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Abstract

Zero-Shot Learning (ZSL) has gained growing attention over the past few years mostly
because it provides a significant scalability to recognition models for classifying instances
from new unobserved classes. This scalability is achieved by providing semantic infor-
mation about new classes, which could be obtained remarkably easier with lower cost,
compared to collecting a new training set. Because seen and unseen classes are com-
pletely disjoint, ZSL methods often suffer from domain shift problem that occurs in
transferring the knowledge of seen classes to unseen ones. Moreover, hubness problem
that usually arises in high-dimensional space is another challenge in most ZSL methods
due to applying nearest neighbor search for classification. To address these issues, a
kernelized distance function is learned in order to discriminate the classes with a cus-
tomized large-margin loss function. Furthermore, a simple theoretical-based prototype
learning approach is provided by defining a non-linear mapping function to learn the
visual prototype of each class from associated semantic information. For classification
task, the learned distance function is utilized to measure the distance between instances
and class-related prototypes. The evaluation on five benchmarks demonstrates the su-
periority of the proposed method over the state-of-the-art approaches in both zero-shot
and generalized zero-shot learning problems.
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1. Introduction

With daily increase in novel categories of objects in nature, acquiring recognition
models with the possibility of classifying instances from new classes is necessary. With
traditional models, classification task highly depends on accessing sufficient instances of
each class for training the model. However, this is not always attainable for new cate-5

gories. While collecting sufficient data for all new classes might be difficult, the collected
data should also be annotated that is an expensive task. Furthermore, training the
model on the instances of all new classes is time-consuming and sometimes impractical.
By considering these challenges, a new problem known as Zero-Shot Learning (ZSL) has
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been introduced, which focuses on recognizing instances from classes not covered in the10

training stage [1].
ZSL utilizes semantic information to achieve some relations between training classes

(seen classes) and test classes (unseen classes) and fill the gap between them. This
information could be derived in different manners, such as semantic attributes provided
by experts to characterize visual and semantic properties of objects [1, 2], or vector15

embedding of class names learned from a text corpus through unsupervised modeling
[3]. Regardless of the type of utilized semantic information, each class is presented with
a single vector of features in semantic space. This space differs from the visual feature
space in which all instances from different classes are presented. While only instances
of seen classes are accessible in the training stage, semantic vectors of both seen and20

unseen classes are always available. ZSL methods aim to discover some relations between
classes in the semantic space. In other words, the links between seen and unseen classes
are attempted to be discovered in the semantic space to pave the way for recognizing
probable instances of unseen classes in visual feature space.

Conventional ZSL assumes that instances from only unseen classes will be provided25

to the model for classification in the testing stage. Therefore, the search is performed
only in unseen classes. However, it is more reasonable and realistic to expect observing
instances from both seen and unseen classes during the testing phase. Hence, the true
class should be searched among all seen and unseen classes. This testing scheme is often
called Generalized Zero-Shot Learning (GZSL) [4].30

From the perspective of methodology, ZSL models can be roughly grouped into three
categories: (1) global compatibility learners (2) space unifier methods (3) generative
methods. ZSL in global compatibility learner methods [5, 6, 7] is achieved by learning a
global compatibility function between the visual features and semantic vectors such that
the semantic vector of correct (seen) class attains the highest compatibility score with35

each training instance. Space unifier methods project either visual features or semantic
vectors or both to a predefined embedding space. Then, the nearest neighbor search is
applied to recognize the class of a new instance during the testing phase. Hence, in these
methods, learning the mapping parameters can also be considered as a part of learning
a proper metric for distance estimation. A line of research aims for the semantic space40

as the target of mapping instances [8, 9] to preserve the semantic structure. Conversely,
some approaches map the semantic features to the visual feature space [10, 11, 12] result-
ing in class-specific visual prototypes. The last trend in space unifier methods is to map
both visual features and corresponding semantic vectors into a third space by defining an
objective function to align them [13]. In generative methods as the last category of ZSL45

[14, 15, 16], training instances of seen classes are analyzed to learn resampling for each
class using the associated semantic vector. Then sufficient instances for unseen classes
are generated to convert zero-shot problem to a conventional classification task. Gen-
erative networks, e.g., Generative Adversarial Network (GAN) [17, 18, 19], are usually
utilized to accomplish this objective. These models are different from the previous two50

categories in architecture with more time and memory complexity but less visibility and
interpretability. This paper focuses on space unifier methods.

One of the main challenges in ZSL is the hubness problem [20]. Hubness that usually
occurs in high-dimensional spaces is the existence of instances from different classes
(hubs) in the neighborhood of test instances that belong to the same category [21]. Space55

unifier methods especially those that target the semantic space, suffer from the hubness
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problem due to utilizing nearest neighbor search in classification phase. To alleviate this
issue, various methods attempted to learn a proper metric instead of utilizing common
general distances such as Euclidean distance [12, 22]. However, disjoint training and
testing classes still deteriorate the performance of the model in the testing stage.60

Although there are some similarities between seen and unseen categories that bring
the possibility of zero-shot recognition, the evident difference between data distributions
of source (training) and target (test) domains causes a bias towards seen classes which
prevents the model from achieving a reasonable recognition performance [23]. This phe-
nomenon that ZSL methods struggle with is called the domain shift problem [24]. To65

address such issue, instead of considering ZSL with inductive setting, a line of research
attempts to employ unlabeled data of unseen classes in addition to labeled instances of
seen classes in the training stage which is called transductive ZSL [24]. However, the
data of unseen categories are not usually available during the training phase in realistic
recognition scenarios. Therefore, transductive setting is not often considered to be the70

best solution for the domain shift problem.
In order to solve the aforementioned problems, in this paper, a kernelized Euclidean-

based distance function is proposed in visual feature space to optimize the distance be-
tween visual features of instances and class-specific prototypes. The proposed distance
function can be adopted with any prototype learning method. However, a non-linear75

but straitforward approach is used to learn visual prototypes from their corresponding
semantic vectors. As mentioned previously, although distance learning alleviates the
hubness problem in the context of ZSL, it often suffers from the domain shift problem.
Kernelization has shown promising results in improving model generalization capability
but is rarely studied in ZSL and GZSL contexts. Furthermore, a large-margin objec-80

tive function is utilized for learning the distance function to enhance the discriminative
properties of the model and reducing the impact of hubness and domain shift problems.
The proposed method is evaluated by experimenting on five standard ZSL datasets un-
der both ZSL and GZSL settings. Extensive experimental results show the effectiveness
of the proposed method under both settings compared to state-of-the-art methods with85

various approaches. The contributions of this paper are as follows:

• A kernelized Euclidean-based distance function is proposed in visual feature space
for tuning the distance of visual features with class-related prototypes in order to
mitigate domain shift and hubness problems. The proposed distance function can
be used with any visual prototype learning method.90

• A large-margin objective is employed for learning the distance function to improve
discriminative properties.

• A simple non-linear prototype learning method is used to transfer the knowledge
for unseen classes from semantic space to visual feature space and construct the
visual prototypes.95

• Extensive experiments are conducted on five widely used ZSL datasets under ZSL
and GZSL settings, and it is demonstrated that the proposed method outperforms
state-of-the-art approaches.

The rest of the paper is organized as follows. In Section 2, an overview of the relevant
previous work is provided. The proposed method is explained in Section 3 and Section100
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4 is dedicated to illustrating the experimental results. Finally, the paper is concluded in
Section 5.

