, the obtained
results are summarized, and possible future lines of research are outlined.

2. Background

In this section, we recall the necessary background about ML, TWD and CP.

2.1. Supervised Machine Learning

Let X be the input space, i.e., a set of objects described as vectors of feature
values. Let Y be the target space, i.e., the set of classes. Then, a classification
algorithm, w.r.t. a sample space Z and a hypothesis space H, is a function
A : 2Z 7→ H. When Z = X × Y , A is denoted as a supervised classifica-
tion algorithm; by contrast, when Z = X × 2Y , A is a weakly-supervised [15]
classification algorithm.

Let S ⊆ Z be a sample drawn i.i.d. from an unknown distribution D; H be
an hypothesis space; and l : H× Z 7→ R+ be a loss function. Then, the goal of
the machine learning problem is to find a hypothesis h ∈ H with minimal (or
small) true risk :

RiskD(h, l) =

∫
z∈Z

l(h, z)dD(z). (1)

Since D is unknown, the true risk cannot be computed. Hence, the aim is
to minimize a proxy of the true risk, such as the empirical risk, based on the
finite sample S:

RiskS(h, l) =
1

|S|
∑
z∈S

l(h, z). (2)

Empirical Risk Minimization (ERM) is the algorithm that, given H and a train-
ing set S, selects one of the h ∈ H s.t. RiskS(h, l) = minh′∈HRisk(h′, l). We
denote any such h as hS . The ERM learning paradigm has been generalized
to the setting of weakly supervised learning [15, 16] by means of generalized
loss functions. These latter are usually expressed in the form lS(h, 〈x, Yx〉) =
A({l(h, 〈x, y〉) : y ∈ Yx}); where A ∈ {min,max,mean}.

In the following, we assume that H is a class of scoring classifiers. A scoring
classifier is a function h : X 7→ Y s.t. h = dec ◦ s, where s : X 7→ R|Y | is
a scoring function (mapping an instance x ∈ X to a distribution of scores);
and dec : R|Y | 7→ Y is a decision function (mapping a distribution s(x) to
a single label). The decision function dec is usually defined as dec(s(x)) =
argmaxy∈Y s(x)y, where s(x)y denotes the score assigned to label y.

A cautious classifier [11] is a function h : X 7→ 2Y . Thus, a cautious classifier
maps instances to sets of labels. The semantics attached to set prediction
h(x) ⊆ Y is that the correct label ŷ is likely to be in h(x).
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2.2. Three-way Decision
Three-way decision (TWD) [43] is a framework for information and un-

certainty management, inspired by human decision-making and rough set the-
ory [42], that generalizes standard decision theory.

In the binary setting, one considers three regions: a positive, or acceptance,
region; a negative, or rejection, region; and a boundary, or non-commitment,
region. This latter region, in particular, represents lack of knowledge, or (tem-
porary) abstention, in regards to the status of the objects it contains.

With respect to the ML setting [42], according to TWD, every instance can
be classified as either belonging to a given class (and thus not belonging to
all others); not belonging to a given class; or being in the boundary, that is a
region that represents lack of knowledge with respect to class assignment. This
latter property makes TWD useful for the development of cautious classifiers,
by means of a theoretically sound and cost-sensitive approach [6].

Indeed, this approach has been successfully applied in the ML literature for
many tasks. Li et al. [22] proposed a cautious classification model for binary clas-
sification based on modeling uncertain boundaries; while Xu et al. [39] proposed
a generalization of TWD-based cautious classification to multi-class problems,
using sequential TWD. Liu et al. [24] proposed a TWD method based on the
combination of logistic regression and decision-theoretic rough sets; Zhang et
al. [49] proposed an approach for cost-sensitive cautious classification based on
TWD and ensemble learning; similarly, Yue et al. [47] and Savchenko [32] pro-
posed computationally efficient techniques for cautious classification based on
TWD and deep learning. Min et al. [29] proposed an approach for cautious clas-
sification of weakly-supervised data using TWD and active learning; Campagner
et al. [5] proposed an approach for weakly supervised learning and multi-class
cautious classification based on TWD and statistical learning methods; Gu et
al. [13] studied approaches to TWD in group-decision making based on impre-
cise probabilistic linguistic assessments; Zhou et al. [50] studied and compared
different approaches for TWD based on coarse and fuzzy data. More recently,
Liu et al. [23] also discussed the interpretability and usefulness of cautious clas-
sification methods based on TWD. For a more general discussion about TWD
in ML, we refer the reader to the recent surveys by Campagner et al. [6] and
Liu et al. [25]. Furthermore, approaches for cautious classification based on
TWD have recently been investigated also from a theoretical and conceptual
perspective: Liu et al. [26] studied an an alternative model for TWD based on
optimization; Yao [46] studied the connections between TWD and set-based ap-
proaches; Yao [45] explored the foundations of TWD based on geometrical and
numerical concepts; while Xu [38] studied the connections between TWD-based
classification and the theory of confusion matrices. We refer the reader to the
reviews by Yang et al. [40] and Yao [44] for further details.

In TWD, the loss function is generalized as a set-valued function l : 2Y ×Y 7→
R, so as to model the loss w.r.t. a set-valued prediction. In this article, we
consider the multi-class formulation of TWD classification [5]. In this latter
approach, the loss function l can be decomposed in two parts, namely an error
cost function and an abstention cost function. Formally, let
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• err : 2Y × Y 7→ R be an error cost function. Intuitively, err(S, y) repre-
sents the cost of predicting S, when y /∈ S is the correct label;

• α : N+ 7→ R be an abstention cost function. We assume that

∀i > 1, α(1) = 0 < α(i) ≤ α(i+ 1) ≤ min
A∈2Y ,y∈Y

err(A, y). (3)

Inuitively, α(|A|) represents the cost of making a set-valued prediction A
that contains the correct label y.

Let h be a scoring classifier, its generalized loss is defined as :

LossTWD(A) =
∑
y/∈A

h(x)y · err(A, y) + α(|A|)
∑
y∈A

h(x)y. (4)

Then, the TWD classifier Wh is defined, for each x ∈ X, as:

Wh(x) = arg min
A∈2Y

{|A| :

A ∈ arg min
B∈2Y

LossTWD(B)}.
(5)

Hence, for each x, the result of Wh(x) is (one of) the smallest sets having
minimal generalized loss. In Example 1 we briefly describe the calculations
involved in the definition of a simple TWD classifier.

Example 1. Let err be the constant 1 function, and α(|A|) = |A|−1
|Y | , with

Y = {1, 2, 3, 4, 5}.
Let h be a scoring classifier, and x an instance such that

h(x) = 〈0.2, 0.3, 0.15, 0.1, 0.25〉.

Since the error cost function err is uniform, the optimization problem in Eq.
(5) can be solved using a greedy algorithm [5]. Thus, the following holds:

LossTWD({2}) = 0.7

LossTWD({2, 5}) = 0.56

LossTWD({1, 2, 5}) = 0.55

LossTWD({1, 2, 3, 5}) = 0.64

LossTWD(Y ) = 0.8

Therefore, Wh(x) = {1, 2, 5}.

By definition, the TWD classifier Wh(x) is the cautious classifier with minimal
risk, under the assumption that the probability scores returned by h approxi-
mate the probability of error (i.e. h is calibrated). However, the calibration of
h is, in general, only a sufficient condition for the correctness of the set-valued
predictions issued by the TWD classifier Wh(x). In Section 3, based on the re-
lationship between TWD and CP, we study some conditions under which TWD
classifiers are guaranteed to be valid.
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2.3. Conformal Prediction

Conformal Prediction [35] (CP) is a cautious learning approach that allows to
define calibrated classifiers. Since its introduction, the CP framework has been
adapted to different settings, including clustering [30], anomaly detection [21],
active learning [28], semi-supervised learning [1]. Furthermore, CP has been
successfully applied in many empirical settings, including cancer detection [48],
cybersecurity [37], drug discovery [4]. See [2] for a recent review on CP.

Conventionally, CP is applied in the transductive learning setting [34]. In this
latter setting, the instances are assumed to be sampled sequentially. Nonethe-
less, conformal predictors can be applied also to the standard inductive learning
paradigm, by using a separate validation (or, calibration) set [35]. For simplicity
of presentation, here and in Section 3, we focus on the transductive setting.

A non-conformity measure is a permutation-invariant function M : 2X×Y ×
(X × Y ) 7→ R, i.e., given S = (〈x1, y1〉..., 〈xn, yn〉), it holds that M(S, 〈x, y〉) =
M(π(S), 〈x, y〉) for every permutation π. Intuitively, a non-conformity measure
quantifies how much a new instance 〈x, y〉 differs from past examples in S. More
formally, the value of a non-conformity measure, for a given instance 〈x, y〉,
represents a statistic for a non-parametric testing procedure [35].

