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This paper investigates how often the popular configurations of Differential Evolution gen-
erate solutions outside the feasible domain. Following previous publications in the field,
we argue that what the algorithm does with such solutions and how often this has to hap-
pen is important for the overall performance of the algorithm and interpretation of results.
Based on observations therein, we conclude that significantly more solutions than what is
usually assumed by practitioners need to undergo some sort of ‘correction’ to conform with
the definition of the problem’s search domain. A wide range of popular Differential
Evolution configurations is considered in this study. Conclusions are made regarding the
effect the Differential Evolution components and parameter settings have on the distribu-
tion of proportions of infeasible solutions generated in a series of independent runs. Results
shown in this study suggest strong dependencies between proportions of generated infea-
sible solutions and every aspect mentioned above. Further investigation of the distribution
of proportions of generated infeasible solutions is required.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

Typical optimisation problems used for comparing and benchmarking nonlinear optimisation heuristics are hypercube-
constrained (also known as problems with box constraints), i.e., they are of the form
f : D ¼ �n
i¼1½ai; bi� ! R
where �1 < ai < bi < 1 and D � Rn is called the feasible region in the following. Such box constraints represent the lowest
complexity of arbitrary inequality constraints gjðxÞ 6 0, while they are also omnipresent in most real-world applications
where feasible ranges of variables are typically known or can well be estimated. Consequently, any optimisation algorithm,
including nonlinear optimisation heuristics, should be able to deal with such constraints by means of a constraint handling
method. Such a method deals with infeasible solution (IS) candidates x R D by means of a suitable approach, involving con-
cepts such as, e.g., ignoring or repairing them.

In nonlinear optimisation heuristics inspired by nature, the infeasible components of a solution are generated by the
mutation operator, which is expected to help explore regions of the search space outside the scope of the crossover operator
and then converge towards solution candidates for which f is minimised or maximised. Intuitively, this search process is dis-
rupted and thus lacks the ability to adapt itself to the properties of the objective function fwhen it generates many infeasible
solutions during the course of the search.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2021.09.058&domain=pdf
https://doi.org/10.1016/j.ins.2021.09.058
mailto:fabio.caraffini@dmu.ac.uk
https://doi.org/10.1016/j.ins.2021.09.058
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins
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In this paper, we present an empirical investigation of the proportion of infeasible solutions generated for various variants
and parameter settings of Differential Evolution. The algorithm variants under consideration are introduced in Section 2
while the adopted methods of dealing with generated infeasible solutions, as well as the experimental setup, are introduced
in Section 3. The results are discussed in Section 4 and conclusions are drawn in Section 5.

2. Differential evolution

Originally intended for a simple fitting problem [36,31], Differential Evolution (DE) has soon become an established meta-
heuristic method for general-purpose real-valued optimisation, finding its place among other optimisation methods for real-
world applications in engineering, robotics and other fields [35,30,41]. Besides the effectiveness of the DE optimisation
framework, its success is attributed to the simplicity of its algorithmic structure. As can be seen from the pseudocode in
Algorithm 1, it requires tuning only three parameters: the population size N (i.e., number of candidate solutions), the scaling
factor F (i.e., a prefixed scalar multiplier in the range ð0;2� involved in the mutation process) and the crossover rate Cr (i.e., a
fixed probability value in [0,1] used to control the number of exchanged design variables between two candidate solutions).

Algorithm 1: Differential Evolution
In contrast to Evolutionary Algorithms (EA), DE is characterised by the following two significant differences:

� The parent and survivor selection mechanisms are simplified – both are replaced by the so-called ‘1-to-1 spawning’ logic,
typical of swarm intelligence algorithms, where one solution leads to the production of one other which might replace it.

� The mutation operator precedes the application of the crossover operator – hence, the latter might select some previously
generated infeasible components and transfer them to the newly generated candidate solution, thus playing a role in its
infeasibility.

Hence, during the gth generation of DE, each individual xt - referred to as ‘target vector’ in this context [31] - is selected one at
a time from the population Pg (i.e. xt ¼ Pg ½i�with i ¼ 1;2;3; . . . ;N) to be mated with a previously prepared ‘mutant vector’ xm

and produce a new ‘offspring’ solution xo. The latter, gets the place of its parent xt in the next population only if it displays a
better objective function value, thus following a greedy logic. This is not common in EAs, where more than one individual
(usually two, but multi-parent crossovers also exist [28]) must be selected to generate at least one offspring vector.