2. Related Work

This section investigates a set of related work in terms of prototype learning, distance
function learning, large-margin loss functions, and non-linear methods.105

2.1. Prototype Learning

In recent years, various ZSL methods have targeted visual prototype learning for
unseen classes. Among these methods, a line of research considers minimizing “inner
class distance”; denoting the mean square of the distances between training instances and
associated prototypes in this paper; as the objective function. The article [11] argues that110

the visual feature space is a more appropriate embedding space compared to semantic
space due to less impact of the hubness problem on nearest neighbor search in visual
feature space. Then, it proposes a non-linear function to map semantic vector of each seen
class to a proper visual prototype in the visual feature space. This mapping function is
learned by a two-layer neural network with Rectified Linear Unit (ReLU) firing functions.115

The inner class distance is regularized with sparsity terms on the network’s weights to
form the final objective function. In [25], at first, the visual prototypes of seen classes
are learned by minimizing the inner class distance that results in obtaining the mean
of instances for each seen class as the visual prototype. Then, an embedding function
is learned to map the semantic vectors to corresponding class prototypes. In order120

to achieve generalization, the mapping problem is solved by Support Vector Regressor
(SVR). To be more precise, a separate SVR is used to predict each feature of the prototype
from semantic features. In order to reduce the number of SVRs, the number of visual
features is initially reduced by PCA.

In two previously mentioned methods, in addition to the type of mapping function,125

the difference is in the direction of problem-solving. In [25], at first, the prototypes of
the seen classes are specified by minimizing inner class distance. Then, for obtaining the
prototypes of unseen classes from corresponding semantic vectors, an embedding function
is learned using the semantic vectors and prototypes of seen classes. While in [11], the
prototypes are not fixed and the weights of the network are learned to obtain prototypes130

which minimize the inner distance of seen classes. In this paper, the approaches in [25],
and [11] are called late and early learning, respectively. In Section 3, as one of the
contributions of this paper, it is proved that these two learning methods are the same
for linear mappings with inner class distance objective function.

Similarly, the article [26] employs the minimization of inner class distance to obtain135

the visual prototypes of seen classes. This paper assumes a set of latent vectors in a
third space from which both visual prototypes and semantic vectors can be generated
separately. Square errors of these mappings are also considered in the objective function
in addition to inner class distance.

In this paper, similar to the mentioned methods, a visual prototype learning approach140

with inner class distance as the loss function is utilized to learn class-related prototypes.
However, this objective does not consider the discriminative properties of learned proto-
types. Therefore, instead of using a simple distance function in nearest neighbor classifier,
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a large-margin objective function is used to learn a discriminative kernel-based distance
function.145

2.2. Distance Function Learning

To enhance the performance of ZSL, distance learning has been recently considered as
an effective method rather than using the traditional distance functions such as Euclid-
ian distance. In space unifier methods that are based on learning one or more mapping
functions, utilizing proper distance metrics can lead to better dispersion of instances of150

different classes and relieve the hubness problem. In [27], Mensink et al. propose a Ma-
halanobis metric learning in the form of Gaussian distributions with class specific means
and a common covariance matrix shared between all the class labels. The parameters
of the distributions are learned by maximizing the log-likelihood of correct predictions.
While One-Shot-Learning was considered in that work, a ZSL model based on class-155

specific Gaussian distributions is proposed in [10]. The difference of this model with [27]
is that instead of using a shared covariance matrix, each distribution has its own specific
covariance matrix to be learned. The parameters for the distributions of seen classes
are learned similarly by log-likelihood maximization. Then, two distinct Kernel Ridge
Regression models are trained to map each semantic class vector to its class-related mean160

and covariance. In the end, these regressors are used to estimate the statistics of un-
seen classes (means and covariance matrices). Using a specific covariance for each class
can be interpreted as considering a distinct distance function for measuring the distance
between an arbitrary instance and the corresponding class prototype.

In [22], Bucher et al. formulate ZSL as a Euclidean-based metric learning problem165

in semantic space and learn a distance function to better predict the consistency of
an embedded image with its relevant semantic vector. To embed visual features, a
ReLU-type normalized affine function is learned with a least-square objective function.
Also, the distance function is adjusted using a Hinge loss. Although the parameters of
the mapping and distance functions have different learning objectives, a joint learning170

approach is employed by merging these objectives.
Comparing [27] and [10] with [22], the former methods aim at finding the proper

distance function between the training instances and the prototypes in the visual feature
space, whereas the latter learns a distance function between the instances mapped to the
semantic space, and the semantic vectors of associated class labels.175

In recent years, other distance functions have also been learned besides Mahalanobis
and Euclidean-based metrics. For example, in [12], a distance function based on Cosine
similarity is learned between class-specific prototypes and instances in visual feature
space. In this method, a two-layer neural network is used for learning visual prototypes
from semantic class vectors.180

Although previous methods have utilized distance function learning to relieve hubness
and domain shift problems in ZSL and GZSL, they still suffer from the domain shift
problem due to the inconsistent distribution of unseen classes. In this paper, kernelization
of the distance function in visual feature space is one of the main contributions. While
kernel-based methods can improve model generalization, they have been rarely used for185

ZSL and GZSL. Moreover, a large-margin loss has been employed in learning the distance
function to emphasize on tuning structural and empirical risks, simultaneously. Although
a large-margin distance learning approach is used in [22], it targets the semantic space
that is affected by the hubness problem more than the visual feature space.
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2.3. Large-Margin Loss Functions190

Regardless of the type of methodology employed by ZSL models, each method uses a
specific loss function to evaluate the error of categorizing training instances. Minimizing
the sum of the losses on all training instances as the empirical risk is usually used for pa-
rameter learning. While mean square distance is widely used in ZSL methods, including
prototype learning approaches described in subsection 2.1 [11, 25], discriminative prop-195

erties of distinct classes are not usually considered in objective functions based on this
distance. Therefore, it can deteriorate the generalization capability of ZSL methods. To
enhance the ability of discriminating classes, large-margin objective functions have been
utilized in ZSL methods. Improving this capability in ZSL can lead to mitigating domain
shift and hubness problems.200

In ZSL methods, large-margin loss functions are used mainly for global compatibility
learners. In [6], inspired by unregularized ranking SVM [28], a pairwise ranking objective
based on Hinge loss is used to tune a bi-linear compatibility function. In that method, all
the opposing classes are considered in the loss function. Akata et al. [7] used a weighted
objective function which also considers the rank of the correct label among all labels in205

the objective function. In [29] another large-margin objective function is employed that
gives the whole weight to the most similar opposing class. In order to tackle the domain
shift problem, that exists between seen and unseen classes, an intuitive idea was used in
[5] to consider similar seen class instances as a substitution of unseen ones in the training
phase. Hence, for each instance, the most similar unseen class is also considered in a loss210

function similar to the one used in [29] to maximize the compatibility of the instance
with the most similar unseen class.

In space unifier methods, large-margin loss functions are also utilized. In [22], Hinge
loss was used to define a loss function but on the distance (not compatibility) function.
This method focuses on semantic space, in contrary with the proposed method, in order215

to discriminate the classes by tuning the margin between each mapped instance and its
class-related semantic vector.