Let Sxi,x be the result of exchanging 〈xi, yi〉 with 〈x, y〉 in S. Then, the
conformal predictor determined by M is a function ΓM : 2X×Y ×X×[0, 1] 7→ 2Y ,
defined as:

ΓεM (S, x) = {y|px,y > ε}, (6)

where ε ∈ [0, 1] and px,y is defined as:

px,y =
|{i = [1, n] : M(S, 〈x, y〉) ≤M(Sxi,x, 〈xi, yi〉)}|+ 1

n+ 1
. (7)

Intuitively speaking, relying on the above mentioned interpretation of the non-
conformity measure as a testing statistic, the value px,y is the p-value for the null
hypothesis that the instance 〈x, y〉 comes from the same distribution as S [2].
Therefore, the labels in ΓεM (S, x) are those for which the previously mentioned
null hypothesis cannot be rejected (at a threshold confidence value of ε).
We denote with im(ΓM ) the image of ΓM , that is:

im(ΓM ) = {A ⊆ Y : ∃ε ∈ [0, 1] s.t. ΓεM (x) = A}. (8)

Thus, im(ΓM ) is a nested collection of sets A1 = ∅ ⊆ ...Ai ⊆ An = Y . Each
set Ai ∈ im(ΓM ) has an associated εi s.t. ε1 = 1, εn = 0. The map p(i) = εi
represents the p-value function [2] of the statistical procedure defined by ΓM .

Notably, a cautious classifier ΓεM can be constructed from a conformal pre-
dictor ΓM , by selecting an appropriate ε.

In Example 2, we illustrate the computations involved in the definition of a
conformal predictor, by using an approach based on 1-nearest neighbor [35].
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Example 2. In this example, the non-conformity measure will be defined as:

M1NN (S, 〈x, y〉) =
minx′∈S:yx′=y d(x, x′)

minx′∈S:yx′ 6=y d(x, x′)
, (9)

where d is a metric. Thus, the similarity of a new example 〈x, y〉 w.r.t. the
training set S is high when x is more similar to the instances in S associated
with the same label, than to instances associated with a different label.

Consider the following single-feature training set

S = {i1 = 〈0.75, 0〉, i2 = 〈0.90, 0〉, i3 = 〈0.48, 1〉},

Let x = 0.615 be a new instance to be classified. Then M1NN (S, 〈x, 0〉) =
M1NN (S, 〈x, 1〉) = 1 and, similarly:

M1NN (Si1,〈x,0〉, i1) = 0.5

M1NN (Si3,〈x,1〉, i3) = 0.5

M1NN (Si1,〈x,1〉, i1) = 1.15

M1NN (Si2,〈x,0〉, i2) = 0.36

M1NN (Si2,〈x,1〉, i3) = 0.53.

By contrast, M1NN (Si3,〈x,0〉, i3) is undefined, as there is no instance with la-
bel 1 in the associated training set. Thus, we set M1NN (Si3,〈x,0〉, i3) = +∞.

Therefore, px,0 = px,1 = 1
2 and the corresponding conformal predictor is defined

as:

ΓεM1NN
=

{
∅ ε > 1

2

{0, 1} otherwise

As previously mentioned, the main advantage of CP, compared to other cautious
classification approaches, is that every conformal predictor is valid, i.e. the
following result holds:

Theorem 1 (Vovk et al. [35]). Let S, x be sampled i.i.d. from the same dis-
tribution D, y be the true (but unknown) label associated with x. Let M be a
non-conformity measure and ε ∈ [0, 1]. Then, taken ΓM the conformal predictor
based on M , it holds that ΓM is conservatively valid, that is:

Pr[y /∈ ΓεM (S, x)] ≤ ε. (10)

Thus, the probability of error of ΓεM (S, x) is no greater than ε. Numerous
approaches have been proposed in the literature to define conformal predictors,
both based on algorithm-specific approaches [33]; and general-purpose ones [18].
One of the most popular general-purpose methods [18] is based on a score-based
classifier h (see Section 2.1). In this case, a non-conformity measure based on
h can be defined as:

Mh(S, 〈x, y〉) = max
y′∈Y
{s(x)y′} − s(x)y. (11)
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3. Methods

In this section, we study the relationships between TWD and CP. The main
contents of this section, as well as the results of our study, are summarised in
Figure 2. As previously mentioned, in the following we focus on the transductive

Figure 2: A graphical illustration of the main results in Section 3.

setting. As highlighted in Section 2.3, note, however, that the properties of
conformal predictors we study in this section hold also in the inductive setting.

3.1. From Three-way Decision to Conformal Prediction

In this section, we address the first of the research questions mentioned in
Section 1. Namely, we study whether, and under which conditions, TWD clas-
sifiers are valid. To this purpose, we first show that TWD can be used to design
conformal predictors. Then, we provide sufficient and necessary conditions for
the validity of TWD classifiers. The connection between TWD and CP is then
generalized to the setting of weakly supervised learning.

Let us first consider the standard supervised setting (i.e. Z = X × Y ). Let
S = (〈x1, y1〉, ..., 〈xn, yn〉) be the training set. The three-way non-conformity
measure, based on a given TWD classifier W, can be defined as:

MW(S, 〈x, y〉) := l(WS , 〈x, y〉) =

=

{
α(|WS(x)|) y ∈ WS(x)

err(WS(x), y) + α(|WS(x)|) otherwise

(12)

where l(WS , 〈x, y〉) denotes the loss of the prediction WS(x), given y ∈ Y .
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Thus, the three-way non-conformity measure assigns, to each instance 〈x, y〉,
the loss incurred by using WS to predict the label of x. It is easy to observe
that, for any W, MW is indeed a non-conformity measure:

Proposition 1. Let W be a three-way classifier, then MW , defined as in Eq.
(12), is a non-conformity measure.

Proof. Let S be a sample, and WS the three-way classifier defined by S. Then,
by definition, for any permutation S1 of S, it holds that WS =WS1

. Therefore,
the training algorithm is permutation-invariant.

The construction described in Section 2.3, applied to the three-way non-conformity
measure MW , allows to define the three-way conformal predictor (TWCP) as:

ΓεW(S, x) = {y|px,y > ε}, (13)

px,y =
|{i = 1, ..., n : Pred is verified}|+ 1

n+ 1
, (14)

Pred := l(WS , 〈x, y〉) ≤ l(WSxi,x
, 〈xi, yI〉). (15)

The calculations involved in the definition of the TWCP are briefly illustrated
in Example 3.

Example 3. Let Y = {0, 1, 2}, and let S be a training set s.t. S = {i1 =
〈x1, 0〉, i2 = 〈x2, 1〉, i3 = 〈x3, 1〉, i4 = 〈x4, 2〉}. Let W be a TW classifier s.t.
WS(x1) = {0, 2}, WS(x2) = {0}, WS(x3) = {1} and WS(x4) = {1, 2}.

Let x be a new instance. Assume, for simplicity, that ∀ij, WS =WSij ,x
and

that WS(x) = {0, 1}. Let err = 1 and α(|A|) = |A|−1
|Y |−1 .

Then MW(S, 〈x, 1〉) = 0.5, MW(S, 〈x, 0〉) = 0.5, MW(S, 〈x, 2〉) = 1.5, while

MW(Si1,x, i1) = 0.5

MW(Si4,x, i4) = 0.5

MW(Si2,x, i2) = 1

MW(Si3,x, i3) = 0

.
Therefore px,0 = px,1 = 4

5 , px,2 = 1
5 and the TWCP ΓW is defined as:

ΓεW =


∅ ε > 4

5

{0, 1} 1
5 < ε ≤ 4

5

Y otherwise

Since MW is a non-conformity measure, as a consequence of Theorem 1, it holds
that the TWCP ΓW is conservatively valid:

Corollary 1. Let S, x be sampled i.i.d. from the distribution, and let ŷ be the
correct label associated with x. Then, for any ε, Pr[ŷ /∈ ΓεW(S, x)] ≤ ε, that is
ΓW is conservatively valid.
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Proof. The result follows directly from Theorem 1 and the observation (see
Prop. 1) that MW is a non-conformity measure.

The previous result holds for any CP algorithm, thus, in particular, for the
TWCP. Nonetheless, the previous result does not provide any information about
the validity of the original TWD classifier. Then, we ask two main questions:
can the validity of a TWCP be used to obtain performance bounds for the
corresponding TWD classifier? Under which conditions it holds that a TWD
classifier and the corresponding TWCP are equivalent?