To fully describe a DE algorithm, the notation DE/x/y/z is typically used, where z indicates the abbreviation of the cross-
over operator name, while x/y defines, respectively, how a candidate solution is selected for mutation and on how many dif-
ferences between individuals randomly taken from the population (referred to as ‘difference vectors’) it is based. Different
mutation operator require a different number of individuals randomly picked from the population to function. In established
mutations [18], such number goes from aminimum of 2 individuals, when only 1 difference vector is employed (i.e. y ¼ 1), to
a maximum of 5, when one individual plus two difference vectors are employed (i.e. y ¼ 2). We indicate these distinct
588
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individuals, i.e. the same solution cannot be selected twice to avoid a having a null difference vector, with the notation xrj ,

where the index rj refer to the jth selected solution with j 2 f1;2;3;4;5g. Amongst the most popular x/y combinations the
following are worth mentioning:

- rand/1:
xm ¼ xr1 þ F xr2 � xr3

� � ð1Þ

- rand/2:
xm ¼ xr1 þ F xr2 � xr3

� �þ F xr4 � xr5

� � ð2Þ

- best/1:
xm ¼ xbest þ F xr1 � xr2

� � ð3Þ

- current-to-best/1:
xm ¼ xt þ F xbest � xð Þ þ F xr1 � xr2

� � ð4Þ

However, many more variants exist in the literature [33,18,16,32,37]. These include also more advanced self-adaptive DE
algorithms, where mechanisms for adjusting the control parameters [3,34] and the population size [4,38] on-the-fly have
been embedded within the classic DE framework. However, the latter are not in the focus of this study, as we are interested
in discovering relations between parameters setting and corresponding algorithmic behaviour. Moreover, given that more
complex DE algorithms make use of multiple classic variation operators (or their minor modifications) and complex mech-
anisms for their coordination, we believe that it is beneficial to use ‘bottom up’ analysis and first put a stronger emphases on
established mutation and crossover operators.

It must be mentioned that what is referred to as ‘mutation’ in the DE framework, i.e., a linear combination of individuals,
is called ‘arithmetic crossover’ in the Genetic Algorithm (GA) [19]. Therefore, the whole variety of crossover methods for real-
valued GAs has not ‘migrated’ to the DE world. Meanwhile, in DE, crossover is only meant for exchanging design variable
between solutions and only two consolidated strategies, namely the binomial crossover (indicated with bin) and the expo-
nential crossover (indicated with exp), are commonly used. Their descriptions are given in Algorithms 1 and 2, respectively.

Algorithm 2: Binomial crossover
Algorithm 3: Exponential crossover
589
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2.1. DE parameters

The behaviour of all DE configurations is known to depend strongly on its control parameters N; F and Cr [44,27,45,12].
However, their individual contribution is clear as summarised in Section 2.1.1. Experimental setup of this paper is presented
in Section 2.1.2.
2.1.1. Meaning of parameters
Control parameters of DE have a clear role if considered individually:

[-] The N parameter defines the number of individuals in the population (i.e., population size). Intuitively, a large popu-
lation size means a high diversity and therefore a better exploration of the search space. This is partially confirmed in
terms of population diversity [45] and convergence rate [40], but does not necessarily result in a better performance.
Indeed, in large-scale domains, ‘micro’-populations of about 5 individuals have proven to be effective and not to suffer
from premature convergence [14]. Furthermore, in [4] a DE variant reducing its population size during the optimisa-
tion process is proposed to reduce stagnation. It must be highlighted that too high values of N are also to be avoided as
they are impractical for the large-scale problems and deleterious for the convergence process, at the expense of an
adequate exploitation phase to refine promising solutions locally.

[-] The F parameter is introduced to control the length of the difference vectors in the mutation process, which is respon-
sible for moving/perturbing a candidate solution. Despite its original conception as a scaling factor, nowadays it com-
monly assumes values smaller than 1, thus shrinking the exploitative step of the mutation operator. Ideally, this is
supposed to shrink the exploratory radius to generate feasible solutions: higher values of F lead to a longer step taken
within the domain. However, we argue this a simplistic vision of the role played by F as the perturbation of a candidate
solution also depends on the magnitude of the difference vector, since it a dynamic quantity which is expected to
become very small as the algorithm converges [40].