While large-margin discriminative loss functions have been primarily used for global
compatibility learners in ZSL (as introduced previously), this paper attempts to utilize
a large-margin loss for learning the proposed kernel-based distance function in visual220

feature space. This type of loss functions, based on Hinge loss has not been considered
properly so far, based on our knowledge, for the goal of distance function learning,
especially in visual feature space.

2.4. Non-linear Methods

In ZSL and GZSL, deep learning has been widely used to achieve non-linearity in225

the models [30, 11, 31]. However, these methods are less efficient and interpretable
and usually more complex compared to non-deep approaches. Unlike previous methods,
in [32], non-linearity is acquired by kernel utilization similar to the approach proposed
in this paper. However, unlike the proposed method that targets visual feature space,
semantic space was used in [32] which is not appropriate due to the severe hubness230

problem that exists in this space. Moreover, that method applies kernels for learning a
mapping function while the proposed method uses them in distance function.

To sum up, the proposed ZSL method attempts to learn a kernel-based distance func-
tion with a large-margin objective to tune the distance between the instances and class-
related prototypes in visual feature space. Although the visual prototypes are learned235
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Table 1: Comparison between the proposed method and related work based on various criteria.

Method Category Target space Focus
Early/ Late
learning

Large-margin Kernel

Zhang et al. [11]
space
unifier

visual distance early no no

Changpinyo et al. [25]
space
unifier

visual distance late no yes

Jiang et al. [26]
space
unifier

visual/semantic/third distance early no no

Verma and Rai [10]
space
unifier

visual distance late no no

Bucher et al. [22]
space
unifier

semantic distance - yes no

Pan et al. [12]
space
unifier

visual distance early no no

Frome et al. [6]
compatibility
learner

- similarity - yes no

Akata et al. [7]
compatibility
learner

- similarity - yes no

Akata et al. [29]
compatibility
learner

- similarity - yes no

Zhang and Koniusz [32]
space
unifier

semantic similarity - yes yes

Proposed
space
unifier

visual distance late yes yes

with a simple non-linear method, the distance function can be used with any visual
prototype learning method. The proposed distance function is Euclidean-based and the
kernel transformation can occur whenever the Euclidean distance function is employed.
However, the kernel utilization can also be applied to any other distance function that
can benefit from transforming to a Hilbert Space with the appearance of dot product240

of vectors. What distinguishes the proposed distance function is its kernel utilization in
distance function formulation and the large-margin objective function, which is hardly
manipulated previously for the goal of distance function learning, especially in visual
feature space. To the best of our knowledge, the only work in the literature, based on
both Kernel and Large-margin approaches, is Zhang [32] that uses a similarity function245

in the semantic space whereas, this paper proposes a distance function in visual feature
space to prevent the hubness problem. In Table 1, the proposed method is compared to
related work based on various criteria.

3. Proposed Method

In this section, the proposed method is explained, mainly focused on learning a ker-250

nelized distance function and a mapping function for visual prototype learning
Let Cs = {cs1, cs2, . . . , cs

S} and Cu = {cu1 , cu2 , . . . , cuU} be the sets of S seen and U
unseen class labels, respectively, where Cs ∩Cu = ∅. In addition, X = {~x1, ~x2, . . . , ~xN}
represents the set of N observed instances from the seen classes where ~xi ∈ RDv is the
vector of Dv visual features for the ith training instance. The class label of ~xi is denoted255

by y (~xi) = yi ∈ Cs. Moreover, each class label c ∈ Cs ∪Cu is associated with ~ac ∈ RDs

as the Ds-dimensional semantic features of the seen or unseen class c. The goal of ZSL
is to assign the correct class y (~q) to each new instance ~q ∈ RDv , where y (~q) ∈ Cu.
However, in generalized Zero-Shot Learning, instances from both seen and unseen classes
are available during the test phase and the search is performed in Cs ∪ Cu.260
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Let ~pyi be the visual prototype associated with class yi. In visual feature space, a
distance function is defined to tune the distance of each instance ~xi to its class-related
visual prototype ~pyi

. By using the visual prototypes, the distance function in visual
feature space is commonly formulated as a general distance shown in Eq. (1).

dv (~xi, ~pc;Q) = (~xi − ~pc)TQ (~xi − ~pc) (1)265

where, Q is a symmetric positive semi-definite matrix. This function is employed to
measure the distance between the instance ~xi and the visual prototype of class c (i.e.,
~pc). In order to minimize inner-class distance, the objective function is formulated as in
Eq. (2).

min
Q,~pc∈Cs

J (Q, ~pc) (2)270

where,

J =
1

N

∑
xi∈X

(~xi − ~pyi)
T
Q (~xi − ~pyi) (3)

The goal is to derive the class-related prototypes {~pc|c ∈ Cs} to utilize in the distance
function, and the parameter matrix Q. In the first sub-section, suitable prototypes are
achieved with some theoretical proof. The second sub-section explains the proposed275

distance function as a case of the general form in Eq. (1) and provides the parameter
tuning method. Finally, the kernelized distance learning is proposed with a large-margin
approach.

3.1. Prototype Learning

In distance learning, it is assumed that prototypes have been provided. Therefore,280

as an initial phase, prototype learning should be performed. Inspired by Changpinyo et
al. [25], the prototype of each class is initially set to the mean of associated instances.
Then the mapping parameters are tuned to map the semantic vector of each class to
its prototype and finally, the learned mapping function is used to obtain the prototypes
for unseen classes. Since the parameters are tuned after prototype determination, as285

mentioned previously, this approach is called late learning. In this case, the parameters
may not be successful to exactly generate the prototypes as a function of semantic vectors.
However, in early learning, the parameters are adjusted in order to map the semantic
vectors to such prototypes that are as near as possible to instances of the associated
class label. In this case, prototypes are not specified before parameter learning, and290

the mapping functions directly produce them. Therefore, they may not be the best
prototypes for the training instances. In the following, it is proved that, early and
late learning both generate similar parameters if the mapping function is linear and the
objective function is the mean square distance between instances and the prototypes of
associated classes. Here, the general objective function of minimizing inner-class distance295

in Eq. (3) is reformulated in Eq. (4) for early learning.

J (W ) =
1

N

∑
xi∈X

(~xi −W~ayi
)
T
Q (~xi −W~ayi

) (4)

The objective is reformed as shown in Eq. (5) where, X and A are the matrices of which
ith columns are ~xi and ~ayi , respectively.

J (W ) =
1

N
tr
(

(X −WA)
T
Q (X −WA)

)
(5)300
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The matrix A is equal to AsH where, As = [~a1, . . . ,~aS ] and ith column of HS×N is a
one-hot vector ec such that yi = c. By equalizing the derivative of J respect to W to
zero, the fact presented in Eq. (6) is derived.

∂J

∂W
= 0⇒ QWAAT = QXAT (6)

Note that matrix Q can be singular and AT may have no right inverse and cannot be305

removed from the expressions.
Let X̄ = [µ1, . . . , µS ] and µc be the mean of the instances related to class label c.

Sum of the instances of class c (can be represented by XHT ) does not change if each
instance is replaced by the mean of instances. This statement is formulated in Eq. (7).

XHT = X̄HHT (7)310

where, columns of X̄H represent the set of instances replaced with the mean of corre-
sponding class (i.e., ith column of X̄ is µc if yi = c). By using Eq. (7), Eq. (8) can be
achieved.

