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ABSTRACT 

In the Internet age, analyzing the behavior of online users can help webstore owners understand 

customers’ interests. Insights from such analysis can be used to improve both user experience and 

website design. A prominent task for online behavior analysis is clickstream mining, which consists of 

identifying customer browsing patterns that reveal how users interact with websites. Recently, this 

task was extended to consider weights to find more impactful patterns. However, most algorithms for 

mining weighted clickstream patterns are serial algorithms, which are sequentially executed from the 

start to the end on one running thread. In real life, data is often very large, and serial algorithms can 

have long runtimes as they do not fully take advantage of the parallelism capabilities of modern multi-

core CPUs. To address this limitation, this paper presents two parallel algorithms named DPCompact-

SPADE (Depth load balancing Parallel Compact-SPADE) and APCompact-SPADE (Adaptive Parallel 

Compact-SPADE) for weighted clickstream pattern mining. Experiments on various datasets show that 

the proposed parallel algorithm is efficient, and outperforms state-of-the-art serial algorithms in terms 

of runtime, memory consumption, and scalability. 

Keywords: Frequent pattern mining, weighted clickstream patterns, parallelism 

 

1. Introduction 

In recent decades, the amount of data stored in databases has dramatically increased, providing 

opportunities to analyze it to find useful information. However, analyzing data by hand is time-

consuming. Moreover, because data often has a complex structure and is large, it is difficult to identify 

interesting relationships between data elements. To address these issues, the field of Knowledge 

Discovery and Database has emerged, also known as data mining. A fundamental task in data mining 



is pattern mining. The goal of pattern mining is to find frequently occurring patterns such as frequent 

sequences of purchases made by customers. Those patterns can then be analyzed to obtain insights 

into the habits of customers and using that knowledge, stores can be adapted to their customers’ 

needs. There are many pattern mining tasks, but the most fundamental ones are frequent itemset 

mining (FIM), association rule mining (ARM), and sequential pattern mining (SPM). FIM and ARM were 

proposed by Agrawal et al. [1]. Though useful, FIM and ARM do not consider the order between items, 

and thus SPM [3] was proposed to address this issue. It consists of finding subsequences of purchased 

items that appear frequently in a set of sequences. 

Clickstream pattern mining (CPM) is a specialized problem derived from SPM that has attracted the 

attention of many researchers recently because there is a need for analyzing user interactions on 

websites. It aims at finding patterns representing a series of events such as sequences of user clicks 

and accessed URLs. For instance, a person that is browsing an online webstore generates a clickstream 

in the form of a user log (user clickstream) containing a sequence of URLs. Other types of data such as 

user actions on computers (e.g., deleting files or opening folders) and DNA sequences can also be 

modeled as clickstreams. 

Initially, studies of CPM considered that all items are of equal importance (i.e. non-weighted). But for 

several applications, items do not have the same importance. Therefore, it was proposed to associate 

weights with items to find more useful patterns. However, integrating weights can make the task more 

complex, since measures used to select patterns may not respect the anti-monotonicity property used 

to reduce the search space. Additionally, traditional CPM algorithms are often serial. They can only 

utilize the resources of a single thread or core. This makes their performance unable to scale with 

multiple core computer architecture, which consists of multiple cores and can execute several threads 

in parallel. 

To address the above limitations of traditional CPM algorithms, this paper proposes an effective 

parallel method for mining weighted clickstream patterns on a single node (a computer with shared 

memory and multiple cores). The main contributions are as follows: 

1. A depth dynamic load balancing strategy is proposed to dynamically distribute work and avoid 

idling. 

2. A heuristic sampling strategy is proposed to avoid performance downgrading on databases 

with short patterns. 

3. Based on the proposed strategies and our previous Compact-SPADE algorithm in [22], two 

parallel algorithms called DPCompact-SPADE, and APCompact-SPADE are designed for mining 

frequent weighted clickstream patterns. 

4. Experiments were conducted to compare the performance of the designed algorithm on 

various datasets. It was found that APCompact-SPADE and DPCompact-SPADE outperformed 

the state-of-the-art algorithms. Additionally, APCompact-SPADE can adapt its strategy to not 

be severely affected by databases with short patterns. 

The rest of the paper is organized as follows. Section 2 reviews related work. Section 3 introduces 

important concepts and the Weighted Clickstream Pattern Mining (WCPM) problem. Section 4 

introduces a base algorithm for WCPM. Then, Section 5 describes how to parallelize the base algorithm 

of Section 4. Thereafter, Section 6 presents the results and a discussion. Finally, the last section 

concludes and discusses future work. 

 

 



2. Related work 

Agrawal and Srikant proposed the problem of SPM by adding the concept of sequential ordering to 

FIM [2]. They designed AprioriAll, which is inspired by the Apriori algorithm for FIM. As SPM started to 

gain more attention from researchers, many SPM algorithms were proposed, and they can be 

categorized as horizontal or vertical algorithms. 

Algorithms of the horizontal family use a horizontal database format where each row contains a 

sequence id and a list of itemsets. An example of such a database is shown in Table 1 and will be 

described in more detail in the next section. Popular horizontal algorithms are AprioriAll [2], and 

PrefixSpan [32]. AprioriAll is the first sequential pattern mining algorithm that used a search space 

pruning property called the Apriori property (or anti-monotonicity). The property states that all the 

subpatterns of a frequent sequential pattern must be frequent. Pei et al. [32] proposed PrefixSpan, an 

algorithm that recursively creates projected databases of smaller size. Each time the database is 

reduced, frequent patterns are larger, and scanning the database is faster due to the reduced size. 