[-] The Cr parameter controls the number of design variables inherited from the mutant by fixing a probability to be used
as a threshold (i.e., Cr 2 ½0;1�).

However, there are studies pointing out a correlation amongst parameters [43,45] which suggest that when practitioners
tune them, with the aim of improving performance on a specific real-world scenario [39], they should consider the effect
of their mutual interaction rather than thinking of N; F and Cr as three independent factors. This is particularly true for
the control parameters F and Cr [27], but also methods for adjusting N can make the difference [26,6,4,5].
2.1.2. Parameter values used in this study
All DE configurations mentioned in the previous sections are considered in this study with the following values of

parameters:

[-] population size N 2 f5;20;100g;
[-] scaling factor F 2 f0:05;0:266;0:483;0:7;0:916;1:133;1:350;1:566;1:783;2:0g, i.e. uniformly spaced in ð0;2�. Thus,

originally suggested range [24] of values of F is tabulated here.
[-] crossover rate Cr 2 f0:05; 0:285;0:52;0:755;0:99g, i.e., uniformly spaced in ½0;1�.

3. Outside the box

In this section, we introduce the considered approaches for dealing with infeasible solutions produced during the run
(Section 3.1), discuss the proposed approach and its relevance (Sections 3.2 and 3.3), our approach towards measurement
and visualisation of the effect (Section 3.4), and the experimental setup (Section 3.5).
3.1. How to deal with infeasible solutions

It is virtually inevitable that throughout a run of a heuristic optimisation algorithms, some generated solutions are infea-
sible. Thus, a well-designed optimisation algorithm should specify what should be done with such solutions. The literature
reports on numerous strategies of how to deal with infeasible solutions for metaheuristic optimisation [15,2]. For DE, the
most used strategies are based on average, re-initialisation or re-sampling methods [45], penalty functions [27,12] and
others as e.g. saturation and toroidal transformations [12]. It is worth to point out that, as a consequence of the 1-to-1
spawning replacement logic, penalty strategies lead to always discard the penalised individual in favour of keeping the target
vector [12]. In this light, penalty-based strategies were not included in our experimental setup; instead we consider only a
‘dismiss’ strategy which produces identical results. The latter is the only strategy employed in this study that replaces all
components of an infeasible solution, i.e. both infeasible and feasible ones, whereas with the remaining strategies under con-
sideration only infeasible dimensions get modified as feasible ones are neutral elements of such operators.
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More formally, assuming x½i� is the component of the newly generated solution in the ith dimension, ai and bi are the cor-

responding lower and upper boundaries of the domain in the ith dimension and xf ½i� is the new feasible value of the compo-
nent, the employed strategies of dealing with infeasible solutions are formally described in the following sections. All of
them implement the ‘Feasibility_Check’ method of Algorithm 1.

3.1.1. Saturation strategy
This strategy places those design variables exceeding their corresponding boundaries to the closest amongst their upper

and the lower bound [12,10]. Mathematically, for each x½i� (i ¼ 1;2;3; . . . ;n), this operator applies the mapping s : R ! a; b½ �
defined as
sðx½i�Þ ¼
ai if x½i� < ai
bi if x½i� > bi

x½i� otherwise

8><
>: ð5Þ
so returning feasible solutions by simply looping xf ½i� ¼ sðx½i�Þ across each component. Fig. 1(a) graphically depicts this linear
transformation. Variants of algorithms with this strategy are marked as ‘sat’ in Figs. 5–8.

3.1.2. Toroidal strategy
This strategy consists in reflecting only those values of coordinates that are outside the domain off the opposite domain

boundary inwards – as if the boundaries are connected and the domain forms a ring [12,10]. In a Cartesian system, this trans-
formation is depicted with the graph in Fig. 1(b). Operationally, this strategy implements the assignment xf ½i� ¼ t x½i�ð Þ
(8i ¼ 1;2;3; . . . ;N) where the analytical expression of the function t : R ! a; b½ � is expressed as follows
t x½i�ð Þ ¼

ai þ 1� x½i��ai
bi�ai

� x½i��ai
bi�ai

j k��� ���� �
� ðbi � aiÞ if x½i� < ai

ai þ x½i��ai
bi�ai

� x½i��ai
bi�ai

j k� �
� ðbi � aiÞ if x½i� > bi

x½i� otherwise

8>>>>>><
>>>>>>:

ð6Þ
in which b. . .c represents the floor operator. Variants of algorithms with this strategy are marked as ‘tor’ in Figs. 5–8.