In regard to the first question, note that the transformation from a TWD
classifierW to the corresponding TWCP ΓW provides a bound on the probabil-
ity of error of W. Indeed, if WS(x) ∈ im(ΓW(S, x)), then, the following bound
follows from Corollary 1:

Pr[y /∈ WS(x)] ≤ arg min
ε∈[0,1]

{ΓεW(S, x) =WS(x)}. (16)

Consequently, a sufficient condition for the validity of the TWD classifier W
would be that WS(x) ∈ im(ΓW(S, x)). Then, the next result provides a char-
acterization of this property:

Theorem 2. The following two conditions are equivalent:

1. WS(x) ∈ im(ΓW(S, x));

2. ∃〈xi, yi〉 ∈ S such that

l(WSxi,x
, 〈xi, yi〉) < min

y/∈WS

err(WS , y).

Proof. First, we prove that 1 implies 2. Note that ∀y ∈ WS(x) = A, then either
l(A, y) = 0 (when A = {y}) or l(A, y) = α(|A|). Furthermore, by definition of α
and err, it holds that ∀A,α(|A|) ≤ minB⊆Y,y/∈B err(B, y). Thus, if 2 does not
hold, then it exists y /∈ WS(x) s.t. px,y = 1. Consequently, the smallest Ai in
im(ΓW(S, x)) is s.t. WS ∪ {y} ⊆ Ai. The proof for the converse implication is
analogous.

Thus, as a consequence of Theorem 2, every non-trivial TWD classifier1 is valid,
and can be associated with an error upper bound. This latter error bound
quantifies the probability that the correct label is not contained in the set-
valued prediction issued by the TWD classifier.

Furthermore, this latter error bound is dependent on the predictive perfor-
mance of the TWD classifier. This dependency is formalized through the fol-
lowing Theorem, which provides a characterization of the nested set structure
for any TWCP:

Theorem 3. Let ε ∈ [0, 1] and let WS(x) = A. Then A = ΓεW(S, x) iff both:

1Here, non-trivial refers to any TWD classifier that does not err on all of its predictions.
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1. W makes at least bε·(n+1)c predictions on S with risk greater than α(|A|);
2. W makes at most dε · (n + 1)e predictions on S with risk greater than

miny/∈A err(A, y).

Proof. First, note that ∀y ∈ A, l(A, y) = α(|A|). Thus, if y ∈ A is in ΓεW(S, x),
then the same holds for all y′ ∈ A. Thus, a sufficient (and necessary) condition
for y ∈ A to be included in ΓεW(S, x) is the existence of at least bε · (n + 1)c
instances x′ ∈ S s.t. l(WSx′,x(x′), y′) ≥ α(|A|). Otherwise ΓεW(S, x) = ∅.

As for the second condition, note that for any y /∈ A

l(WS , 〈x, y〉) ≥ min
y′ /∈A

l(WS , 〈x, y′〉) > α(|A|).

Thus a sufficient and necessary condition for excluding any y /∈ A from ΓεW(S, x)
is that for at most bε · (n+ 1)c instances 〈x′, y′〉 ∈ S, it holds that

l(WSx′,x , 〈x
′, y′〉) ≥ min

y/∈A
l(WS , 〈x, y〉).

Thus, the theorem follows.

Finally, with respect to our second question, we note that in the uniform-cost
classification setting, a finer version of Theorem 3 can be derived. This result
shows that any TWD classifier and its corresponding TWCP are equivalent (see
also Example 4 for a brief illustration of the following Theorem):

Corollary 2. Let ε ∈ [0, 1], then in the uniform-cost classification setting it
holds that:

• If |WS(x)| = 1, then WS(x) = ΓεW(S, x) iff W makes at most bε · (n+ 1)c
errors on S (otherwise, ΓεW(S, x) = Y );

• Otherwise, WS(x) = ΓεW(S, x) iff W makes at most d(1 − ε) · (n + 1)e
predictions on S with risk lower than α(|WS(x)|) (otherwise, ΓεW(S, x) =
∅) and at most bε · (n+ 1)c errors (otherwise, ΓεW(S, x) = Y ).

Thus, ΓW(S, x) is completely determined by two thresholds 0 ≤ ε1 < ε2 ≤ 1 s.t.

ΓεW(S, x) =


∅ ε2 < ε

WS(x) ε1 < ε ≤ ε2
Y 0 ≤ ε ≤ ε1

(17)

Proof. The result follows directly from Theorem 3, applying the result to the
case of uniform-cost classification.

Example 4. Consider the TWCP introduced in Example 3. Then, |WS(x)| > 1,
and W makes exactly one prediction with risk lower than α(WS(x)) = 0.5.
Hence, by Theorem 2 it holds that ε2 = 4

5 . Similarly, W makes exactly 1 error,
hence by Theorem 2 it holds that ε1 = 1

5 .
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We now focus on the more general weakly supervised learning setting (i.e. Z =
X × 2Y ). Let S = (〈x1, Y1〉, ..., 〈xn, Yn〉) be the current training set. The three-
way nonconformity measure can be generalized as follows:

Mmin
W (S, 〈x, Yx〉) = min

y∈Yx

l(WS , 〈x, y〉). (18)

where W is a three-way in/three-way out classifier [5]. Thus, the superset
TWCP is defined as:

ΓεW,min(S, x) = {y|px,y > ε}, (19)

px,y =
|{i = 1, ..., n : Pred is verified}|+ 1

n+ 1
, (20)

Pred = l(WS , 〈x, y〉) ≤ min
y′∈Yi

l(WSxi,x
, 〈xi, y′〉). (21)

The nonconformity measure Mmin
W is defined in terms of the minimum oper-

ator. Thus, it is similar to the optimistic loss minimization [15] approach for
weakly supervised learning. Remarkably, however, the role of the minimum op-
erator in the two formulations is different. In the generalized loss minimization
framework, the minimum operator selects the instantiation of the set labels that
minimizes the empirical loss, over all possible instantiations. On the other hand,
in Eq. (19), the minimum operator acts as a conservative bound for the similar-
ity between x and the training set S. Indeed, given 〈xi, Yi〉, the corresponding
nonconformity score is

min
y∈Yi

MW(S, 〈xi, y〉) ≤M ≤ max
y∈Yi

MW(S, 〈xi, y〉).

Thus, the nonconformity score of x is compared against the most conservative
threshold, among those that are considered possible. In this sense, Eq. (19) is
more similar to the principle underlying pessimistic loss minimization [16].

As a second remark, we study the efficiency of the superset TWCP. It is
not hard to see that changing min, in Eq. (19), with max or mean would
equally result in a non-conformity measure. However, it is easy to observe
that the approach based on the minimum operator is more efficient than those
based on, either, the maximum or mean operators. Indeed, denote these latter
non-conformity measures as, resp., Mmax

W ,Mmean
W . Similarly, denote the corre-

sponding conformal predictors as, resp., ΓW,max,ΓW,mean. Then, the following
result holds:

Proposition 2. Let W be a TWD classifier, S a training set and x a new
instance. Then, for any ε ∈ [0, 1], ΓεW,min(x) ⊆ ΓεW,mean(x) ⊆ ΓεW,max(x).

Proof. Note that, for any set of positive numbers {n1, ..., nm}, it holds that
arg mini{ni} ≤ 1

m

∑
ni ≤ arg maxi{ni}. Then, the result easily follows.
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3.2. From Conformal Prediction to Three-way Decision

In this section we address the second of the research questions mentioned in
Section 1. Namely, we study conditions under which TWD and CP methods are
equivalent. To this aim, we first outline two approaches to define a cost-sensitive
cautious classifier from any conformal predictor. These latter approaches can
be used to transform any conformal predictor into a TWD classifier. We then
study the equivalence between TWD and CP methods, by applying the above
mentioned approaches to the case in which the conformal predictor is defined
as in Section 3.1.

The first approach to obtain a TWD classifier, starting from a CP algorithm
ΓM , relies on the observation that ΓM is defined as a collection of nested sets,
associated with corresponding (lower) probabilities.

Let M be any non-conformity measure, and let ΓM be the corresponding
conformal predictor. Let A ⊆ Y be s.t. A ∈ im(ΓM (x)), i.e. ∃ε ∈ [0, 1] s.t.
ΓεM (x) = A. Denote with εA, the (unique) solution of the following equality:

εA := arg min
ε∈[0,1]

{ΓεM (x) = A}. (22)

Eq. (22) implies that, given A ∈ im(ΓM (x)), it is known that Pr〈x,y〉∼D[y /∈
A] ≤ εA. Therefore, the loss LossΓM

(x) w.r.t. A can be bounded as follows:

Proposition 3. Let A ⊆ Y be in the image of ΓM (x), and let εA be the corre-
sponding solution of Eq. (22). Then:

α(|A|) ≤ LossΓM (x)(A) ≤ α(|A|) · (1− εA)+

+ εA|Y \A| ·max
y/∈A
{err(A, y)}. (23)

Proof. Let y ∈ Y be the real label attached to x. Then, by Theorem 1, Pr[y /∈
A] ≤ εA. Further, by definition of err and α, it holds that

α(|A|) ≤ min
y/∈A

err(A, y) ≤ max
y/∈A
{err(A, y)}.