Many authors have extended PrefixSpan to deal with various kinds of pattern mining problems. For 

example, PrefixSpan was adapted to mine patterns in large uncertain databases [48]. 

Algorithms in the vertical family use a vertical database format, in which sequence ids containing a 

pattern and the location of that pattern in the sequence are stored in memory. Some popular 

algorithms are SPADE [47], PRISM [19], and more recently CM-SPADE and CM-SPAM [13]. SPADE [47] 

was reported to be one of the most efficient algorithms [13]. It uses a concept of equivalence class and 

sublattice decomposition to divide the whole lattice (search space) into multiple fragments. Each 

fragment can fit into computer memory and be processed independently. PRISM [19] uses a special 

type of vertical database based on prime block encoding. Recently, Fournier-viger et al. [13] proposed 

the CMAP (i.e., co-occurrence map) structure, which stores co-occurrence information for a given 

database. CMAP is used to filter infrequent candidates early to speed up the mining process. It is 

integrated into SPAM [6] and SPADE [47] to create CM-SPADE and CM-SPAM. CM-SPADE and CM-

SPAM were reported to be considerably faster than previous state-of-the-art methods. 

Handling the weight constraint in SPM was first proposed by Yun et al. [45]. However, the work had to 

alter the original item weights to maintain the anti-monotonicity property for search space pruning. 

Alternatively, the maximum sequence weight was used as a restriction to preserve the anti-

monotonicity property [4]. Extending this idea, Mukesh [31] modified the weight formula in [45] and 

combined it with the concept of time intervals to focus on events that occur in short time intervals. 

Many FIM algorithms also have been proposed to handle weights [43,44]. Yun et al. [43] obtained an 

anti-monotonicity property by using the maximum and minimum weight ranges for the problem of 

weighted interesting pattern mining. Yun et al. [44] proposed the WMFP-tree and WMFP-array 

structures and combined them with weights to mine maximal frequent patterns in data streams. This 

paper, however, utilizes a weighted formula that preserves the anti-monotonicity property and is 

similar to the studies of Vo et al. and Lee et al. [27,39]. The weight of a pattern is the average weight 

of all its elements. However, while these studies are for itemset mining, the algorithm proposed in this 

paper applies a similar formula for the clickstream mining problem, which is more complex as the 

sequential ordering of items must be considered. Some researchers used a different weight formula, 

such as Wu et al. and Gan et al. [18,30,40]. Besides using weights, other researchers suggested using 

multiple constraints [16,25,29,33,36,37]. 

  



Table 1 A horizontal clickstream database [21]. 

 

 

 

 

 

Clickstream pattern mining has numerous applications [8,14,23] (e.g. web log analysis and intrusion 

detection). However, most studies applied SPM algorithms to mine clickstream patterns rather than 

using or developing specialized CPM algorithms. For example, Cooley et al. and Demiriz [9,10] used 

SPM algorithms to discover interesting clickstream patterns of user browsing behaviors, while Ting et 

al. [35] analyzed unexpected clickstream patterns of users to support and improve a website’s design. 

In the security domain, Lee and Stolfo [28] used association rules generated from clickstream patterns 

of system calls to build an intrusion detection classifier. 

Parallel pattern mining algorithms. Most algorithms mentioned above are serial algorithms, designed 

to run on a single thread. However, as the data grows bigger and the problems get more complex, the 

runtime to solve those problems gets longer. It is easy to encounter big datasets in real applications 

where serial algorithms have very long runtimes. Additionally, multiprocessor computers are now 

easily available. As the current trend is to increase the number of cores or clusters instead of single-

core speed, serial algorithms cannot benefit from those improvements because of their single-

threaded nature. Thus, parallelism is one of the key factors to improve runtime performance. Parallel 

data mining algorithms, in general, have provided a large performance improvement over their serial 

counterparts. For example, the PARMA algorithm [34] was proposed to mine approximate association 

rules using a computer cluster. PARMA runs on the MapReduce framework and was reported to have 

a good speedup. A general-purpose framework was also proposed for mining frequent itemsets based 

on MapReduce [7], which groups similar transactions and processes each group on different cluster 

nodes. Parallel versions of PrefixSpan were also designed [26,42] to improve its performance by 

utilizing the Spark and MapReduce frameworks. MGPUCPM [5] is a parallel co-location mining 

algorithm that combines an effective update strategy and multiple GPUs. Since GPUs have less memory 

than computer RAM, the algorithm splits the data into multiple parts and transfers them to the GPU’s 

memory when needed, with a speedup of up to 18 times being reported. Djenouri et al. [12] went even 

further by parallelizing on multiple cluster nodes, each equipped with a GPU to achieve much better 

performance compared with single thread mining algorithms (a speedup of up to 350 times). Vanahalli 

and Patil [38] proposed an algorithm called FCCI to mine frequent colossal closed itemsets. The 

algorithm combines two main strategies, an effective improved parallel processing algorithm to prune 

irrelevant features and an effective row cardinality table to check the closeness of rowsets. Their 

algorithm is parallelized by using the Open Multi-Processing application programming interface and 

manages to achieve a good increase in speed. 

As sequential pattern mining gains more attraction from researchers, many algorithms have been 

proposed to keep up with the challenges of processing big datasets. However, parallelizing SPM 

algorithms can be challenging and complex [17]. Many things must be considered to achieve a 

performance gain, such as synchronization or workload balancing. Researchers have proposed several 

parallel SPM algorithms for different tasks, designed either for shared memory computers or 

distributed memory computers with dynamic or static load balancing. 