3.1.3. Mirror correction strategy
This strategy moves only those values of coordinates that are outside the domain by reflecting the infeasible value off the

closest boundary inwards the domain [12] - as shown in Fig. 1(c). Let r : R ! R be the ‘reflection’ defined as
r x½i�ð Þ ¼
ai þ ai � x½i�ð Þ if x½i� < ai
bi � x½i� � bið Þ if x½i� > bi

x½i� otherwise

8><
>: ; ð7Þ
then the mirroring operator can be written in the form of a recursive function m : R ! ½ai; bi� defined as
m x½i�ð Þ ¼
x½i� if ai 6 x½i� 6 bi

m r x½i�ð Þð Þ otherwise

8><
>: : ð8Þ
If this strategy is employed, the ‘Feasibility_Check’ method of Algorithm 1 is simply implemented with a loop performing the
assignment xf ½i� ¼ m x½i�ð Þ; 8i 2 1;2;3; . . . ;nf g. Variants of algorithms with this strategy are marked as ‘mirr’ in Figs. 5–8.

3.1.4. Complete One-tailed normal correction strategy (COTN)
This is a probabilistic strategy that iteratively re-samples (until the point gets inside the domain) infeasible dimensions

‘nearby‘ the violated bound by means of a one-tailed normal distribution with purposely small standard deviation, i.e.

Nð0; bi�ai
3 Þ

��� ��� [12], as formally indicated below
n x½i�ð Þ ¼

ai þ Nð0; bi�ai
3 Þ

��� ��� if x½i� < ai

bi � Nð0; bi�ai
3 Þ

��� ��� if x½i� > bi

x½i� otherwise

8>>>>>><
>>>>>>:

: ð9Þ
Normally distributed values are to be resampled independently for each x½i�, their densities are shown in Fig. 1(d). Hence,
COTN is mathematically formulated as a recursive function c : R ! ½ai; bi� defined as
591
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c x½i�ð Þ ¼ x½i� ifai 6 x½i� 6 bi

c n x½i�ð Þð Þ otherwise

�
: ð10Þ
If this strategy is employed, the ‘Feasibility_Check’ method of Algorithm 1 is simply implemented with a loop performing the
assignment xf ½i� ¼ c x½i�ð Þ; 8i 2 1;2;3; . . . ;nf g. Variants of algorithms with this strategy are marked as ‘COTN’ in Figs. 5–8.
3.1.5. Dismiss strategy

As the name suggests, this is a ‘greedy’ strategy which scans through each ith component of a solution x and, as soon as
one infeasible x½i� is detected, discards x to the previous feasible position [12].

In DE, this means that an infeasible offspring xo gets replaced by its target vector xt . This is fully described with xf ¼ d xð Þ
where d : Rn ! Rn is defined as
d xð Þ ¼ x if x 2 D
xt if x R D

�
: ð11Þ
As mentioned above, this is the only strategy modifies all components of an infeasible solution and not just its infeasible
components. Variants of algorithms with this strategy are marked as ‘dism’ in Figs. 5–8.
3.2. Keeping track of the number of infeasible solutions

As discussed in the previous section, ISs almost inevitably get generated during the runs of heuristic optimisation meth-
ods. Generating excessive number of such solutions is clearly undesirable as it wastes computational budget. Moreover, gen-
erating IS is an indication that algorithm’s operators do not fully adapt to the optimisation problem. Furthermore, a high
number of ISs potentially disrupts the search: depending on how such solutions are treated, the search might be e.g. misled
by artificial function values in the case of penalty-based strategies or by changing the direction of search, for mirror and
COTN strategies, or slowed down, as in the case of saturation strategy. Heuristically, toroidal strategy appears to be the most
advantageous as it keeps the direction of search and does not slow down the search. However, clearly, it is not suitable for all
types of problems.
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At the same time, not generating any infeasible solutions is ‘suspicious’: is the algorithm exploring the areas close to the
boundaries to a sufficient degree? Generating a relatively low number of such solutions potentially allows the algorithm to
‘learn’ the boundaries. Preferably, this should happen without over-exploring this area.