Note, also, that the rightmost summand in Eq. (23) is monotonically increasing
w.r.t. ε ∈ [0, εA], and the left and right side of the inequality chain coincide
when ε = 0. Then, the result easily follows.

Denote the right-most side of Eq. (23) as Loss∗ΓM (x)(A). Then, given a confor-

mal predictor ΓεM , the decision-theoretic conformal TWD (DCTWD) classifier
WΓ is defined as follows:

Wdec
Γ (x) = arg min

A∈im(ΓM (x))
Loss∗ΓM (x)(A). (24)

On the other hand, the second approach to transform a conformal predictor
into a TWD classifier relies on the observation that a conformal predictor ΓM
defines a possibility distribution over Y . Indeed, given A ∈ im(ΓM ), it holds
that 1− εA is a lower bound on the probability that the correct label y is in A.

14



Denote as ∅ ⊂ A1 ⊆ ... ⊆ Ak the nested sets in im(ΓM ). Given any y ∈ Y ,
let j(y) = max{i : y /∈ Ai}. Then, a possibility distribution πΓ can be defined
as follows [8]:

πΓ(y) =

{
1 A1 = {y}
εAj(y) otherwise

(25)

The possibility distribution πΓ can then be used to define a TWD classifier
by transforming πΓ into a probability distribution, so that the Loss function
in Eq. (5) is well-defined. This transformation is performed by means of the
possibility-probability transformation [9]:

PrπΓ
(y) =

k∑
i=1

π̂i − π̂i+1

|Bi|
1y∈Bi

, (26)

where π̂ is the ordering of πΓ in terms of decreasing possibility value; Bi is the
π̂i α-cut (i.e., Bi = {y ∈ Y : πΓ(y) ≥ π̂i}). Then, the possibilistic conformal
three-way(PCTWD) classifier is defined as:

Wposs
Γ (x) = LosspossΓM (x)(A)

= arg min
A∈2Y

∑
y/∈A

PrπΓ(y) · err(A, y)+

+ α(|A|)
∑
y∈A

PrπΓ
(y).

(27)

Example 5 below provides an illustration of the calculations involved in the
construction of a DCTWD and a PCTWD.

Example 5. Consider the TWCP ΓW and loss function defined in Example 3.
Then, considering the instance x, it holds that Loss∗ΓW(x)({0, 1}) = 4

5

∗ 1
3 +

1
5 = 0.47; while Loss∗ΓW(x)(Y ) = 0.67. Hence Wdec

ΓW
(x) = {0, 1}.

By contrast, the corresponding PCTWD can be defined by noting that πΓ(0) =
πΓ(1) = 1 and πΓ(2) = 0.25, therefore PrπΓ = 〈0 : 0.46, 1 : 0.46, 2 : 0.08〉.

Hence, LosspossΓ (0) = 0.54, LosspossΓ (1) = 0.54, while LosspossΓ ({0, 1}) =
0.39 and LosspossΓ (Y ) = 0.67. Therefore Wposs

ΓW
(x) = {0, 1}.

The two above mentioned constructions allow to transform any conformal pre-
dictor into a cost-sensitive TWD classifier. Furthermore, it is easy to see that
these constructions preserve validity. Indeed, for the case of a DCTWD Wdec

Γ ,
the following result holds:

Proposition 4. Pr[yx /∈ Wdec
Γ (x)] ≤ εA, where εA is defined as in Eq. (22).

Proof. By construction, it holds that Wdec
Γ (x) = A ∈ im(Γ(x)). Then, the

result follows by Theorem 1, and the definition of εA
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By contrast, for the case of a PCTWD Wposs
Γ , there is no guarantee that

Wposs
Γ (x) ∈ im(Γ(x)). Nonetheless, a weaker bound can be obtained through

the following result:

Proposition 5. Pr[yx /∈ Wposs
Γ (x)] ≤ εB∗ , where

B∗ = arg maxB∈im(Γ)(x):B⊆Wposs
Γ (x)|B|. (28)

Proof. The result directly follows from the definition of Γ and Wposs
Γ (x). In

particular, for all B ⊆ B∗ it holds that Pr[yx /∈ Wposs
Γ (x)] ≤ εB .

We now consider our main research question: namely, we ask under which condi-
tions a given TWD classifier, and the corresponding DCTWD (resp. PCTWD)
classifier, are equivalent. Such conditions would then establish an isomorphism
between the class of TWD classifiers and (three-way) conformal predictors.

To this aim, letW be a TWD classifier, let ΓW be the TWCP obtained from
W and, finally, let Wdec

ΓW
(resp. Wposs

ΓW
) be the corresponding DCTWD (resp.

PCTWD). The following result provides sufficient and necessary conditions for
the equivalence between the TWD classifierW and the DCTWD classifierWdec

ΓW
.

Theorem 4. Let W(x) = A, then Wdec
ΓW

(x) = A holds iff the following two
conditions are satisfied:

1. ∃ε ∈ [0, 1] s.t. W makes at least bε · (n + 1)c predictions on S with risk
greater than α(|A|) and makes at most bε · (n+ 1)c predictions on S with
risk greater than miny/∈AR(y,A);

2. εA ≤ minB∈im(Γdec
W (x))

Loss∗ΓW
(B)−α(|A|)

maxy 6inA err(A,y)−α(|A|) .

Proof. The first condition, by Theorem 3, ensures thatW(x) ∈ im(ΓW(x)). The
second condition, on the other hand, ensures that the transformation preserves
the minimal element w.r.t. the ordering of 2Y in terms of the Loss value. Thus,
if both conditions hold, then W(x) is the unique solution to Eq. (24), and the
result follows.

The following corollary shows that, in the uniform-cost setting, the conditions
required by Theorem 4 can be relaxed:

Corollary 3. Let S be the current training set with |S| = n, WS(x) = A, then
Wdec

ΓW
(x) = A iff

m ≤ α(|Y |)− α(|A|)
err − α(|A|)

· n, (29)

where m is the number of errors made by WS.

Proof. The result directly follows from Theorems 2 and 4.

We now discuss the case of the PCTWD classifier. First of all, irrespective of
the non-conformity measure used, ∀A ∈ im(Γ), the following proposition holds:

Proposition 6. PrπΓ
(A) ≥ 1− εA.
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Proof. Let j be s.t. Bj = A (i.e. A is the ith α-cut). Then:

PrπΓ
(A) = (1− εB1) + (εB1 − εB2) + ...

+ (εBj−1 − εA) + |A|
k∑
i=j

π̂i − π̂i+1

|Bi|
=

= (1− εA) + |A|
k∑
i=j

π̂i − π̂i+1

|Bi|

≥ (1− εA) +
|A|
|Y |

εA > 1− εA

(30)

This result implies, in particular, that LosspossΓ (A) ≤ Loss∗Γ(A).
Furthermore, note that if Γ = ΓW (i.e. Γ is a TWCP) and the cost function

is uniform, then the penultimate inequality in Eq. (30) holds with equality
(as a consequence of Theorem 2). Then, the following result provides sufficient
and necessary conditions for the equivalence between a TWD classifier and the
corresponding PCTWD classifier in the uniform-cost setting:

Theorem 5. Let S be the current training set. Let WS(x) = A. Then,
Wposs

ΓW
(x) = A iff all the following conditions hold:

α(|A|+ 1)

α(|A|)
> f(|A|), (31)

∀k < |A|, 1− εA > g(|A|, k), (32)

∀k > |A|, εA ≤ g(|A|, k), (33)

where

f(|A|) =
1− |A||Y |

(|A|+ 1)( 1
|A| −

1
|Y | )

,

g(|A|, k) =

k
|A|α(k)− α(|A|)

D(|A|, k)
,

D(|A|, k) =
k

|A|
α(k) +

k

|Y |
+
|A|
|Y |

α(|A|)

− α(|A|)− k

|Y |
α(k)− |A|

|Y |
.

and εA is equal to ε1 in Theorem 2.

Proof. The result directly follows from standard algebraic manipulations and
the observation that, in the uniform-cost setting, the penultimate inequality in
(30) holds with equality.
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The generalization of Theorem 5 to general, non-uniform, loss functions is left
as an open problem.