For distributed memory machines, static load balancing is generally used because individual nodes 

(computers) can quickly access fragments of a database stored in their memory. Work is typically 

divided into several parts that are then assigned to each node such that they do not have to interact 

with each other. However, work distribution becomes crucial, and a poor distribution can lead to a 

very poor speedup. Several methods [24,41] have been proposed to estimate the relative effort for 

completing subtasks beforehand so that work can be distributed evenly. Some studies even suggested 

using GPUs in combination with CPUs in large clusters to achieve a greater speedup [11,12]. 

For shared-memory machines, dynamic load balancing is more efficient. SPADE is an efficient serial 

SPM algorithm that has been extended with parallelism in two main studies [10,46]. In the earlier study 

pSPADE was proposed for SPM using a hardware distributed shared memory machine named SGI 

Origin 2000, in which each processor is located on a different board but the memory is shared across 

processors. The latter, webSPADE, was developed for multiple processor Wintel machines, in which 

parallelism is achieved by multiple threads that are managed by the operating system. While the first 

study focused on SPM, the latter one was mainly about web clickstreams. Both algorithms use task 

parallelism but the latter also relies on data parallelism. Task parallelism was achieved by assuming 

that each branch of the lattice (representing the search space) can be processed independently as a 

task on a separate thread or core. Both algorithms combine parallelism with a breadth-first search. 

In this paper, parallelism is considered for a shared memory machine. The parallelism approach that is 

employed is similar to webSPADE but used with a depth-first search while also considering weights, to 

develop an efficient parallel algorithm for WCPM. 

 

3. Problem statement 

This section introduces important concepts and presents a formal definition of the problem of 

WCPM. Some notations and symbols are summarized in Table 2 for quick reference. 

Let there be a set of symbols A = {a1, a2, a3, ⋯, an} representing different actions (such as mouse clicks 

to open folders), and a set of positive real value W = {w1, w2, w3, ⋯, wn}, in which each value wi is a 

weight indicating the importance of the action ai ∈ A (e.g. see Table 3). 

A clickstream X = (x1, x2, ⋯, xm) is a series of actions that happen one after another. For each xi ∈ A for 

i ∈ [1, m], i is called the position of action xi in X. Furthermore, if an action xz follows another action xw 

inX, xw is said to happen before xz in X, which is denoted by xw <Txz. A clickstream X is called a k-

clickstream if it contains k actions (k = |X|). 

For example, the clickstream X = (a, b, e, b, f, c) is a 6-clickstream. The action b appears twice (at 

positions 2 and 4, if the first position is 1). 

Assume that we have two clickstreams X = (x1, x2, ⋯, xm) and Y = (y1, y2, ⋯,yn) (m ≤ n). If there exist 

integers 1 ≤ i1 < i2 < ... < ik ≤ n such that x1 = yi1, x2 = yi2 xk = yik, we call Y a super clickstream of X, and 

X is a sub clickstream of Y, which is denoted by X ⊆ sY (Y contains X). 

For example, (a, d), (a, c, c, f) and (a, c) are sub clickstreams of (a, c, c, d, f) in Table 1. However, (b,f) is 

not a sub clickstream of (a, c, c, d, f). 

 

 

 



Table 2 Notation/Symbol table for a quick reference. 

 

 

Table 3 Action weights for the database of Table 1 [21]. 

 

 

 

 

 

 

 

Fig. 1. A vertical clickstream database [21]. 

 



A user clickstream is a series of actions that are generated by a user while the user performs various 

actions like navigating folders on a computer or surfing the Internet. A clickstream database CDB is a 

collection of pairs {cid, user clickstream} such that each pair contains a user clickstream and a unique 

clickstream id cid. A clickstream database is usually in a horizontal format (as in Table 1) and can be 

converted to a vertical format (as in Fig. 1). If a clickstream is contained in at least one user clickstream 

of an input database then the clickstream is called a (clickstream) pattern (i.e. P is a clickstream pattern 

if ∃X ∈ CDB : P ⊆ sX). 

Assuming that Y is a user clickstream, the weight of Y (e.g. Table 4) is defined as follows: 

 

 

 

And the weight of a clickstream database CDB, denoted by CDBw, is calculated as follows: 

 

 

 

 

Table 4 Weights of user clickstreams for the example database of Table 1 [21], 

 

 

 

 

 

 

Table 5 Some frequent weighted patterns when the minimum weighted support 𝜔 = 0.4 [21]. 

 

 

 

 

 

 

 

The weighted support of a clickstream pattern Y is the sum of weights of user clickstreams, where Y 

appears, divided by the database weight. Formally, it is defined as: 

 

 



For a given clickstream database CDB, the problem of weighted clickstream pattern mining is to find 

all frequent weighted clickstream patterns. A clickstream Y is called a frequent weighted clickstream 

pattern if Y appears in at least one user clickstream of the database and its weighted support is greater 

than or equal to a minimum frequent weighted threshold 𝜔, set by the user. Some frequent weighted 

patterns are shown in Table 5. 

 

4. Mining frequent weighted clickstream patterns 

This section briefly introduces the Compact-SPADE algorithm [22] and its components, which is 

extended to propose our parallelized algorithms in Section 5. First, Subsection 4.1 presents the WICList 

(Weighted ID-Compact Value List) data structure that Compact-SPADE uses to store information about 

each pattern. Then, Subsection 4.2 explains the candidate generation method used by Compact-

SPADE. Finally, Subsection 4.3 describes WCMAP for eliminating unpromising patterns early reduces 

the amount of work. 

The main process of Compact-SPADE is expanding a lattice of prefix-based classes (Fig. 2). It first starts 

by finding visible 1-patterns (i.e. 1-clickstream patterns) and computing their weighted support. 

Compact-SPADE then discards the infrequent patterns, and the remaining frequent ones are combined 

to form the next longer visible clickstream patterns. The process is then repeated following a depth-

first search manner to find all remaining frequent weighted patterns. 