Another aspect that ‘comes into play’ here is problem’s dimensionality. Trivially, a solution is infeasible if it has a coor-
dinate in at least one dimension that is outside of its respective boundaries. Thus, the number of infeasible solutions is
expected to grow exponentially with the dimensionality of the problem.

Simplifying the real situation, let n be the problem’s dimensionality and p 2 ½0;1� – the probability with which solutions
become infeasible in exactly one dimension (constant in time and across the domain). Then, ignoring dependencies between
the dimensions, f ðp;nÞ ¼ 1� ð1� pÞn is the probability that a solution is infeasible in at least one dimension. To help visu-
alise this expression Fig. 2 shows intervals (the vertical axis) for which f ðp;nÞ stays below the values shown in the horizontal
axis. Clearly, only extremely low values of p lead to relatively low values of f ðp;nÞ – in dimensionality 500, to have the prob-
ability of generating an IS below 0:01, the probability of becoming infeasible in one dimension has to be below 0:0000201.

This figure serves as a justification for the following: the choice of algorithm’s strategy of dealing with generated ISs is of
paramount importance for highly multidimensional problems as there it is extremely easy to generate an IS. The latter observa-
tion also suggests that poor scalability of some general-purpose algorithms might be related to excessive production of ISs
which, if not dealt with in an informed way, may mislead the search in such vast search spaces [13].

This, however, does not mean that in lower-dimensional cases ISs can be neglected without expecting deleterious con-
sequences on the behaviour of the algorithm. To formally quantify their occurrence and the corresponding effect, let us
assume any algorithm used in this study is a black box. The only observable information is the number of solutions the algo-
rithm has generated outside the domain throughout a run with fixed budget – in this paper, such budget is expressed by the
number of fitness evaluations, 104nwhere n ¼ 30 is the dimensionality of the problem. A fundamental research question then
is, whether such limited information is sufficient to make any meaningful conclusions regarding the overall behaviour of the
algorithm.

To answer this question, consider results on some objective function for two different algorithms: one always generating
solutions outside the domain and one always generating an extremely low number of infeasible solutions. Two explanations
for this are possible:

[-] This happens due to the landscape: due to particular ‘features’ of the landscape of the objective function, e.g., presence
of good solutions close to the boundaries of domain, solutions tend to be generated outside the domain, i.e., to be
infeasible;
Fig. 2. If p 2 ½0;1� is the probability for a solution to become infeasible in exactly one dimension and n is the problem dimensionality, then the probability
that solution is infeasible in at least one dimension is, trivially, a function of p and n; f ðp;nÞ ¼ 1� ð1� pÞn . Values shown in this figure come from solving for
p the inequality 1� ð1� pÞn 6 t for given n. Values of t are shown on the horizontal axis and values of pmax obtained from solving the inequality are shown
on the vertical axis. Shaded areas represent values of p 2 ½0; pmax � for which the inequality holds, for four values of n. This figure is based on [12].
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[-] This happens due to the algorithm: due to particular ‘moves’ prevalent in the algorithm, e.g., a too aggressive generat-
ing operator, newly generated solutions tend to be infeasible.

Clearly, in case of a general objective function, both aspects above are present. But what if one could use an objective
function where absence of correlations between the ‘geographical’ location of the solution and the corresponding functional
value is guaranteed? If results of the experiment above are replicated on such ‘special’ function, the only possible explanation
of the phenomenon above is the algorithm itself.
3.3. State of the art in using f 0 for benchmarking

A fully stochastic objective function
Fig. 3.
discuss
three –
shows a
show c
parts o
bottom
histogr
f 0 : ½0;1�30 ! ½0;1�;8xf0ðxÞ � Uð0;1Þ ð12Þ
has been recently investigated for a different purpose – searching for the so-called ‘structural bias’ of algorithms [23,10,11].
The randomness in assigning objective function values to the points allows decoupling interaction between the objective
function and the algorithm.

The use of function f 0 in [12,22,21] as a test for identifying deficiencies in algorithms according to alternative performance
measure highlights the assertion that algorithmic design is in fact a multiobjective problem – good algorithms are not only sup-
posed to find good points but also find them regardless of their position in the domain. Clearly, different objectives in design-
ing algorithms can be conflicting and it is important not to confuse them. Testing with f 0 is not intended as the only
performance test. Such tests constitute only a partial, yet important characterisation of the algorithm.