In regard to the significance of Theorems 4 and 5, we discussed in Section 2.2
that, while TWD is optimal w.r.t. cost-sensitiveness, its results may in general
be not valid. In particular, the latter may happen when the underlying classifier
is not calibrated. Therefore, the transformation from a TWD classifier to a CP
one (by means of TWCP and then, either, a DCTWD, or a PCTWD, classifier),
can be seen as an approach to correct this lack of validity. In particular, then,
Theorems 4 and 5 show that calibration is not a necessary condition for a TWD
classifier to be valid, and provide conditions for validity.

Indeed, the two Theorems show that, under the condition that the TWD
classifier W is sufficiently accurate, the correction implemented by means of
CP has no effect. In this latter case, the set-valued predictions obtained before
and after the validity correction are identical. Consequently, Theorems 4 and 5
establish an isomorphism between the class of (non-trivial) TWD classifiers and
(three-way) conformal predictor. An illustration of these latter observations is
shown in Example 6 and in Figure 2.

Example 6. Let us refer to the TWCP ΓW defined in Example 3 and the cor-
responding DCTWD and PCTWD classifiers defined in Example 5. In Example
5, it was shown that the predictions provided by the three TWD classifiers were
equivalent, hence Theorems 4 and 5 should hold, as they provide sufficient and
necessary conditions for such equivalences.

Indeed, as regards the DCTWD, we note that W made exactly 1 < 2/3−1/3
1−1/3 ·

|S| = 2 error and thus the conditions in Theorem 4 are satisfied.
Similarly, with respect to the PCTWD, we note that Eq. (31) reduces to

2 > 1−2/3
3(1/2−1/3) = 0.67, Eq. (32) reduces to 4

5 > 0.5 and Eq. (33) reduces to
1
5 <

2
5 which are all obviously satisfied.

4. Results

4.1. Experimental Design

The theoretical study of the previous sections shows some important con-
nections between TWD and CP. In particular, it provides conditions for the
equivalence among these two cautious classification methods. Based on these
results, in this section, we describe a set of experiments to investigate the rela-
tionship between TWD and CP also from an empirical point of view.

More in detail, we address three research questions:

1. In Sections 3.1 and 3.2, we studied conditions for the equivalence between
a TWD classifier W and the corresponding DCTWD (resp., PCTWD)
classifier. In particular, we showed that these latter two classes of classi-
fiers are equivalent, provided that the original TWD classifier is sufficiently
accurate. Do these conditions hold in real-world datasets?
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2. In Section 3.2 we proposed the DCTWD and PCTWD classifiers as tech-
niques to obtain cost-sensitive cautious classifiers, starting from any con-
formal predictor. Nonetheless, we did not study any difference, in terms
of validity or efficiency, between the DCTWD and PCTWD construction.
Are there any empirical differences among these two latter methods, in
terms of either classification accuracy or efficiency?

3. The proposed constructions can be seen as techniques to both improve
the predictive performance of a TWD, as well as objective2 approaches to
obtain a cautious classifier from any CP method. Do these constructions
result in an increase in predictive performance compared with other state-
of-the-art TWD and CP algorithms?

To this end, we considered a set of experiments, based on 12 datasets from
the UCI repository. These datasets are listed in Table 1.

Table 1: List of used datasets

Dataset Instances Features Classes
Digits 1797 64 10

Breast Cancer 569 30 2
Wine 178 13 3

Covertype 581012 54 7
20Newsgroups 18846 130107 20

Diabetes 786 8 2
Epileptic Seizure 11500 179 2

Diabetic Retinopathy 1151 20 4
Hepatitis C virus 1385 29 4

Chronic Kidney Disease 400 25 2
Abalone 4177 8 27

Arrhythmia 452 279 16

We considered two different classes of scoring classifiers, namely Random Forest
and k-Nearest Neighbors. For each of these latter two classes, we compared the
results of 6 different methods:

• The (standard, single-valued prediction) classifiers hRF , hKNN ;

• The TWD classifiers WRF , WKNN ;

• The TWCP-based DCTWD and PCTWD classifiers Wdec
ΓWRF

, Wdec
ΓWKNN

based on WRF , WKNN ;

• The DTCWD and PCTWD classifier Wdec
ΓhRF

, Wdec
ΓhKNN

, directly based on

hRF , hKNN (see Section 2.3).

2Here, by objective it is meant that there is no a-priori selection of a probability threshold
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The loss function (used to determine the TWD classifiers and to evaluate the
performance of the models) was defined through the following abstention cost
function:

α(n) =
n− 1

|Y |
, (34)

while the err function was

• Uniform, with all costs equal to 1, for the Abalone, Digits, Wine, Cover-
type and 20Newsgroups datasets;

• Equal to 1 when the true class label was associated to healthy status, and
equal to 2 otherwise, for the medical datasets.

The CP algorithms were implemented using the inductive approach, i.e., by
relying on a validation set. The size of the validation set was set to 20% of
the training set. We decided to use the inductive approach, rather than the
sequential one, in order to reduce the computational cost of re-training the
classification algorithms.

All algorithms were evaluated in terms of the complement of the above men-
tioned loss function3, henceforth accuracy, as well as in terms of coverage, as
a measure of efficiency. This latter measure, in particular, was defined, for a
set-valued prediction S, as:

coverage(S) = 1− |S| − 1

|Y | − 1
. (35)

All performances were computed using 5-fold cross-validation. Thus, we report
the results in terms of both the average performance and the corresponding 95%
confidence interval. In order to assess the presence of statistically significant
differences, if any, we performed the Friedman rank test. Namely, for each
cautious learning approach and each model class (Random Forest, kNN), we
computed the ranks with respect to each of the considered datasets; for each
cautious learning approach and each dataset we then averaged the Random
Forest and kNN ranks.

4.2. Experimental Results

The results of the Experiments, in terms of the average accuracy, are re-
ported in Tables 2, 3 and in Figure 3. The average coverage values are reported
in Tables 4, 5 and Figure 4.

As regards the observed accuracies, the average ranks are reported in Table
6: the observed test statistic was Q = 36.11, which was significant at the 95%
confidence level (p-value < 0.00001). Thus, we also performed a post-hoc pair-
wise comparison using the Nemenyi test procedure. The critical value of the

3Note that when the err function was uniform, then the complement of the loss function
is equivalent to a penalized accuracy, in which the penalization depends on the size of the
set-valued prediction
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Figure 3: Average accuracy and 95% confidence intervals for each of the evaluated classifiers,
on the medical (left) and non-medical (right) datasets. Each marker refers to the average of the
corresponding Random Forest-based and kNN-based classifiers. In the legend, h denotes the
standard classifiers (hRF , hKNN ); TWD the three-way decision classifiers (WRF , WKNN );
TWCP-DCTWD (resp., TWCP-PCTWD) the DCTWD (resp., PCTWD) classifier based on
the TWCP (Wdec

ΓWRF
, Wdec

ΓWRF
); while h-DCTWD (resp., h-PCTWD) the DCTWD (resp.

PCTWD) classifier based on the standard conformal predictors (Wdec
ΓhRF

, Wdec
ΓhRF

).

test (with 12 datasets and 6 compared methods), at the 95% confidence level,
is 2.176. The pairwise comparisons are reported in Table 7.

As regards the observed coverage values, the average ranks are reported in
Table 8. The observed test statistic was Q = 26.33 which was significant at
the 95% confidence level (p-value = 0.00003). Thus, we performed the Nemenyi
post-hoc pairwise test. The critical value of the test (with 12 dataset 5 compared
methods), at the 95% confidence level, is 1.761. The pairwise comparison are
reported in Table 9.

4.3. Discussion

Commenting the results reported in Section 4.2, we can see that the TWD
classifiers (i.e.,W, ΓdecW and ΓpossW ) outperformed the corresponding single-valued
classifiers in terms of accuracy. This finding should not be surprising. In-
deed, the considered cautious classifiers are, by construction, cost-sensitive.
Hence, they always return the set-valued prediction that maximizes the ac-
curacy. Nonetheless, it shows that both TWD classifiers and the corresponding
CP-based corrections can be useful to obtain significantly improved predictive
performance (if set-valued predictions are allowed).

More interestingly, we can observe that the standard CP-based classifiers
(i.e., Γdech and Γpossh ) were not significantly different from the single-valued clas-
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Figure 4: Average accuracy and 95% confidence intervals for each of the evaluated classifiers,
on the medical (left) and non-medical (right) datasets. Each marker refers to the average of the
corresponding Random Forest-based and kNN-based classifiers. In the legend, h denotes the
standard classifiers (hRF , hKNN ); TWD the three-way decision classifiers (WRF , WKNN );
TWCP-DCTWD (resp., TWCP-PCTWD) the DCTWD (resp., PCTWD) classifier based on
the TWCP (Wdec

ΓWRF
, Wdec

ΓWRF
); while h-DCTWD (resp., h-PCTWD) the DCTWD (resp.