4.1. WICList 

The WICList is a data structure used to store both ids of clickstreams and their positions together in an 

integer to reduce memory usage. Let sid,pos, and dlen be respectively an id of a user clickstream, a 

position in a clickstream (of which id is equal to sid), and the minimum number of decimal digits 

required to hold the number of positions of the longest clickstream in the given database CDB. 

Fig. 2. A part of the traversed lattice for the example database. 

 



  

 

 

 

 

 

 

 

 

 

Fig. 3. WICLists of 1-patterns (a) and (b) with dlenbit = 3 (because the length of the longest user clickstream does not exceed 

7). 

 

A compact value v is defined as an integer number that encodes both a clickstream id sid and a position 

pos provided that dlenbit is known. Let there be an integer bitX representing the bitmap of an integer 

value X, & denote the AND operator of two-bit arrays (or integer numbers), ≪ N denotes the logical 

left-shift operator and dlenbit be the minimum number of binary digits of the longest user clickstream. 

A compact value is created as: 

 

 

For example, assume that we have cid = 11,pos = 14, and dlen = 5. Then, bitcid = 1011 and bitpos = 

1110. Because the result bitv = cval( 11,14,5) = 101101110, the compact value is v = 366. 

Let v be a compact value, ≫ N be the logical right-shift operator, and A be the bitwise XOR operator. 

The cid and pos values can be retrieved from a compact value v by applying the following two functions, 

respectively: 

 

 

 

Fig. 3 shows the WICLists of patterns for the database of Table 1. The second element of the WICList 

of (a) is the compact value v = 20, from which we can obtain cid = 2 and pos = 4 by using the above 

retrieval functions with dlenbit = 3. 

 

4.2. Candidate generation 

The proposed Compact-SPADE algorithm explores the search space by combining pairs of patterns to 

generate larger patterns. The process is based on the concept of lattice decomposition and prefix-



based classes which is introduced in [47]. Let there bean integer k ≥ 1,and P1 and P2 be two frequent 

weighted (k + 1)-patterns, X be a common k-prefixof P1 and P2, lastP1 be the last action of P1 and lastP2 

be the last action of P2. Then, P1 = (X, lastP1) and P2 = (X, lastP2) are said to belong to the same 

equivalence class [X]θk (because they share the same k-prefix, which is X). The equivalence class [X]θk 

is also called the k-class [X] in this paper. 

If P1≠P2, two (k + 2)-candidates can be generated from these patterns, which are {P3 = (P1, lastP2)andP4 

= (P2, lastP1)}. The pattern P3 belongs to [P1 ] and P4 belongs to the [P2]. If P1 = P2, then only (P1, lastP1) 

is generated. 

 

4.3. WCMAP (Weighted co-occurrence map) 

To avoid unnecessary candidate generation, Fournier-Viger et al. [13] proposed the CMAP structure 

and a corresponding search space pruning strategy. It consists of pre-calculating the support of 2-

patterns (formed from frequent 1-patterns). However, in the original CMAP, weights are not 

considered. Recently, the WCMAP [21] structure was proposed by adding average weights to the CMAP 

for weighted clickstream pattern mining. Table 6 depicts part of a WCMAP for a minimum weighted 

support of 𝜔 = 0.4. 

Example of using the WCMAP structure. Consider that 𝜔 = 0.4 and two frequent weighted patterns P1 

= (b, c) and P2 = (b,f) with ws(P1) = 0.67 and ws(P2) = 0.45. Those patterns can be used to generate two 

candidates P3 = (b, c,f) and P4 = (b,f,c). To determine if the candidates P3 and P4 are frequent, we can 

create WLP3 and WLP4 and compare WLP3.ws and WLP4.ws with 𝜔. But by looking in the WCMAP, P3 

and P4 can be identified as infrequent because the 2-patterns formed by the last actions of P1 and P2 

(i.e., (c,f) and (f, c)) are infrequent in the WCMAP (i.e. W  (c,f ) = 0.34 < 𝜔 and W    (f,c) = 0.24 < 𝜔). 

Thus, we can skip building WLP3.ws and WLP4. 

Table 6 A part of a WCMAP for 𝜔 = 0.4 [21]. 

 

 

5. The adaptive parallel Compact-SPADE algorithm 

This section presents DPCompact-SPADE and APCompact-SPADE, two parallelized algorithms that 

extend Compact-SPADE. DPCompact-SPADE (Section 5.3) and APCompact-SPADE (Section 5.4) consist 

of two main components: 1) the core algorithm, Compact-SPADE, and 2) parallelism based on a depth 

load balancing (Section 5.3) or an adaptive dynamic load balancing (Section 5.4). APCompact-SPADE 

adapts to two types of datasets, short pattern datasets or long pattern datasets. If a dataset contains 

several short patterns, which are with the length of two and three, APCompact-SPADE uses horizontal 

dynamic load balancing (Section 5.2). Otherwise, it switches to depth dynamic load balancing (Section 



5.3). The adaptative process is based on the proposed heuristic sampling method in Section 5.4. We 

also briefly talk about static load balancing in Section 5.1 to be used as another baseline for 

performance comparison. 

 

5.1. Static load balancing 

Static load balancing is a common method for parallelism due to its ease of implementation. It divides 

tasks into several partitions that can correspond to the number of assigned threads (or cores, or 

processors). Each partition is processed by a thread and none of the threads interferes with other 

tasks. Briefly, the static load balancing is splitting all the elements in a 0-class [Ø] (i.e. the 1-classes) 

into n partitions, starting from the left-most to the right-most unprocessed 1-class. For example, 

assuming that we have 0-class [Ø] = {[a], [b], [c], [e], f]} and the number of threads n = 3, then the first 

thread expands {[a], [b]}, the second processes {[c], [e]} and the third works on {f]}. The parallel 

Compact-SPADE algorithm that uses this static load balancing is called StaticPCompact-SPADE. 