The validity of the approach described above is further confirmed by results of this paper obtained on such experimental
setup with f 0– outlined in Section 3.5. Here, we study proportions of infeasible solutions (POIS) generated in a series of inde-
pendent budgeted runs, for a wide selection of DE configurations running on f 0. At the end of every run, the number of gen-
erated infeasible solutions is divided by the total fitness evaluation budget, thus giving a POIS. For each algorithm
configuration, an empirical distribution of POIS (EDPOIS) is considered over a series of independent runs.
Graphical explanation of bins, axes ranges and captions omitted for readability from Figs. 5–8. Details relevant for different layers of information
ed in Section 3.4.1 are shown here in their corresponding colours: layer one – lines and labels in , layer two – lines and labels in , layer
lines, labels and bins in , or . Axes on the left and below apply to all 4 small subfigures with histograms. Bottom left histogram
case where 50 POIS values fall in different bins - number of points in each bin is shown in black on the horizontal axis below. Other 3 histograms

ases where all 50 POIS values fall in one top ð0:9;1:0� bin only. For such cases, the colour of the bins allows distinguishing cases where only extreme
f this ð0:9;1:0� bin are taken – see explanation in the figure on the right in , and . Histograms where all POIS values fall in the
½0;0:1� bin only are not shown here – explanation for them is identical to the explanation for to top left, top right and bottom right cases, where
ams are made up of one top bin only. See further explanation about layers one and two in Fig. 4.
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Fig. 4. Decoupling information layers one and two from Figs. 3,4,5,3,4,5,6,7,8. This three-dimensional sketch shown here in perspective illustrates the fact
that Figs. 5–8 should be considered as an attempt to draw a three-dimensional figure with projections in two dimensions: individual histograms should be
placed on the page in the points marked by the circles in a perpendicular fashion. In this sketch, (Cr ; F) values and histogram bars do not represent real
values and are not shown to scale.
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3.4. Empirical distributions of POIS

To the best of our knowledge, empirical distributions of proportions of infeasible solutions have never been studied in this
field. However, they provide a lot of information, as shown in the subsequent sections. Thus, here, we consider different com-
binations of DE control parameters and study the resulting EDPOISs.

3.4.1. How to read EDPOIS Figs. 5–8
The setup outlined in the previous sections results in the need for rather complicated figures that require detailed

explanation.
In Figs. 5–8, each DE configuration is shown in a separate subfigure, for each of the three values of population size con-

sidered – see configuration name and N in captions of subfigures. Furthermore, each configuration is considered for a selec-
tion of the parameters F and Cr – with values listed in Section 2.1.2. Thus, EDPOIS for each pair of (F;Cr)-values are shown in a
small subfigure (small rectangles, each containing one histogram) within the larger subfigures per DE configurations. Each of
these small subfigures is associated with the (F;Cr) pair – small subfigures are in fact placed ‘on the grid’ of (F; Cr) values and
neighbouring small subfigures have close (F;Cr) values. Thus, empirical distributions of proportions of infeasible solutions
shown in Figs. 5–8 should be read as follows. Each smaller subfigure carries three layers of information regarding one DE con-
figuration considered with one pair of values of (F;Cr):

1. The first layer of information in small subfigures, made up of horizontal bars or bins (in other words, this layer is made up
of a simple histogram with 10 bins), represents the empirical distribution of proportions of infeasible solutions in a series
of runs of this configuration for a pair of (F;Cr)-values1. In these smaller subfigures, proportions of ISs accumulated by the
end of each run in a series of runs are shown on the y-axis; this axis has a fixed range of ½0;1� and points upwards. While the
number of runs is reported on the x-axis; this axis points to the right and has a range of ½0;m�, wherem is the number of runs
in a series, m ¼ 50 here. Thus, the origin of the axes for this layer lies in the lower left corner. Additional explanation of this
layer can be found in Fig. 4.

2. The second layer of information in small subfigures, shown in , indicates values of parameters F and Cr that have been
used for this particular histogram. Also for this layer, the y-axis points upwards and the x-axis to the right, but they report
values for F and Cr , respectively. Following Section 2.1.1, the ranges for F and Cr are fixed at ð0;2� and ½0;1�, respectively.
Thus, also for this layer, the origin lies in the lower left corner. Additional explanation of this layer can be found in Fig. 4.