QXAT = QXHTAsT = QX̄HHTAsT = QX̄HAT (8)

Finally, from Eq. (6) and Eq. (8), Eq. (9) is derived.315

QWAAT = QX̄HAT (9)

In late learning, WA in Eq. (5) is replaced by the matrix of prototypes associated
to each instance, P sH where, P s = [~p1, . . . , ~pS ]. Hence, the objective is formulated as
shown in Eq. (10).

J =
1

N
tr
(

(X − P sH)
T
Q (X − P sH)

)
(10)320

The matrix P s is found by zeroing the derivative of J respect to P s as shown in Eq.
(11).

∂J

∂P s
= 0⇒ QP sHHT = QXHT (11)

Since HHT is a diagonal matrix with the number of instances for each class on the
diagonal, this matrix is invertible. Hence,325

QP s = QXHT
(
HHT

)−1
= QX̄HHT

(
HHT

)−1
= QX̄ (12)

In other words, ~pc = µc+NQ~v where, NQ is a matrix of which column space forms the null
space of Q as NQ (i.e., NQ = {NQ~v for any free vector of coefficients ~v}). Specifically,
each row of Q is orthogonal to each column of NQ (i.e., QNQ = 0). The free vector ~v

is for extracting any point from the null space. After finding P s, the optimum W̃ to330

minimize the Frobenius norm of errors ||P sH − W̃A||F leads to having Eq. (13).

W̃AAT = P sHAT = X̄HAT (13)

As demonstrated, W̃ in Eq. (13) can be used as W in Eq. (9). If Q is positive def-
inite and if A is full row-rank (that means AAT is invertible), uniquely, W = W̃ =

X̄HAT
(
AAT

)−1
. So, in case of using linear mapping function, early and late learning335
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both generate similar parameters if the objective function is the mean square distance
between instances and their correct prototypes. This is why; the late learning is chosen in
this paper and prototypes are selected as the mean of the instances from associated class
labels shifted by the null space of Q (i.e., ~pc = µc +NQ~v). By inserting these prototypes
in the defined distance and objective in Eq. (10), the null space can be ignored as shown340

in Eq. (14) and each prototype is simply represented by the mean of instances of the
associated class. This simplification is achieved because, QNQ = 0 and Q is symmetric.

J = tr
(
(X − (X̄ +NQV )H)TQ(X − (X̄ +NQV )H)

)
= tr

((
X − X̄H

)T
Q
(
X − X̄H

))
(14)

In order to decrease the effect of imbalanced property in ZSL datasets, W̃ is chosen
regardless of the number of instances in each class. In this case, W̃ is not necessarily345

equal to W . The second modification is to use the non-linear form of Ridge regression
called Kernel Ridge Regression. The linear model and its derivative respect to W̃ is
presented in Eq. (15).

min
W̃
||P s − W̃As||2F + λ||W̃ ||2F ⇒

W̃AsAsT + λW̃ = P sAsT ⇒ W̃ =
1

λ

(
P s − W̃As

)
AsT

(15)

where, λ is the regularization parameter. With the above form, the variable W̃ ′ can be350

defined in Eq. (16) to reformulate Eq. (15) in Eq. (17).

W̃ ′ =
1

λ
(P s − W̃As) (16)

W̃ = W̃ ′AsT (17)

By reusing Eq. (17) in Eq. (16), the model of Eq. (18) is achieved:355

W̃ ′ =
1

λ

(
P s − W̃ ′AsTAs

)
(18)

which implies:

W̃ ′ = P s
(
AsTAs + λIS

)−1
(19)

A kernel matrix Ks
S×S = AsTAs can be computed for the semantic vectors of seen

classes as a pairwise similarity of the class vectors using a kernel function k, in Eq. (20).360

W̃ ′ = P s(Ks + λIS)
−1

(20)

Then ~puc as the visual prototype of the unseen class c ∈ Cu can be derived by 21.

~puc = W̃~auc = W̃ ′AsT~auc = W̃ ′~kuc (21)

where, ~kuc = AsT~auc is the pairwise similarity between the semantic vector of unseen class365

c and all seen classes.
10



3.2. Distance Learning

Considering the minimization of inner-class distance in Eq. (2) for the general dis-
tance function Eq. (1), the solution could be derived as Q = Σ−1. However, another
approach is followed in this paper with some constraints on Q. By decomposing Q to370

MTM , the distance function can be presented as Eq. (22) and the objective function
can be reformulated as Eq. (23).

dv (~xi, ~µyi
) = (~xi − ~µyi

)
T
MTM (~xi − ~µyi

) (22)

J (M) =
1

N

∑
xi∈X

(M~xi −M~µyi
)
T

(M~xi −M~µyi
) (23)375

In other words, each instance x is initially mapped to another point Mx. It leads to
having the mean of class c equal to Mµc. Then, the simple Euclidean distance is applied.
To decrease the complexity of finding the possible solutions in the diverse search space
for M , it is assumed that the mapping function should not change the prototypes. In
conclusion, each instance is initially mapped to Vp as the vector space of which the380

prototypes are the basis. The mapping matrix is idempotent (i.e., MM = M). In
case of having symmetric M , then the mapping matrix is uniquely the perpendicular

projection matrix on Vp (i.e., M = Msym = PS
(
PST

PS
)−1

PST
). However, in case of

having asymmetric M , this projection is not perpendicular. Anyway, M~µyi
= ~µyi

, and
the distance function can be presented as shown in Eq. (24).385

dv (~xi, ~µc;M) = (M~xi − ~µc)
T

(M~xi − ~µc) (24)

Therefore, the objective function is remodeled as:

J (M) =
1

N

∑
xi∈X

(M~xi − ~µyi)
T

(M~xi − ~µyi) =
1

N
||MX − X̄H||2F

s.t. ∀~µc : M~µc = ~µc

(25)

However, these constraints can be ignored, because minimizing the objective function
regardless of the constraints finds a solution for which the constraints are also held. To390

prove that, it is sufficient to show that the optimal M maps all instances to Vp. Hence,
M is a projection matrix on Vp and does not change any prototype. Assume that at
least one instance ~x exists that is not mapped to Vp by M . The Euclidean distance
between M~x and the associated prototype ~µ is addressed in Eq. 26.

||M~x− ~µ||2 = || (M~x− ~xp)︸ ︷︷ ︸
−→
∆x

+ (~xp − ~µ)︸ ︷︷ ︸
−→
dx

||2 = ||
−→
∆x||2 + ||

−→
dx||2 + 2

−→
∆xT−→dx︸ ︷︷ ︸

0
(26)395

where, ~xp is equal to perpendicular projection of M~x on Vp (i.e., ~xp = MsymM~x).

Hence,
−→
dx as the difference vector of ~µ and ~xp is located on Vp and

−→
∆x as vector of

difference between M~x and ~xp is in the complement space and is orthogonal respect to

all the vectors in Vp. This is why; the last term in Eq. (26) is equal to zero (
−→
∆x⊥

−→
dx).

There is at least one instance for which, M does not map it to Vp, and associated
−→
∆x is400
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not zero. In this case, replacing M by MsymM leads to have a smaller distance between

the mapped instance and the prototype because
−→
∆x becomes zero. As a contrary, M is

not the optimal solution unless it maps all the instances to Vp and as a consequence,
all the constraints of Eq. (25) are held and can be removed from the model. By zeroing
the derivative of J in Eq. (25) respect to M , the optimal matrix will be equal to405

X̄HXT
(
XXT

)−1
if X is full-row rank.