One problem of static load balancing is load imbalance, in which some workloads require longer 

runtimes than the others. The runtime of the algorithm is usually equal to the longest workload’s 

runtime. Hence, if the tasks are not properly distributed among all the threads, it can reduce the 

effectiveness of the parallelism. 

 

5.2. Horizontal dynamic load balancing 

Another common load balancing method is the horizontal (dynamic) load balancing, used in [10,46]. 

Unlike static load balancing, horizontal load balancing does not split the tasks into several workloads. 

It instead schedules unprocessed 1-classes and assigns each of them to an idle thread. If there is no 

idle thread, it waits until a thread is available again to assign the next unprocessed 1-class. We call our 

algorithm with horizontal load balancing HPCompact-SPADE (Horizontal Parallel Compact-SPADE). 

For example, we have 0-class [Ø] = {[a], [b], [c], [e], f]} and the number of threads n = 3. The first thread 

processes {[a]}, the second processes {[b]} and the third works on {[c]}. Two unprocessed 1-classes are 

{[e], f]}, and since all threads are taken, the load balancer goes into a waiting state. If the second thread 

finished its work first, the load balancer will assign {[e]} to the second thread. After that, when the first 

thread becomes available, it will be assigned with {f]}. Even when the third thread finishes, the load 

balancer will put the thread into an idle state since there is no work left. The algorithm finishes when 

all threads are finished. Algorithm 1 depicts the pseudo-code for HPCompact-SPADE. 

Though improving on StaticPCompact-SPADE, HPCompact-SPADE still encounters the same problems, 

since not every thread is fully utilized as the work nears its end. In the example, the third thread has 

no work and must wait for the other two threads. 

 

 

 

 

 

 



Algorithm 1. HPCompact-SPADE 

 

5.3. Recursive depth dynamic load balancing 

The (recursive) depth (dynamic) load balancing is proposed based on the depth-first-search in 

Compact-SPADE to solve the workload imbalance issue. We call the parallel Compact-SPADE that uses 

this load balancing DPCompact-SPADE. Depth load balancing has two characteristics that help with 

generating and distributing workloads. Firstly, it uses recursion to generate parallelism. Secondly, the 

tasks that are assigned to a thread can be a class at any level. Any thread can transfer its partial 

workload, which is any k-class, to other idle threads so all threads remain active until the end of the 

work. Algorithm 2 illustrates the DPCompact-SPADE process. 

The algorithm first starts sequentially using a single main thread and scans the whole database to 

calculate various weight information (i.e. the preparing data stage in Fig. 4). After which, the algorithm 

finds all the frequent weighted 1-patterns, the WICLists, and put those patterns to the 0-class [Ø] (line 

1 to 4). The WCMAP W   is then created and both a global working queue 2 and thread pool T  are 

initialized (lines 5 to 6). The algorithm enters load balancing phase after putting [Ø] into the workload 

queue 2  (line 7) and it assigns [Ø] to the first thread (line 23). The first thread then enters DPNode-

Expand () and expand all 1-classes in [Ø]. After filling all the elements of the left-most 1-class, the first 

thread transfers that 1-class to another idle thread. From here, two threads are running simultaneously 

and both repeat the same process of filling elements to a k-class and recursively transfer them to the 

other idle threads. If all threads are taken and 2  is full, no task is transferred and each thread continues 

to further explore the lattice on its own (line 20). The transferring process starts again when 2  is again 

not full. As a consequence, the number of threads is prioritized for the classes on the left of the lattice. 

 



Algorithm 2. DPCompact-SPADE 

 

Example of DPCompact-SPADE. Considering three threads t1, t2 and t3 are used, the size of the work 

queue 2  is two, the input database is described in Table 1, and the minimum weighted support is 𝜔 = 

0.4. DPCompact-SPADE first finds the 0-class [Ø] = {a, b, c, d, e, f}, create their respective WICLists and 

build the WCMAP W. 

DPCompact-SPADE then puts [Ø] into 2  and assigns t1 to work on [Ø]. After filling in the content of first 

1-class [a] = {(a, b), (a, c)}, t1 submit [a] to 2. Because threads t2 and t3 are free, the load balancer 

transfers [a] to t2 and t1 continue to form the content of 1-class [b]. 

Assuming that t2 can create the content of 2-class [a, b] before t1 creates [b], then t2 push [a, b] to Ø 

and t3 is then assigned with [a,b]. After which [b] is pushed into Ø because there is no free thread and 

Ø is not full. 

Assuming that [c] is created by t1, yet t2, t3 are still busy, so [c] is pushed into 2. At this point 2  = {[b], 

[c]} is full, thus when t1 forms new classes (e.g., [e], [ e, e], [e, a]), t1 traverses them by itself until either 

there is a free thread or 2  is not full. Assuming that t2 finishes [a,b], then it takes [b] from 2 . The 

working queue 2  then only contains {[c]}. 



DPCompact-SPADE repeatedly applies the aforementioned depth-first search approach with 

parallelism until the lattice has been fully traversed, and all frequent weighted clickstream patterns 

have been enumerated. 

 

5.4. Adaptive dynamic load balancing 

DPCompact-SPADE cannot perform well on short pattern datasets where most patterns are shifted 

towards a length of one, two, or three. First, the depth load balancing does not immediately initialize 

multiple threads right off the bat.  