PCTWD) classifier based on the standard conformal predictors (Wdec
ΓhRF

, Wdec
ΓhRF

).

Table 2: Average loss value and 95% confidence intervals for the Random Forest-based clas-
sifiers, on all 12 datasets.

Dataset hRF WRF Wdec
ΓWRF

Wposs
ΓWRF

Wdec
ΓhRF

Wposs
ΓhRF

Abalone 0.79± 0.02 0.91± 0.01 0.92± 0.01 0.91± 0.01 0.90± 0.01 0.85± 0.03
Arrhythmia 0.80± 0.04 0.81± 0.02 0.81± 0.02 0.84± 0.03 0.80± 0.04 0.81± 0.04
Breast
Cancer

0.86± 0.03 0.97± 0.01 0.97± 0.01 0.97± 0.01 0.95± 0.01 0.96± 0.01

Chronic
Kidney

0.85± 0.03 0.87± 0.02 0.87± 0.02 0.87± 0.02 0.85± 0.03 0.85± 0.03

Covertype 0.82± 0.02 0.93± 0.02 0.93± 0.02 0.93± 0.01 0.85± 0.01 0.88± 0.03
Diabetes 0.73± 0.05 0.77± 0.02 0.77± 0.02 0.74± 0.02 0.75± 0.01 0.73± 0.05
Diabetic
Retinopathy

0.78± 0.04 0.84± 0.02 0.84± 0.02 0.81± 0.02 0.82± 0.02 0.78± 0.04

Digits 0.94± 0.02 0.95± 0.01 0.95± 0.01 0.95± 0.01 0.91± 0.01 0.90± 0.01
Epileptic
Seizure

0.73± 0.01 0.88± 0.00 0.88± 0.00 0.77± 0.05 0.86± 0.00 0.70± 0.01

Hepatitis C 0.56± 0.03 0.86± 0.04 0.86± 0.04 0.86± 0.04 0.79± 0.03 0.77± 0.02
Wine 0.81± 0.05 0.96± 0.02 0.96± 0.02 0.96± 0.02 0.92± 0.02 0.91± 0.03
20Newsgroups 0.85± 0.01 0.91± 0.00 0.91± 0.00 0.91± 0.00 0.91± 0.01 0.81± 0.01

sifiers in terms of accuracy. In particular, the PCTWD classifier was significantly
outperformed by all TWD-based classifiers. Thus, we can provide a positive an-
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Table 3: Average loss value and 95% confidence intervals for the kNN-based classifiers, on all
12 datasets.

Dataset hKNN WKNN Wdec
ΓWKNN

Wposs
ΓWKNN

Wdec
ΓhKNN

Wposs
ΓhKNN

Abalone 0.67± 0.02 0.74± 0.02 0.91± 0.00 0.81± 0.04 0.88± 0.02 0.73± 0.04
Arrhythmia 0.69± 0.08 0.75± 0.07 0.75± 0.07 0.75± 0.07 0.77± 0.05 0.69± 0.08
Breast
Cancer

0.93± 0.02 0.94± 0.02 0.94± 0.02 0.94± 0.02 0.73± 0.06 0.93± 0.01

Chronic
Kidney

0.74± 0.04 0.81± 0.04 0.81± 0.04 0.81± 0.04 0.81± 0.04 0.74± 0.04

Covertype 0.71± 0.02 0.87± 0.06 0.87± 0.06 0.78± 0.01 0.50± 0.00 0.71± 0.02
Diabetes 0.68± 0.03 0.72± 0.03 0.72± 0.03 0.70± 0.03 0.70± 0.03 0.68± 0.03
Diabetic
Retinopathy

0.63± 0.03 0.79± 0.02 0.79± 0.02 0.78± 0.02 0.71± 0.02 0.73± 0.03

Digits 0.96± 0.01 0.99± 0.01 0.99± 0.01 0.96± 0.01 0.90± 0.00 0.96± 0.01
Epileptic
Seizure

0.59± 0.01 0.74± 0.01 0.83± 0.00 0.78± 0.01 0.75± 0.00 0.66± 0.01

Hepatitis C 0.56± 0.03 0.79± 0.01 0.83± 0.01 0.79± 0.04 0.83± 0.01 0.70± 0.02
Wine 0.71± 0.04 0.85± 0.02 0.85± 0.02 0.78± 0.06 0.78± 0.03 0.71± 0.04
20Newsgroups 0.67± 0.01 0.83± 0.01 0.83± 0.01 0.84± 0.01 0.50± 0.00 0.76± 0.01

Table 4: Average coverage value and 95% confidence intervals for the Random Forest-based
classifiers, on all 12 datasets.

Dataset WRF Wdec
ΓWRF

Wposs
ΓWRF

Wdec
ΓhRF

Wposs
ΓhRF

Abalone 0.74± 0.01 0.64± 0.05 0.69± 0.01 0.60± 0.02 0.69± 0.05
Arrhythmia 0.86± 0.02 0.86± 0.02 1.00± 0.00 0.82± 0.09 1.00± 0.00
Breast
Cancer

0.97± 0.02 0.97± 0.02 1.00± 0.00 0.54± 0.10 1.00± 0.00

Chronic
Kidney

0.83± 0.05 0.83± 0.05 1.00± 0.00 0.75± 0.06 1.00± 0.00

Covertype 0.76± 0.03 0.76± 0.02 0.76± 0.03 0.30± 0.05 0.62± 0.16
Diabetes 0.94± 0.04 0.94± 0.04 1.00± 0.00 0.81± 0.05 1.00± 0.00
Diabetic
Retinopathy

0.73± 0.02 0.73± 0.02 1.00± 0.00 0.74± 0.01 1.00± 0.00

Digits 0.93± 0.03 0.93± 0.03 0.93± 0.03 0.60± 0.02 0.65± 0.05
Epileptic
Seizure

0.58± 0.01 0.58± 0.00 0.77± 0.09 0.47± 0.01 0.81± 0.01

Hepatitis C 0.44± 0.01 0.44± 0.01 0.44± 0.01 0.25± 0.06 0.64± 0.04
Wine 0.87± 0.05 0.87± 0.05 0.87± 0.05 0.44± 0.16 0.87± 0.05
20Newsgroups 0.64± 0.01 0.64± 0.01 0.64± 0.01 0.57± 0.00 0.59± 0.01

swer to our third experimental research question. Indeed, the proposed methods
out-performed the state-of-the-art CP methods, in terms of predictive accuracy,
with comparable or even better efficiency.

In regard to our first research question, we can see that there were no signif-
icant differences among the three TWD-based cautious classifiers (i.e., W, ΓdecW
and ΓpossW ). This finding lends empirical support to the results proven in Section
3. Indeed, in Section 3, we proved that a TWD classifier is equivalent to the cor-
responding CP-based model, provided the original TWD classifier is sufficiently
accurate. The experimental results, then, show that the conditions of Theo-
rems 3, 4, 4 are usually satisfied in real-world setting. Hence, TWD methods
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Table 5: Average coverage value and 95% confidence intervals for the kNN-based classifiers,
on all 12 datasets.

Dataset WRF Wdec
ΓWRF

Wposs
ΓWRF

Wdec
ΓhRF

Wposs
ΓhRF

Abalone 0.77± 0.00 0.60± 0.03 0.69± 0.10 0.57± 0.03 0.77± 0.07
Arrhythmia 0.79± 0.04 0.79± 0.04 1.00± 0.00 0.55± 0.17 1.00± 0.00
Breast
Cancer

0.96± 0.02 0.96± 0.02 1.00± 0.00 0.50± 0.12 1.00± 0.00

Chronic
Kidney

0.79± 0.06 0.79± 0.06 1.00± 0.00 0.62± 0.10 1.00± 0.00

Covertype 0.94± 0.02 0.94± 0.02 1.00± 0.00 0.00± 0.00 1.00± 0.00
Diabetes 0.82± 0.04 0.82± 0.04 1.00± 0.00 0.72± 0.07 1.00± 0.00
Diabetic
Retinopathy

0.75± 0.04 0.75± 0.04 1.00± 0.00 0.59± 0.10 1.00± 0.00

Digits 0.98± 0.01 0.98± 0.01 1.00± 0.00 0.55± 0.00 1.00± 0.00
Epileptic
Seizure

0.71± 0.00 0.50± 0.00 0.62± 0.01 0.68± 0.01 0.78± 0.01

Hepatitis C 0.32± 0.01 0.23± 0.04 0.39± 0.07 0.37± 0.04 0.79± 0.01
Wine 0.76± 0.04 0.71± 0.09 0.83± 0.11 0.62± 0.09 0.97± 0.01
20Newsgroups 0.83± 0.01 0.83± 0.01 0.87± 0.01 0.00± 0.00 0.82± 0.01

Table 6: Average ranks of the compared learning algorithms, in terms of observed loss value,
according to the Friedman test procedure.

h W Γdec
W Γposs

W Γdec
h Γposs

h
Average rank 5.29 2.23 1.83 2.67 4.01 4.91

Table 7: Pairwise differences in ranks, in terms of observed loss values, among the compared
learning algorithms. Statistically significant differences (according to the Nemenyi test) are
denoted in bold and with an asterisk.