3.3. Kernel-based Large-margin Discriminative Distance Learning

The weakness of the proposed model in Eq. (25) is that it focuses on minimizing inner-
class distance without considering between-class discrimination which can be beneficial
for ZSL. Therefore, in the following, as well as kernelizing the distance function in Eq.410

(24), a large-margin objective is proposed for learning the distance function in order to
improve discriminative properties. At first, the distance function in Eq. (24) can be
expanded and kernelized in Eq. (27) :

dv (~xi, ~µc;M) = (M~xi)
T

(M~xi)− 2~µT
c M~xi − ~µT

c ~µc

dkv (~xi, ~µc;M) = k (M~xi, M~xi)− 2k (M~xi, ~µc) + k (~µc, ~µc)
(27)

where k (.) is the applied kernel function. The goal is to learn M in order to minimize415

a loss function similar to the large-margin loss function used in [6] . However, that
loss function was proposed based on the compatibility function in global compatibility
learning. In this paper, that loss function is redesigned to support the distance functions
for using in a space unifier model, e.g., prototype learning.

For each instance ~xi, it is desired to make the distance of the instance ~xi to ~µyi at420

least m less than its distance to ~µc which is the prototype of an arbitrary inconsistent
class c. The hyper parameter m is the margin. Therefore, an error is considered if the
margin m is violated. The loss imposed by the inconsistent class label c on the instance
xi is presented by Hinge loss as presented in Eq. 28.

h(~xi, yi, c;M) =
[
m+ dkv (~xi, ~µyi

;M)− dkv (~xi, ~µc;M)
]
+

(28)425

where, the rectifier function is defined as [v]+ = max (0, v).
The overall loss for the instance xi and the final objective function for learning the

proposed distance function are presented in Eq. (29) and Eq. (30), respectively.

`All (xi;M) =
∑

c∈Cs−{yi}

h(~xi, yi, c;M) (29)

min
M

Jk =
∑
~xi∈X

1

Nyi

`All (xi;M) (30)430

where, Nyi
is the number of instances which belong to class yi. The term 1

Nyi
is used

to prevent the classes with many instances from influencing the objective function more
than the others.

Stochastic Gradient Descent is used to optimize Eq. (30) and early stopping approach
is used to prevent overfitting. The optimization algorithm is illustrated in Algorithm 1.435
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Table 2: Derivative of Hinge loss respect to M, using various kernels

Kernel name Kernel formulation Derivative of the Hinge loss respect to M

Linear k
(
~a,~b
)

= ~aT~b+ cnst 2
(
~µc~x

T − ~µc∗~x
T
)

Quadratic k
(
~a,~b
)

=
(
~aT~b+ cnst

)2

4
[(
cnst+ ~xTMT ~µc

)
~µc −

(
cnst+ ~xTMT ~µc∗

)
~µc∗
]
~xT

RBF k
(
~a,~b
)

= exp
(
−γ||~a−~b||

2
)

4γ [(k (M~x, ~µc∗)− k (M~x, ~µc))M~x+ (k (M~x, ~µc) ~µc − k (M~x, ~µc∗) ~µc∗)] ~x
T

The parameter η is the learning rate of gradient descent, and the validation set is utilized
to tune it. The value of this parameter is picked among the candidates regarding the
results on the validation set. The gradient elements are computed and used in updating
statement Eq. (31) for each selected instance ~x and the inconsistent class label c.

Mnew = Mold − η

Nc∗
(
∂
(
dkv (~x, ~µc∗ ;M)

)
∂M

−
∂
(
dkv (~x, ~µc;M)

)
∂M

) (31)440

where, c∗ = y (x), for updating M . The derivative of m+ dkv (~x, ~µc∗ ;M)− dkv (~x, ~µc;M)
varies concerning the utilized kernel function. The derivative formulations in case of
using Linear kernel, Quadratic kernel and Polynomial kernel are illustrated in Table 2.

Algorithm 1 Optimization of large-margin distance function using Stochastic Gradient
Descent

1: for T iterations do
2: Draw a random instance (~x, c∗) ∈ X
3: for i = 1 : S − 1 do
4: Draw a random label c ∈ Cs − {c∗}
5: if

(
m+ dkv (~x, ~µc∗ ;M)− dkv (~x, ~µc;M)

)
> 0 then

6: Update M with gradient descent based on (31)
7: end if
8: end for
9: end for

3.4. Classification Task

During the test phase, the learned distance function is used to classify instances.445

In case of ZSL experiment, the class of ~q, which belongs to one of unseen classes, is
determined based on Eq. (32).

y (~q) = min
c∈Cu

dkv (~q, ~puc ;M) (32)

On GZSL experiment that the instance may belong to either seen or unseen classes,
the imbalance data issue will lead to predictions biasing toward seen classes [33]. To450

tackle this problem, a strategy similar to Calibrated Stacking (CS) [33] (decreasing the
compatibility score of seen classes by a constant factor) is applied. In the proposed
distance function, the weights of seen classes are reduced by adding a constant value α
to the calculated distance from any seen class prototype. Therefore, the class of ~q is
determined as:455

y (~q) = min
c∈Cs∪Cu

dkv (~q, ~pc;M) + αI (c ∈ Cs) (33)
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Table 3: Statistics of the datasets used in the experiments

Dataset Granularity #Images #Classes #Attributes

aPY course 15339 32 64

CUB fine 11788 200 312

SUN fine 14340 717 102

AWA1 course 30475 50 85

AWA2 course 37322 50 85

where I (c ∈ Cs) = 1 if c ∈ Cs, otherwise, it is equal to 0. In the case of c ∈ Cs, ~pc is
calculated as the mean of the seen class instances ~µc and for c ∈ Cu, ~pc is estimated by
Eq. (21).

4. Experiments and Evaluation460

The proposed method is evaluated on five ZSL benchmark datasets: Attribute Pascal
and Yahoo (aPY) [2], Caltech-UCSD-Birds (CUB) [34], SUN Attributes (SUN) [35],
Animals with attributes (AWA1) [36], and Animals with Attributes 2 (AWA2) [37]. The
statistics of the utilized datasets are illustrated in Table 3. The top-layer pooling units
of Resnet-101 [38], with 2048-dimensions, pre-trained on ImageNet dataset, are used465

as the visual features of images provided by [37]. In order to have a fair comparison,
provided attributes with each class are used as the semantic class embeddings. Also,
in the experiments, the data splitting proposed in [37, 39] (called proposed split) shown
in Table 4 is applied that guarantees uncommon categories between unseen classes and
ImageNet classes which the visual model is pre-trained on.470

For distance learning, the initial value of M is set to the identity matrix IDv
. The

learning rate η and regularization parameter λ are selected by cross-validation technique
and by using the validation splits of seen classes provided with the proposed splits in
[37, 39]. Also, in Kernel Ridge Regression, Quadratic kernel is utilized to learn the pro-
totypes of unseen classes and the constant bias factor α is set to 0.03 in GZSL for all475

datasets. This value is a general value used for all datasets and is extracted experimen-
tally.

Average per-class top-1 accuracy is used for evaluating methods in ZSL setting, which
is calculated as presented in Eq. (34).