Fig. 4. The flowchart of APCompact-SPADE. 

 

It depends on recursively transferring work via depth-first search. It starts with one thread, then 

multiplies the occupied threads as the search goes deeper into the lattice. If the lattice is shallow, then 



the workload is very short, and tasks are not generated fast enough for all idle threads. In this case, 

static or horizontal load balancing performs better (which is shown and discussed more in the 

experimental section). Adaptive (dynamic) load balancing is proposed to tackle this issue. It is based 

on our proposed heuristic sampling called join estimation via sampling. 

Join estimation via sampling. This idea aims to switch the balancing method to the most efficient one, 

depending on the distribution of patterns and joins in a database. 

Let joink be the number of joins between k-patterns, joinS be the number of all joins, SC = (∑3
k=1 

joink)/joinS, and y be the proportional ratio that is given by the user. If SC > 𝛾, the load balancing 

switches from depth to horizontal. In our experiments, we use 𝑦 = 70%. That is, if the joins of 1,2,3-

patterns take more than 70% of all joins, horizontal load balancing is preferred over depth load 

balancing. 

In real situations, we do not always know the distribution in advance. Therefore, we propose a heuristic 

sampling to estimate the distribution and the SC value. The sample S is decided as follows: 

- 1% of 1-classes in [Ø] are picked to make S. Additionally, the size of S must be at least two and 

no more than 50. 

- The sample S must include 1-class [a] where a is the 1-pattern with the highest weighted 

support among all 1-patterns in [Ø]. 

- The remaining 1-classes are selected from left-most to right-most in [Ø]. 

 

Adaptive load balancing. The adaptive load balancing is described in Algorithm 3, APCompact-SPADE 

is DPCompact-SPADE with ALoadBalancer-Run instead of DLoadBalancer-Run. Fig. 4 illustrates the 

workflow of APCompact-SPADE. 

 

Algorithm 3. ALoadBalancer-Run 

 

 

6. Experimental results 

To evaluate the proposed algorithm, experiments were carried out on a computer running Windows 

8.1 64 bits, with Java 8, 16 GB of RAM, an Intel Core i7-8750H 2.20 GHz processor with six physical 

cores, and hyper-threading technology. The algorithms were implemented in Java by extending the 

SPMF open-source package1 [15]. The Java virtual machine was configured to use up to 10 GB for the 

memory heap. The turbo boost technology was turned off to stabilize the algorithms’ runtime. 



Experiments were done using six benchmark databases.2 Their characteristics are presented in Table 

7. FIFA, BIBLE, and SIGN are small-to-medium clickstream databases, while Korasak, Chainstore, and 

D9000S4 are big databases. Additionally, Chainstore and D9000S4 are short pattern databases, while 

the others are long pattern databases (Fig. 10). Chainstore was originally in a transactional format and 

converted to the clickstream format. Initially, all databases did not have weights. As such, a weight 

between 1 and 100 was assigned randomly to each action. 

 

6.1. Evaluation of DPCompact-SPADE and APCompact-SPADE’s runtime and memory usage 

This section presents experiments on runtime and maximum memory usage of the proposed parallel 

algorithms. To evaluate the effectiveness and efficiency of DPCompact-SPADE and APCompact-SPADE, 

we compared them with CM-SPADE [13], Parallel DBV [20], StaticPCompact-SPADE (Section 5.1), and 

HPCompact-SPADE (Section 5.2). Two algorithms, CM-SPADE [13], and Parallel DBV [20] are the state-

of-the-art algorithms for SPM. While CM-SPADE is serial, Parallel DBV is a parallel algorithm. Those two 

algorithms are designed for non-weighted sequential pattern mining. Therefore, they need to be 

integrated with the weighted support calculation. These modified versions are called CM-WSPADE and 

Parallel WDBV respectively. Additionally, the (Parallel) DBV algorithm was originally implemented in 

the C# language, so we re-implemented it in Java. Moreover, to evaluate the benefits of parallelism, 

Compact-SPADE and WDBV were also tested. The compared algorithms were run with different 

minimum threshold values on different databases (Figs. 5 and 6). Additionally, for DPCompact-SPADE 

and APCompact-SPADE, we set workload queue size |Q|max = 3∗ number of threads. We did not notice 

any performance gain but larger memory usage above this value. 

It is observed in Fig. 5 that HPCompact-SPADE, APCompact-SPADE, and DPCompact-SPADE achieve 

better overall runtime than StaticPCompact-SPADE, CM-WSPADE, WDBV, and Parallel WDBV. 

However, their runtimes can fluctuate depending on database types. The fastest algorithm on short 

databases can be the slowest on normal databases. On the four normal databases (FIFA, BIBLE, SIGN, 

and Korasak), the general order based on runtimes is DPCompact-SPADE > APCompact-SPADE > H 

PCompact-SPADE > StaticCompact-SPADE ≥ Compact-SPADE > Parallel WDBV > CM-WSPADE > WDBV. 

For example, on BIBLE and at m = 11%, the runtime of DPCompact-SPADE, APCompact-SPADE, 

HPCompact-SPADE, StaticCompact-SPADE, Compact-SPADE, Parallel WDBV, CM-WSPADE, and WDBV 

is 5.5, 6.6, 6.4, 10.4, 23.9, 29, 45.6, and 89.6 s, respectively. The gaps get bigger as m decreases. At m 

= 7%, they need 26.1, 27.2, 41.9, 63.6, 125.9, 162.4, 278.8, and 431.1 s. DPCompact-SPADE runs 

1.04,1.6, 2.43, 4.82, 6.22, 10.68, and 16.5 times faster than APCompact-SPADE, HPCompact-SPADE, 

StaticCompact-SPADE, Compact-SPADE, Parallel WDBV, CM-WSPADE, and WDBV, respectively. 