W Γdec
W Γposs

W Γdec
h Γposs

h
h 3.06∗ 3.46∗ 2.62∗ 1.28 0.38
W - 0.40 0.44 1.78 2.68∗

Γdec
W - - 0.84 2.18∗ 3.08∗

Γposs
W - - - 1.34 2.24∗

Γdec
h - - - - 0.9

Table 8: Average ranks of the compared learning algorithms, in terms of observed coverage,
according to the Friedman test procedure.

W Γdec
W Γposs

W Γdec
h Γposs

h
Average rank 3.02 3.46 2 4.75 1.90

Table 9: Pairwise differences in ranks, in terms of observed coverage values, among the com-
pared learning algorithms. Statistically significant differences (according to the Nemenyi test)
are denoted in bold and with an asterisk.

W Γdec
W Γposs

W Γdec
h Γposs

h
W - 0.44 1.02 1.73 1.12

Γdec
W - - 1.46 1.29 1.36

Γposs
W - - - 2.75∗ 0.10

Γdec
h - - - - 2.85∗
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can usually be expected to have the same level of validity as the corresponding
CP-based correction.

More in detail, in the case of Random Forest, the results for the TWD-
based cautious classifiers were almost always identical. By contrast, in the case
of kNN, there were 4 datasets on which the DCTWD and PCTWD classifiers
achieved increased performance. This observation can be explained by noting
that kNN classifiers usually have lower accuracy and generalization capability
than Random Forest ones. As a consequence of the results in Section 3, this
observation implies that TWD classifiers based on kNN are expected to satisfy
the conditions of Theorems 3, 4 and 5 less often than classifiers based on Random
Forest. Therefore, the proposed TWCP, DCTWD and PCTWD constructions
would result in less efficient (but more accurate) predictions, as observed in
Tables 3, 5. More generally, the proposed construction can be applied to improve
the predictive accuracy of any TWD classifier whose underlying single-valued
ML models may be prone to either under- or over-fitting, as in the case of kNN.

In regard to our second research question, we did not find significant dif-
ferences among the DCTWD classifiers and the PCTWD classifiers in terms of
predictive accuracy, though the PCTWD classifiers were on average less accurate
than the DCTWD ones. On the other hand, in terms of efficiency, the PCTWD
classifiers reported a larger coverage than the DCTWD ones. In particular, the
difference between Γdech and Γpossh was statistically significant.

Thus, the DCTWD and PCTWD classifiers offer a trade-off between greater
accuracy (for the DCTWD classifier) and greater efficiency (for the PCTWD
classifier). The selection among the two methods should then be made by the
decision-maker, based on the quality dimension which is deemed most important
for the specific decision-making task at hand.

As a general final remark, we focus on the TWD-based classifiers, i.e.,
the TWD classifier W, the DCTWD classifier Wdec

ΓW
and the PCTWD classi-

fier Wposs
ΓW

. Compared with W, the DCTWD classifier reported, on average,
improved predictive accuracy but slightly lower efficiency. By contrast, the
PCTWD reported, on average, improved efficiency with comparable but slightly
reduced accuracy. Therefore, the application of the proposed CP-based correc-
tions could be useful not only for classifiers whose predictions are insufficiently
accurate, or for classifiers that are known to be prone to over-fitting, but also for
more general TWD classifiers. Indeed, in the worst case situation, the set-valued
predictions provided by TWD and the corresponding DCTWD and PCTWD
would be equivalent, as a consequence of the results in Section 3. In all other
cases, however, the proposed constructions would allow to achieve either more
accurate (using the DCTWD classifier) or more specific (using the PCTWD
classifier) predictions, compared with a standard TWD classifier.

5. A Medical Case Study

Up to now, we have discussed the relationship between TWD and CP.
Through this relationship we studied some formal property of TWD, by in-
troducing the TWCP, DCTWD and PCTWD classifiers as a means to both
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study validity bounds for TWD and to improve the validity of standard TWD
classifiers. In this section, we address the potential of the proposed approach for
human decision making in classification tasks and, therefore, for its integration
into Decision Support Systems.

Figure 5: The main angles considered in the sagittal imbalance classification.

As we argued in the Introduction, cautious learning approaches could be
useful to develop valid and reliable decision support in human decision making.
Nonetheless, to the knowledge of the authors, no previous study evaluated the
usefulness of such set-valued advice compared to standard support. Indeed,
even though the recent study by Liu et al. [23] assessed the effectiveness of
TWD from the perspective of interpretability, the authors did not specifically
evaluate the usefulness of set-valued advice.

In order to understand whether set-valued advice could be supportive in
naturalistic decision making [19], we tested this approach in the case of the
assessment of sagittal misalignment. This latter is a kind of spine deformity
regarding an imbalance along the front-to-back direction of the outward curve
of the middle spine called kyphosis.

We chose this case for three main reasons. First, there is a lack of standard
criteria to classify imbalance [20], as this is characterized in terms of a number
of angles, among which the main ones are called pelvic tilt (PT), sacral slope
(SS) and pelvic incidence (PI, which can be defined as the sum of PT and
SS - see Figure 5). Second, it fits well a set-valued output. Indeed, real cases
form a continuous range, where specific instances of pathological shape of the
spine might be borderline, sharing characteristics of two “adjacent” patterns.
On the other hand, existing classification schema provide discrete and mutually
exclusive categories by which to characterize spine misalignment. Lastly, and
more importantly, the diagnosis of this kind of spine deformity is strongly related
to treatment. That is, recognizing a kyphosis type, and therefore classifying
sagittal misalignments into a specific pattern, provides spine surgeons with a
range of treatment guidelines to restore a physiological profile and reduce the
odds of adverse events or of poor outcome [3].

To this aim, we considered a dataset of 120 patients (26 male subjects),
whose imaging and sets of 14 spine angles were analyzed and annotated by two
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senior expert spine surgeons. The two surgeons annotated each case with one
out of 7 mutually exclusive labels, namely: normal and 6 different types of
kyphosis. The normal cases (N) were 14% of the sample; of the abnormal cases,
36% were affected by lumbar kyphosis (L), 23% suffered from thoracic kyphosis
(T), 21% from global kyphosis (G), 17% from thoracolumbar kyphosis (TL),
while the other disorders (Lower Lumbar (LL), Cervical (C)) accounted for the
remaining 9%.

As proof that the classification task was not a trivial one, although the
two expert surgeons shared a taxonomic framework that they had jointly pub-
lished [20], they could only agree on slightly more than two thirds of the cases
(68.3%) and only exhibited a moderated agreement (Cohen’s Kappa and Krip-
pendorff’s Alpha both equal to 0.62). Thus, the considered dataset was a natural
example of the weakly supervised learning setting, discussed in Section 2. So,
for model training, we applied the techniques proposed in Section 3.1, using as
base TWD classifier the state-of-the-art TW Random Forest method [5].

One of the authors, an expert spine surgeon, reviewed 15 predictions pro-
vided by a classical (weakly supervised) predictive model h (which also gave the
probability score associated with the diagnostic advice), with moderate accu-
racy (approximately 70%), and compared them with the set-valued predictions
provided by a corresponding DCTWD classifier (defined on the basis of a TWD
Wh classifier grounding on h), together with the related probability bound as
described in Section 3.2. See Table 10 for a brief summary of the annotated
cases. The spine surgeon evaluated the usefulness of the advice and, then, dis-
cussed about the rationale for the potential adoption of these approaches in
clinical decision support.

Table 10: Summary of the information regarding the medical cases reviewed by the domain
expert. For each case, we report both the single-valued prediction and the set-valued prediction
provided by the DCTWD (in parentheses, the probability scores of the two methods), the
target labels, and the perceived usefulness of the two types of predictions, measured in an
ordinal scale ranging from 1 (very low) to 5 (very high). We also report, for each case, the
pelvic tilt (PT) and sacral slope (SS) angles.