AccU =
1

||Cu||
∑
c∈Cu

# of correct predictions in class c

# of instances in class c
(34)480

where, ||Cu|| is the number of classes in Cu. This metric averages the correct predictions
in each class independently to prevent the populated classes make an extra impact on
the final measurement. For GZSL setting, besides reporting distinct average per-class
accuracies of seen classes (AccS) and unseen classes (AccU ), the Harmonic Mean (H) of
these measures are also reported as a unified metric for evaluating the performance of485
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Table 4: Datasets split used in the experiments proposed by [37]

Dataset #Seen/Unseen Classes
#images of seen classes

#images in GZSL training/testing
#images of unseen classes

aPY 20/12
7415

5932/1483
7924

CUB 150/50
8821

7057/1764
2967

SUN 645/72
12900

10320/2580
1440

AWA1 40/10
24790

19832/4958
5685

AWA2 40/10
29409

23527/5882
7913

the methods. This metric is calculated as presented in Eq. (35).

H =
2 ×AccU ×AccS

AccU +AccS
(35)

For both ZSL and GZSL, the average ranking among all methods is also reported,
which is calculated by averaging the performance ranking of the method on all the
datasets.490

4.1. Kernel Effect on Distance Learning

To investigate the impact of kernel function on distance learning, the proposed model
is trained with various kernels on CUB dataset. Linear kernel, Quadratic kernel and
RBF kernel are considered for this experiment. The results are presented in Fig. 1.
The RBF kernel achieves the best result with an average accuracy of 59.1% followed495

by Linear and Quadratic kernels with 50% and 49%, respectively. The variation in the
results by using different kernels emphasizes the effect of kernel employment in distance
function learning that can lead to an improvement in the case of proper choice. For all
the following experiments, RBF kernel is utilized with the value of its free parameter γ
set to 1/2048 (the number of features in the visual feature space). The margin m in Eq.500

(28) is also set to 0.05 in all experiments.

4.2. Comparison with State-of-the-art Methods

From the viewpoint of effectiveness, the proposed method is compared with 20 state-
of-the-art methods: DAP (Lampert et al. [36]), CONSE (Norouzi et al. [40]), SSE
(Zhang and Saligrama [13]), LATEM (Xian et al. [41]), ALE (Akata et al. [7]), DEVISE505

(Frome et al. [6]),SJE (Akata et al. [29]), ESZSL (Romera-Paredes and Torr [42]), SYNC
(Changpinyo et al. [43]), SAE (Kodirov et al. [8]), GFZSL (Verm and Rai [10]), PSRZSL
(Annadani and Biswas [44]), DEM (Zhang et al. [11]), TVN (Zhang et al. [45]), RNet
(Sung et al. [30]), AML (Jiang et al. [5]), EXEM (Changpinyo et al. [46]), MLSE (Ding
and Liu [47]), AUVS (Zhang et al. [48]) and PLNPS (Zhang et al. [4]).510
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Figure 1: The impact of using kernel in distance function learning on CUB dataset for zero-shot recog-
nition.

4.2.1. Zero-Shot Learning

The comparison results on conventional ZSL based on average per-class accuracy are
demonstrated in Table 5. According to the results, the proposed method achieves the best
performance on three out of five datasets and the second-ranked in the other two datasets.
On AWA1 and AWA2, the proposed method surpasses the second-ranked methods TVN515

and MLSE with 3.6% and 2.9%, respectively. On SUN dataset, which contains fewer per-
class instances and more classes compared to other datasets, the proposed method also
performs well by achieving 63.6% that is at least 0.7% greater than the other methods.
On aPY, in which weak relations exist between the seen and unseen classes, the proposed
method obtains the second place (after MLSE) with an average of 43.3%. On CUB, a520

fine-grained dataset with highly similar classes, MLSE also attains the best result with
an average per-class accuracy of 64.2%, while the proposed method scores 59.1% as the
second rank. That may be caused by the less discriminative properties of classes in visual
feature space. Finally, by considering the average ranking, the proposed method confirms
its overall advantage by achieving the average ranking of 1.4, which is 0.4 lower than the525

second-best method, MLSE. Despite the simplicity of the proposed approach, it achieves
remarkable results compared to state-of-the-art ZSL methods with various approaches.
It should be notified that MLSE could not be successful in GZSL evaluations as followed.

4.2.2. Generalized Zero-Shot Learning

In realistic scenarios, the assumption that all the test instances just belong to unseen530

classes is unreasonable. Therefore, an experiment with GZSL setting is also considered
in which the model has to predict both seen and unseen instances during the test phase.
The performances of different approaches in GZSL are compared in Table 6. In this
report, two strategies have been considered. In one of them, seen and unseen classes are
taken equally into consideration (setting α = 0 in Eq. (33)), and in the other one, the535
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Table 5: Zero-shot recognition in terms of average per-class accuracy (%) on five benchmark datasets.
In the case of no available reported result, ‘-’ is used. The best result is made bold and the second-best
is underlined.

Method aPY CUB SUN AWA1 AWA2
Avg
Rank

DAP [36] 33.8 40.0 39.9 44.1 46.1 17.6
CONSE [40] 26.9 34.3 38.8 45.6 44.5 18.4
SSE [13] 34.0 43.9 51.5 60.1 61.0 14
LATEM [41] 35.2 49.3 55.3 55.1 55.8 13.9
ALE [7] 39.7 54.9 58.1 59.9 62.5 9.5
DEVISE [6] 39.8 52.0 56.5 54.2 59.7 11.8
SJE [29] 32.9 53.9 53.7 65.6 61.9 12.1
ESZSL [42] 38.3 53.9 54.5 58.2 58.6 12.3
SYNC [43] 23.9 55.6 56.3 54.0 46.6 13.9
SAE [8] 8.3 33.3 40.3 53.0 54.1 17.8
GFZSL [10] 38.4 49.3 60.6 68.3 63.8 8.9
PSRZSL [44] 38.4 56.0 61.4 - 63.8 7
DEM [11] 35.0 51.7 61.9 68.4 67.1 7.6
TVN [45] 41.3 58.1 60.7 68.8 - 4.3
RNet [30] - 55.6 - 68.2 64.2 5.8
AML [5] 41.6 57.5 58.1 65.3 - 7.4
EXEM [46] - 58 62.9 68.1 64.6 4
MLSE [47] 46.2 64.2 62.8 - 67.8 1.8
AUVS [48] 40.1 52.6 61.7 67.4 - 7.9
PLNPS [4] 42.8 53.2 60.4 67.4 - 7.9

Proposed
43.3 59.1 63.6 72.4 70.7 1.4

Method

weighted method is used to reduce the impact of seen classes (setting α = 0.03 in Eq.
(33)). The value of α in the weighting method is achieved experimentally as a good value
for all datasets.

According to Table 6, the proposed method outperforms the existing approaches
in GZSL problem similar to conventional ZSL experiment. Achieving a superior per-540

formance by both versions compared to the other methods, regarding harmonic mean,
demonstrates the better generalization ability of our method. Although the simple form
of the proposed method is biased towards seen classes to some extent, its overal good per-
formance makes it possible to achieve a considerable balance by the weighting method.
As it can be seen, weighing strategy increases harmonic mean by making a more balanced545

performance among seen and unseen classes that demonstrates the high potential of the
proposed approach.