 

 

 

 

 

1http://www.philippe-fournier-viger.com/spmf/. 

2The BIBLE, FIFA, SIGN, Chainstore datasets can be obtained from the SPMF website (http://www.philippe-fournier-

viger.com/spmf/index.php? link=datasets.php) and Kosarak can be obtained at http://fimi.ua.ac.be/data/. D9000S4 is a 

synthetic database that are generated by our modified version of IBM Quest Data Generator at: 

https://github.com/halfvim/quest. 



 

Table 7 Characteristics of the test databases. 

 

 Fig. 5. Runtimes for various minimum weighted support values. 

 

However, on the two short pattern databases, Chain-store and D9000S4, their performance switches 

around as HPCompact-SPADE becomes the fastest, followed by APCompact-SPADE, StaticCompact-

SPADE, DPCompact-SPADE, Compact-SPADE, CM-WSPADE, Parallel WDBV, and finally WDBV. For 



example, on Chainstore at m = 0.001%, the runtimes for HPCompact-SPADE, APCompact-SPADE, 

StaticCompact-SPADE, DPCompact-SPADE, and Compact-SPADE are 101.9, 108.1, 145.3, 197.6, and 

348.3 s, respectively. The three algorithms, CM-WSPADE, Parallel WDBV, and WDBV could not run at 

that threshold. 

 

Fig. 6. Maximum memory consumption for various minimum weighted support values. 

 

APCompact-SPADE is neither faster than DPCompact-SPADE on long pattern databases or HPCompact-

SPADE on short pattern databases. This is because its sampling process takes small runtimes to 

estimate the distributions of joins. On every database, it always comes as the second fastest algorithm, 

while DPCompact-SPADE takes the lead on four normal databases and HPCompact-SPADE is fastest on 

the two short pattern databases. The time required for sampling is around 0% to 6.5%. The longest 

sampling time is 6.5% on D9000S4. 



Regarding memory consumption, Fig. 6 shows that the five algorithms with Compact-SPADE as a core 

(DPCompact-SPADE, APCompact-SPADE, HPCompact-SPADE, StaticCompact-SPADE, and Compact-

SPADE) used less memory than CM-WSPADE, WDBV, and Parallel WDBV. Parallel WDBV used the most 

memory in most cases. CM-WSPADE used more memory than WDBV on Kosarak and was roughly equal 

to WDBV on SIGN. On FIFA and BIBLE, CM-WSPADE used less memory than WDBV only on some certain 

thresholds (i.e. 𝜔 ≥ 0.1% on BIBLE and 𝜔 ≥ 8% on FIFA). On Chainstore, CM-WSPADE used less memory 

than both WDBV and Parallel WDBV. DPCompact-SPADE, APCompact-SPADE, HPCompact-SPADE, and 

StaticCompact-SPADE consumed as much memory as Compact-SPADE on most datasets. For example, 

on FIFA, they all use roughly 2400 MB at 𝜔 = 11% to 3300 MB at 𝜔 = 7%, and the difference in memory 

consumption is less than 1% at every value of 𝜔. D9000S4 is the only database for which DPCompact-

SPADE had a significantly higher memory usage than Compact-SPADE. This illustrates the efficiency of 

the depth-first parallel search and load balancing methods. 

 

6.2. Multi-thread evaluation 

This section evaluates DPCompact-SPADE and APCompact-SPADE in multithreaded environments. All 

parallel algorithms (DPCompact-SPADE, APCompact-SPADE, HPCompact-SPADE, StaticPCompact-

SPADE, Parallel WDBV) were executed with fixed ra values while the maximum numbers of threads 

vary from 1 to 10 in increments of 2. For each dataset, ra was set to the lowest value in the previous 

experiment. The runtime speedups and maximum memory usage are presented in Figs. 7-9. 



 

Fig. 7. Speedup of the tested algorithms including the WCMAP runtime for various numbers of threads on the six test 

databases. 



Fig. 8. Speedup of the tested algorithms without the WCMAP runtime for various numbers of threads on the six test 

databases. 

 

As can be seen in Fig. 8, all parallel algorithms scale with the number of threads to a certain extent. 

However, the scaling is not linear. They all benefit greatly from adding a few threads, but as the number 

of threads increases further, the performance does not continue to improve, and can even worsen. 

The experiment was run with six physical cores and hyper-threading. For this hardware setup, the 

optimal number of threads was found to be between six to ten. The greatest speedups for DPCompact-

SPADE and APCompact-SPADE were achieved using ten threads for SIGN, where the runtimes were 

reduced by 7.27 and 6.85 times, respectively. The highest speedups for HPCompact-SPADE and 

StaticPCompact-SPADE were 4.95 and 4.05 times on D9000S4 with ten threads. For Parallel WDBV, the 

greatest speedups were using eight threads on Kosarak, where the runtime was decreased by 2.68 

times. Our proposed parallel algorithms (DPCompact-SPADE and APCompact-SPADE) appear to 

potentially scale better with the number of cores than the others. The speedups of the four algorithms 

DPCompact-SPADE, APCompact-SPADE, HPCompact-SPADE, and StaticPCompact-SPADE are quite 



small on Kosarak (less than two). Additionally, DPCompact-SPADE also has bad scalability on D9000S4 

and Chainstore. The reasons for this behavior are investigated in the next paragraphs. 