Case ID PT SS Target h (prob.) DCTWD (prob.) Usefulness (h) Usefulness (DCTWD)
83 29 8 L L (0.68) L, LL (0.86) 4 4
8 23 24 G L (0.64) L, G (0.86) 5 5
87 43 24 L L (0.76) L (0.86) 4 5
100 11 22 TL, L L (0.32) N, TL, L (0.71) 3 5
115 21 35 TL, LL T (0.62) T, L, LL (0.86) 5 3
71 27 12 G, L G (0.29) T, L, LL, G (0.94) 5 2
3 39 4 L L (0.33) L, G (0.71) 3 5
24 16 39 LL L (0.71) L, LL (0.94) 3 4
101 13 33 TL T (0.64) T, TL (0.86) 2 4
4 32 26 L T (0.74) T, L (0.94) 2 4

124 57 16 L L (0.75) L, LL (0.94) 5 3
109 16 28 N N (0.67) N, T (0.86) 4 5
104 22 24 N, LL N (0.32) N, L, LL (0.71) 5 4
2 20 19 L N (0.33) N, T, L (0.86) 2 5
61 15 44 N N (0.89) N, L (0.86) 5 4
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(a) A sagittal x-ray for the case no. 100.
This depicts a thoracolumbar kyphosis
that is so light that the alignment is al-
most normal.

(b) A sagittal x-ray that depicts a
manifest, easy-to-detect thoracolumbar
kyphosis.

From the quantitative point of view, the output of the DCTWD classifier was
found to be more useful (or informative), with a mean score of 4.13 (SD=1.21)
(vs 3.80, SD=0.92), but not significantly so (Mann Whitney test, U = 97.5.
p-value = 0.55).

On a more qualitative level, the traditional approach was deemed preferable
whenever the classifier would be able to provide the decision makers with highly-
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confident advice. In the case at hand, which we recall was a 7-class diagnostic
task, a probability score for a single class was considered high if it was at
least 3 times higher than those from a uniform probability distribution (i.e.,
1/6). Nonetheless, also the conformal approach proposed in this paper was
deemed valuable in these cases, for its capability to point out the most plausible
alternatives, that the decision maker could further consider to definitely rule
them out in favor of the diagnostic class singled-out by the traditional approach.

Conversely, when the traditional approach gives predictions associated with
low confidence scores, the set-valued output (provided by the DCTWD) was
found to be more useful. This was mainly the case because the set-valued
prediction provides an enumeration of the main alternatives, and thus indirectly
suggests what further evidence or elements should be considered by the decision
maker to rule out some options and keep those that are more compatible with
the case at hand.

In the 15 cases considered in this evaluation, the set-valued predictions pro-
vided by the DCTWD of alternatives were deemed to be always close to the
set of natural candidates for the correct diagnosis that an expert surgeon would
have considered if unaided (only for case 115 the DCTWD did not include the
label TL in the set-valued predictions, although it included both T and L).

Generalizing, we can assert that whenever the traditional approach provides
confidence scores close to the uniform probability distribution, and the proba-
bility bounds of the DCTWD are sufficiently high, then presenting both these
pieces of advice would be the best option.

The medical expert also provided some comments on two noteworthy cases
that we report in what follows, to highlight the kind of reasoning that cautious
learning can facilitate in diagnostic tasks:

• Case 100 was described as an odd one (see Figure 6a). The involved sur-
geon said that it was probably a normal subject (because the pelvic tilt
and the SVA were normal and the combined normality of both parameters
leaves little room for a pathological case to be confirmed), who nevertheless
exhibited a value of lumbar lordosis that was too low. He agreed upon the
fact that other, equally expert, colleagues could have defined the unusual
shape of the spine exhibited by case 100 (presenting small pelvic incidence,
relatively small lumbar lordosis and small thoracic kyphosis) as unharmo-
nious and weird, irrespective of its occurrence in asymptomatic subjects.
Interestingly, the DCTWD was capable to capture this “oddness” and it
provided a set-valued prediction that encompassed both normality, lumbar
lordosis and thoracic kyphosis as plausible labels.

• Case 8 was deemed extremely interesting. In [20], subjects like case 8,
who present values of lumbar lordosis lower than the normative values,
and thoracic kyphosis above the normative values, are considered clear
instances of global kyphosis. Nonetheless, insufficient lumbar lordosis,
combined with decreased thoracic kyphosis, indicates cases of manifest
lumbar kyphosis. This puts patients like case 8 in an area of uncertainty,
and no current spine deformity classification can associate these patients
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with a clear-cut category, without the risk of misdiagnosis. Interestingly,
the DCTWD method recognizes and reflects this intrinsic uncertainty, by
not imposing any specific diagnosis over the others.

The described qualitative evaluation, and the brief discussion of the two
cases mentioned above, are just exemplifications. Nonetheless, they allow us to
hint at how computational tools, like those integrating some form of machine
learning, can support human reasoning, and how decision makers and these
tools should interact in naturalistic settings and real-world scenarios.

This latter aspect also relates to how plausible classes should be presented,
that is how many and whether in terms of confidence or probability. Likewise,
the usefulness of set-valued predictions was appreciated in almost all the decision
settings, as long as the interval did not encompass more than 3 or 4 alternative
candidates, irrespective of the number of potential disjoint options.

In our short, but indicative, use case, we showed how human decision makers
can collect observations in a medical scenario; combine this information with
knowledge on spinal bio-mechanics, developed in either direct or indirect clinical
experience (e.g., historical trial and errors, case reports, clinical comparisons);
and formulate hypotheses on the basis of what a computational decision support
gives them. In regard to set-valued output, we saw how this type of support can
reflect compatible patterns of spine deformation and compensation, and hence
be a useful aid to choose appropriate treatments even if a single option is not
highlighted. In fact, the predictions provided by the DCTWD classifier were
found to be useful even for the cases for which traditional systems could suggest
a single diagnosis with high accuracy, because they acted as triggers for double
check and review of less-than-obvious options.

In light of our study, we then make the point that decision support in real-
world settings should always leverage some form of cautious prediction; either in
conjunction with more traditional approaches, or in isolation. Their usefulness
especially emerges in those cases where real life comes in shades of grey, and
even well-trained and long-experienced experts cannot classify specific cases with
total certainty. Cautious learning approaches can better reflect this intrinsic
uncertainty, compared with traditional approaches, and thus they could provide
more useful and interpretable decision support [14, 23] for decision makers in
critical settings, or for under-specified tasks.

6. Conclusion

In this article, we studied the relationship between TWD and CP, two pop-
ular cautious learning approaches. To this aim, we introduced the three-way
non-conformity measure, as well as the three-way conformal predictor (TWCP),
and discussed two classes of conformal TWD classifiers (i.e., the DCTWD and
PCTWD classifiers) by which a conformal predictor can be transformed into
a TWD classifier. Through this relationship, the validity of TWD-based ML
models is proven for the first time (to our knowledge): this allows to establish
reliable learning-theoretic guarantees and error bounds for TWD classifiers.
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Furthermore, the definition of optimal cost-sensitive cautious classification
algorithms is addressed, along with a characterization of the conditions under
which CP and TWD would provide identical results.

From an empirical point of view, we illustrated how the proposed construc-
tions can be used to obtain TWD classifiers that were shown to outperform
state-of-the-art TWD, and CP, methods.

Finally, we highlighted the positive potential of the proposed approaches –
and cautious learning methods more in general – in the development of reliable
decision support, through an illustrative use case, involving a subject-matter
expert in a complex medical classification problem.

In conclusion, we believe that our theoretical analysis and the promising
results from the empirical study represent a first step, as well as a foundation, for
further investigations aimed at characterizing the theoretical aspects of TWD-
based ML, and of cautious-learning approaches more in general. For this reason,
we believe that the following open problems should be further investigated:

• In Section 3.2, a characterization of the conditions for the equivalence
between a TWD classifier and the corresponding PCTWD classifier was
proved, under the assumption of a uniform-error loss function. It would
be interesting to generalize this characterization to general-loss functions;

• In this paper, we focused on the most basic notion of validity (i.e. conser-
vative validity). It would thus be interesting to study also the probabilistic
validity of TWD classifiers, or their validity in non-i.i.d. settings [2];

• The three-way non-conformity measure was introduced to define CP algo-
rithms based on TWD classifiers. Though this approach allowed a natural
comparison among the two studied approaches, it is not optimal in terms
of efficiency. It would thus be interesting to study appropriate generaliza-
tions of other, efficient [31], CP approaches to the TWD setting;

• The proven validity bounds are instance-wise and can be applied in both
online and inductive settings (using a validation set). Nonetheless, it could
be interesting to study validation-independent finite-sample bounds. This
would require, in turn, to generalize the framework of PAC learning theory
to TWD-based ML and, more in general, to cautious learning [12];

• Finally, through a simple but indicative case study, in Section 5, we dis-
cussed the usefulness of the proposed approaches to develop more reliable
and supportive decision support tools. We deem that further assessing the
perceived usefulness of TWD, CP and other cautious learning approaches
as support tools for human decision makers could be of great interest
towards the development of truly reliable Decision Support Systems.
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