In terms of the harmonic mean, the proposed weighted method outperforms the
competitors on four out of five datasets by a significant superiority. On CUB, the method
achieves the highest performance jointly with RNet. This remarkable performance results550

in obtaining the best average ranking while the simple proposed approach attains the
second-best place. In terms of average per-class accuracy on unseen classes, the weighted
proposed method surpasses the others on all five datasets, while the simple approach
stands on the second place on aPY, AWA1, and AWA2. On the datasets CUB and SUN,
RNet and AUVS attain the second top ranks, respectively. Regarding the accuracy on555
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Table 6: Generalized zero-shot recognition on aPY, CUB, SUN, AWA1 and AWA2. AccU = average
per-class accuracy of unseen classes, AccS = average per-class accuracy of seen classes and H = harmonic
mean. In case of no available reported results, ‘-’ is used. The best result is made bold and the second
best is underlined.

Method
aPY CUB SUN AWA1 AWA2 H Avg

RankAccU AccS H AccU AccS H AccU AccS H AccU AccS H AccU AccS H
DAP [36] 4.8 78.3 9 1.7 67.9 3.3 4.2 25.1 7.2 0 88.7 0 0 84.7 0 18
CONSE [40] 0 91.2 0 1.6 72.2 3.1 6.8 39.9 11.6 0.4 88.6 0.8 0.5 90.6 1 19.1
SSE [13] 0.2 78.9 0.4 8.5 46.9 14.4 2.1 36.4 4 7 80.5 12.9 8.1 82.5 14.8 16.6
LATEM [41] 0.1 73 0.2 15.2 57.3 24 14.7 28.8 19.5 7.3 71.7 13.3 11.5 77.3 20 14.4
ALE [7] 4.6 73.7 8.7 23.7 62.8 34.4 21.8 33.1 26.3 16.8 76.1 27.5 14 81.8 23.9 9.9
DEVISE [6] 4.9 76.9 9.2 23.8 53 32.8 16.9 27.4 20.9 13.4 68.7 22.4 17.1 74.7 27.8 11
SJE [29] 3.7 55.7 6.9 23.5 59.2 33.6 14.7 30.5 19.8 11.3 74.6 19.6 8 73.9 14.4 13
ESZSL [42] 2.4 70.1 4.6 12.6 63.8 21 11 27.9 15.8 6.6 75.6 12.1 5.9 77.8 11 15.4
SYNC [43] 7.4 66.3 13.3 11.5 70.9 19.8 7.9 43.3 13.4 8.9 87.3 16.2 10 90.5 18 13.6
SAE [8] 0.4 80.9 0.9 7.8 54 13.6 8.8 18 11.8 1.8 77.1 3.5 1.1 82.2 2.2 17.3
GFZSL [10] 0 83.3 0 0 45.7 0 0 39.6 0 1.8 80.3 3.5 2.5 80.1 4.8 19.2
PSRZSL [44] 13.5 51.4 21.4 24.6 54.3 33.9 20.8 37.2 26.7 - - - 20.7 73.8 32.3 8.3
DEM [11] 11.1 75.1 19.4 19.6 57.9 29.2 20.5 34.3 25.6 32.8 84.7 47.3 30.5 86.4 45.1 8.6
TVN [45] 16.1 66.9 25.9 26.5 62.3 37.2 22.2 38.3 28.1 27 67.9 38.6 - - - 6
RNet [30] - - - 38.1 61.4 47 - - - 31.4 91.3 46.7 30 93.4 45.3 3.8
AML [5] 12.6 74.5 21.5 25.7 66.6 37.1 20 38.2 26.3 11.8 89.6 20.8 - - - 8.4
EXEM [46] - - - 28 67.8 39.6 14.6 42 21.6 31.6 88.1 46.5 30.8 89.3 45.8 6.3
MLSE [47] 12.7 74.3 21.7 22.3 71.6 34 20.7 36.4 26.4 - - - 23.8 83.2 37 7.5
AUVS [48] 27.5 70.6 39.6 31.5 40.2 35.3 41.2 26.7 32.4 38.7 74.6 51 - - - 4.8
PLNPS [4] 25.9 79.5 39.1 37.8 58.2 45.9 39.7 38.9 39.3 37 84.7 51.4 25.9 79.5 39.1 3.6
Proposed-

31.2 79.5 44.8 28.4 63 39.2 27.9 43.4 34 45.9 85.6 59.8 45 88.1 59.6 2.8
Simple
Proposed-

37.8 68.8 48.8 49.7 44.6 47 48.6 35.1 40.8 59.2 79.5 67.9 57.7 83.2 68.1 1.1
Weighted

seen classes, the best performance belongs to CONSE on aPY and CUB. On SUN, our
unweighted approach achieves the highest accuracy, and RNet scores the best on AWA1
and AWA2.

According to the results, some methods perform poorly on unseen classes despite the
high accuracy on seen classes due to the overfitting problem. The overall superiority of560

the proposed approaches shows that it has kept the performance on seen classes high as
well as improving the accuracy of unseen classes.

4.2.3. Comparison with GAN-based Methods

The proposed method is not comparable to GAN-based approaches from the perspec-
tive of methodology, architecture, and complexity. However, due to the popularity that565

GANs for ZSL and specially GZSL have gained in recent years, the proposed method
is compared with 6 state-of-the-art GAN-based approaches that have been proposed re-
cently. These methods are f-CLSWGAN (Xian et al. [17]), Cycle-CLSWGAN (Felix et
al. [18]), LisGAN (Li et. al [19]), GDAN (Huang et al. [49]), DASCN (Ni et al. [50]) and
LsrGAN (Vyas et al. [16]). Among these models, GDAN and DASCN have not reported570

any result for ZSL. Thus, those are considered just for GZSL evaluation.
The comparison on ZSL is shown in Table 7. As None of the methods have evaluated

their performance on AWA2 for ZSL task, this dataset has been ignored here. It can
be seen that the proposed method performs better also in comparison with GAN-based
approaches. Obtaining the highest accuracy on aPY, SUN, and AWA1 and scoring the575

second-best performance on CUB leads to achieving the lowest average ranking with a
superiority of 1 compared to LsrGAN as the rival method. This method attains the best
accuracy on CUB.

The GZSL results on the five datasets are reported in Table 8. Despite the simplicity
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Table 7: Comparison with GAN-based methods on zero-shot recognition task evaluated on aPY, CUB,
SUN, and AWA1. In case of no available reported results, ‘-’ is used. The best result is made bold and
the second best is underlined.

Method aPY CUB SUN AWA1
Avg
Rank

f-CLSWGAN [17] 40.5 57.3 60.8 68.2 3.8
Cycle-CLSWGAN [18] - 58.4 60 66.3 4.7
LisGan [19] 43.1 58.8 61.7 70.6 2.5
LsrGAN [16] - 60.3 62.5 66.4 2.3

Proposed Method 43.3 59.1 63.6 72.4 1.3

Table 8: Comparison with GAN-based methods on Generalized zero-shot recognition task evaluated on
aPY, CUB, SUN, AWA1 and AWA2. AccU = average per-class accuracy of unseen classes, AccS =
average per-class accuracy of seen classes and H = harmonic mean. In case of no available reported
results, ‘-’ is used. The best result is made bold and the second best is underlined.