To have better insights, the construction time of WCMAP was recorded and compared with the total 

runtime of four parallel Compact-SPADE-based algorithms on the lowest m values (Table 8). On 

Korasak with 𝜔 = 0.1%, WCMAP’s construction time is 21.9 s, which takes about two-thirds of the four 

algorithms’ total runtimes. Similarly for Chainstore, WCMAP takes up 13.1% to 25.4% of the four 

algorithms’ total runtimes. On D9000S4, it takes from 10% to 23.8%. More time is spent on building 

WCMAP for those three datasets because there are many big frequent 1-patterns at such low threshold 

values. 

 

Fig. 9. The memory growth rate of the tested algorithms for various numbers of threads on six test databases. 

  



Table 8 WCMAP's construction time for each database. 

 

 

On other remaining datasets, the construction time took less than 10% of the total runtime. 

Furthermore, the WCMAP construction process is still serial and thus does not benefit from the 

increased number of threads. Putting the WCMAP’s construction time aside, the highest speedup is 

pushed from 2.08 to 3.9, 2 to 3.53, 1.96 to 3.34, 1.5 to 1.91 times on Kosarak for DPCompact-SPADE, 

APCompact-SPADE, HPCompact-SPADE, and StaticPCompact-SPADE, respectively (Fig. 8) 

Fig. 10. Frequent weighted pattern distribution and temporal join breakdown for each test database and a fixed m value. 

  



This indicates that on some large databases with many different actions, parallelizing the WCMAP 

construction could give a performance boost. 

Besides the WCMAP construction time issue, there is a second reason why DPCompact-SPADE did not 

scale well on Chain-store and D9000S4. Fig. 10 presents distributions of frequent patterns and 

temporal joins for each of the test databases. We can see that unlike the other databases, Chainstore 

and D9000S4's pattern and join distributions are heavily shifted towards short patterns, with 2-

patterns representing 45% and 93% of all patterns, and joins of 2-patterns representing 82% and 99% 

of the total, respectively. Those two databases contain very small portions of high-level classes. 

DPCompact-SPADE handles parallelism by delegating a thread’s higher-level classes to other idle 

threads. With every transfer to a new thread, the classes are smaller. With those databases, the classes 

do not have a high enough level (>=3), resulting in fewer possibilities for the algorithm to delegate 

work to other threads. Another limitation is that, if the classes are small and short, individual thread 

executions of DPNode-Expand() become shorter, comparatively increasing the overhead cost of 

managing the thread pool. This suggests that DPCompact-SPADE does not scale up well for short 

pattern databases. The other parallel algorithms do not have this problem because each thread works 

on a whole 1-class or a group of 1-classes. 

Regarding memory consumption (Fig. 9), despite our expectations of an increased memory footprint, 

we observed a roughly 0.01% difference in the maximum memory consumption between all Compact-

SPADE-based algorithms. Additionally, Compact-SPADE-based algorithms used less memory than 

Parallel WDBV and the reason is explained as follows. 

To explain this behavior, we first need to look at the data structures. Both Compact-SPADE-based 

algorithms and Parallel WDBV use data structures that are based on the concept of vertical data 

format. However, while Compact-SPADE-based algorithms utilize a vertical format, Parallel WDBV uses 

a semi-vertical one with a dynamic bit vector (DBV). The advantages of DBV were demonstrated [20], 

but its drawback is bit-sparsity in the early stage of the mining process. The DBV may waste memory if 

it only contains few true bits. For example, a DBV a size of 10,000 bits may contain only 10 true bits, 

and that causes memory waste. 

Secondly, two parameters, the database size, and m, may also affect the effectiveness of DBV. The 

larger the database size, the larger the DBV likely is and the lower the m value, the fewer true bits it 

contains. Additionally, the algorithm needs to iterate over the whole bit arrays. If the DBVs are large 

and sparse, the runtime increases. For example, iterating over DBV of size 10,000 but with only 10 true 

bits is significantly slower than iterating over a DBV of size 100 containing 10 true bits. Compact-SPADE, 

on the other hand, does not use bit arrays to represent user clickstream ids. Each element in a WICList 

represents both a user clickstream and a position index of the pattern. This results in less memory 

consumption as is observed in Figs. 6 and 9 for Compact-SPADE-based algorithms. 

How to choose the right number of threads? Picking the right number of threads for Compact-SPADE-

based algorithms can be tricky, because if the number is too high or too low, optimal performance may 

not be achieved. Based on the experimental results, we suggest setting the number of threads to about 

the number of physical cores on the CPU should give a considerable runtime improvement without 

risking a big increase in memory consumption. 

 

  



7. Conclusions and future work 

WCPM is a data mining task that has many applications because data from various fields can be 

encoded as a clickstream database. However, current algorithms do not take advantage of parallelism 

and/or do not consider weights indicating the importance of actions. This paper addressed these issues 

by presenting DPCompact-SPADE and APCompact-SPADE. Comprehensive experiments have shown 

that DPCompact-SPADE and APCompact-SPADE outperformed (P) WDBV and CM-WSPADE on all test 

databases and APCompact-SPADE can adapt to avoid performance degradation on short pattern 

databases. Moreover, it was found that parallelism improved Compact-SPADE’s performance 

considerably in terms of runtime and scaled well with the number of threads. However, nothing is 

perfect. The DPCompact-SPADE operates less well when the lattice representing the search space is 

imbalanced and WCMAP’s construction is still performed with a single thread. Moreover, APCompact-

SPADE’s runtime can lag a bit behind because its sampling may require some runtime to analyze the 

database’s pattern and join distributions. 

In future works, we plan to develop methods to further improve the performance by parallelizing the 

WCMAP construction process and developing alternative parallel approaches that could deal better 

with imbalanced lattices and small-size WICLists. We also plan to adapt the proposed algorithm for 

mining patterns in quantitative databases. 
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