Method
aPY CUB SUN AWA1 AWA2 H Avg

RankAccU AccS H AccU AccS H AccU AccS H AccU AccS H AccU AccS H
f-CLSWGAN [17] 32.9 61.7 42.9 43.7 57.7 49.7 42.6 36.6 39.4 57.9 61.4 59.6 - - - 5.8
Cycle-CLSWGAN [18] - - - 45.7 61 52.3 33.6 49.4 40 56.9 64 60.2 - - - 4.3
LisGan [19] 34.3 68.2 45.7 46.5 57.9 51.6 42.9 37.8 40.2 52.6 76.3 62.3 - - - 3.9
GDAN [49] 30.4 75 43.4 39.3 66.7 49.5 38.1 89.9 53.4 - - - 32.1 67.5 43.5 3.3
DASCN [50] 39.7 59.5 47.6 45.9 59 51.6 42.4 38.5 40.3 59.3 68 63.4 - - - 2.9
LsrGAN [16] - - - 48.1 59.1 53 44.8 37.7 40.9 54.6 74.6 63 - - - 2
Proposed-Weighted 37.8 68.8 48.8 49.7 44.6 47 48.6 35.1 40.8 59.2 79.5 67.9 57.7 83.2 68.1 2.6

and less complexity of the proposed method, its results are comparable to GAN-based580

approaches that mainly focus on GZSL task. According to the results, the best perfor-
mance on aPY, AWA1, and AWA2, in terms of harmonic mean, belongs to the proposed
method which leads to obtaining the second best harmonic mean average ranking, while
LsrGAN obtains the best average ranking. Regarding the average per-class accuracy of
unseen classes, the proposed method attains the highest accuracy on CUB, SUN, and585

AWA2, while the best performance on aPY and AWA1 belongs to DASCN. Moreover, in
terms of average per-class accuracy of seen classes, the highest accuracy is achieved by
GDAN on aPY, CUB and SUN. Our approach scores the best on AWA1 and AWA2.

Although most of the methods have not been evaluated on AWA2, similar properties
with AWA1 result in expecting a trend like the one on AWA1 in which our method590

performed better than the competitors.

4.3. Evaluating Distance Learning

In order to investigate the effect of learned distance function, the performance of the
proposed method is compared with a base method in which the value of M in distance
function is set to identity matrix IDv

. The comparison results on zero-shot and General-595

ized zero-shot recognition are shown in Figs. 2 and 3, respectively. For the GZSL task,
the simple version which does not reduce the weight of seen classes is considered. It can
be seen that the learned distance function improves the model in zero-shot recognition
on all five datasets. This trend also occurs in generalized zero-shot recognition where the
learned distance function causes a remarkable improvement of harmonic mean by raising600

the average per-class accuracy of unseen classes as well as keeping the average per-class
accuracy of seen classes high on all five considered datasets.
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Figure 2: Study of the distance function learning in case of zero-shot recognition. The distance learning
is eliminated in the base method by setting M to identity matrix IDv in the distance function.

Figure 3: Study of the distance function learning in case of generalized zero-shot recognition. The
distance learning is eliminated in the base method by setting M to Identity matrix IDv in the distance
function.

4.4. Parameters Influence

The influence of RBF kernel free parameter γ and the margin m in the final perfor-
mance is analyzed by taking CUB as an example and training the proposed model with605

various settings. The results are illustrated in Figure 4. In case of using RBF kernel, the
hinge loss used in Eq. (28) for an arbitrary instance ~xi with the inconsistent class label
c is formulated as in Eq. (36).[

2 exp
(
−γ||M~xi − ~pc||2

)
− 2 exp

(
−γ||M~xi − ~pyi

||2
)

+m
]
+

(36)
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Figure 4: The influence of RBF kernel free parameter γ and the margin m on average per class accuracy
on CUB dataset.

As it is clear, the internal expression value is bounded with the range [−2 +m, 2 +m].610

Thus, choosing a large m results in an ineffective training procedure. Regarding this
point, m has been chosen from {0.01, 0.05, 0.1, 0.5}. Furthermore, with respect to the
number of features in visual feature space, which is 2048, the numbers

{
1

1024 ,
1

2048 ,
1

4096

}
have been considered for the value of γ to construct several settings for the experiments.

According to Fig. 4, the setting with (γ = 1
1024 ,m = 0.1) obtains the highest accuracy615

among all settings while the least performance belongs to (γ = 1
4096 ,m = 0.5). It is

observed that choosing a very small margin (m = 0.01) in all experiments with various
values of γ results in a degraded performance compared to utilizing higher values of
margin (m = 0.05 and m = 0.1). However, increasing the value of margin remarkably
also reduces the accuracy as it can be seen that setting m to 0.5 results in a significant620

decline in the performance. Although the fixed setting (γ = 1
2048 ,m = 0.05) is used for

the other experiments on all datasets in this paper, achieving higher performance with
some other parameter settings shows that utilizing some validation procedures such as
cross-validation technique for choosing the best setting may enhance the performance of
the proposed distance function, more than the reported results.625

4.5. Visual Prototypes Study

As discussed in Section 3, the proposed distance function does not affect the proto-
types. Thus, choosing appropriate prototypes with discriminative properties, to some
degree, is essential. To illustrate this property for the visual prototypes as mean of the
instances, the instances and their means for seen classes are visualized with t-SNE on630

AWA2 in Fig. 5. Although there are numerous instances that affect the discrimina-
tive property negatively by crossing their approximate class margins, the means of the
classes possess a proper distance to each other, making them suitable prototypes for the
proposed distance function.
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Figure 5: t-SNE visualization of instances and their means as class prototypes on AWA2 seen classes.
The prototypes are illustrated with a black circle.

4.6. Kernel Effect on Learnt Visual Prototypes635

The prototypes of unseen classes are approximated using Kernel Ridge Regression
learned on seen prototypes as described in Section 3. In this subsection, the influence of
using different kernels for Kernel Ridge Regression is examined on the final performance
of ZSL. The results on AWA2 as an example are illustrated in Figure 6. The difference
between the performance of the Quadratic kernel as the best performer and the RBF640

kernel that obtains the second-best is just 0.1%. The lowest accuracy belongs to the
Linear kernel with a 1% difference from the Quadratic kernel. It is observed that the
choice of the kernel for prototype learning is not as significant as choosing the proper
kernel for distance function learning based on the difference in performance of considered
kernels.645

5. Conclusion

In this paper, a non-linear large-margin distance function is proposed for Zero-Shot
Learning, aiming to tune the distance between an instance and the class-related proto-
types. Moreover, a mapping function is learned to construct the visual class prototypes of
unseen classes from semantic information to bring the possibility of utilizing the learned650

distance function for zero-shot and generalized zero-shot recognition tasks. Conducted
experiments on five ZSL benchmark datasets demonstrated that the proposed approach
outperforms state-of-the-art methods in most cases under ZSL and generalized ZSL set-
tings. Considering other metrics in kernel-based distance/similarity learning such as
Cosine, extending the proposed theoretical proof to support other objective functions655

(e.g., Hinge loss), investigating the effect of noise on the proposed approach and extend-
ing the GAN based architectures by the proposed objective function are some tasks that
may be considered in the future.
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Figure 6: The performance of the model in zero-shot recognition on AWA2 using different kernels for
prototype learning.
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