3. The third layer of information in small subfigures is shown with the colour of histogram bins. Varying bins colour allows
distinguishing distributions with exclusively ‘extreme’ values of POIS that cannot be otherwise distinguished from the case
when all POIS values fall in one bottom or top bin only:
[-] Bins marked in identify distributions where POIS values from all runs in a series fall exclusively within a range of

½0;0:001� or ½0:999;1:0�, depending on whether only a bottom or top bin, respectively, is present.
1 Meaning of colours of the bars in the histogram is explained in point 3 of this list.
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Fig. 5. EDPOIS generated in a series of runs. Figure is explained in Section 3.4.1.

A.V. Kononova, F. Caraffini and T. Bäck Information Sciences 581 (2021) 587–604
[-] Bins marked in identify distributions where all runs in a series have resulted in POIS values only within a range
of ½0:001;0:01� or ½0:99;0:999�, depending on whether only a bottom or top bin, respectively, is present.
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Fig. 6. EDPOIS generated in a series of runs. Figure is explained in Section 3.4.1.

A.V. Kononova, F. Caraffini and T. Bäck Information Sciences 581 (2021) 587–604
[-] Bins marked in indicate all remaining distributions, including normal cases when POIS values fall in one or more
histogram bins and a case when all POIS values fall in one bin but have values exclusively within ½0:01; 0:1� or
½0:9;0:99�, depending on whether only a bottom or top bin, respectively, is present.
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Fig. 7. EDPOIS generated in a series of runs. Figure is explained in Section 3.4.1.

A.V. Kononova, F. Caraffini and T. Bäck Information Sciences 581 (2021) 587–604

598



Fig. 8. EDPOIS generated in a series of runs. Figure is explained in Section 3.4.1.

A.V. Kononova, F. Caraffini and T. Bäck Information Sciences 581 (2021) 587–604

599



A.V. Kononova, F. Caraffini and T. Bäck Information Sciences 581 (2021) 587–604
Axes ranges and captions are kept fixed and, thus, omitted from Figs. 5–8 for readability; all these ranges and captions,
together with the summary of information per layer can be found in Fig. 3. To sum up, Figs. 5–8 should be considered as
an attempt to draw a three-dimensional figure with projections in two dimensions: distributions shown in / /
in each small subfigure should be placed on the page in the points marked by the circles in a perpendicular fashion,
towards the reader – see Fig. 4.

3.5. Experimental setup

Results for this study have been produced by the SOS software platform [9] whose source code is freely available in [8] for
reproducibility. Experimental setup based on the direct product of options for the following DE operators/parameters has
been considered in this paper:

[-] Crossover operator: binomial, exponential.
[-] Mutation operator: DE/best/1, DE/current-to-best/1, DE/rand/1, DE/rand/2.
[-] Operator defining strategies of dealing with IS: COTN, dismiss, mirror, saturation, toroidal.
[-] Settings for parameters N; F and Cr as discussed in Section 2.1.2.

Each of the resulting 6000 configurations2 has been run 50 times minimising the fully random objective function

f 0 : ½0;1�30 ! ½0;1� where 8x f 0ðxÞ � Uð0;1Þ. Each run has been allocated a budget of 3 � 105 fitness evaluations, following the
general practice in the field of 10000� n where n is problem dimensionality [25,17].

4. Discussion of results

To keep the length of this manuscript reasonable, only few results are shown in this section in Figs. 5–8; results for all
1203 considered DE configurations can be found in [11]. Comparisons can be made according to several aspects.

4.1. Comparison of EDPOIS

In this section, the results are discussed with respect to the observed impact of the single factors population size (Sec-
tion 4.1.1), mutation and crossover variants (Sections 4.1.2 and 4.1.3), and strategy for handling infeasible solutions
(Section 4.1.4).

4.1.1. Comparison across population sizes
DE configurations considered in this study clearly exhibit a different behaviour in terms of POIS depending on the pop-

ulation size. Shapes of EDPOIS from the smallest population size N ¼ 5 considered are the most diverse across all configu-
rations. When comparing N ¼ 5 to N ¼ 20, all DE configurations consistently show an increase in POIS. Population size of
N ¼ 20, which is typically considered small in DE [29,7], leads to the large portion of configurations producing 100% infea-
sible solutions in all runs in a series for only slightly more aggressive values of control parameters. EDPOIS for N ¼ 20 results
in smaller variance compared to N ¼ 5. Moving from N ¼ 20 to N ¼ 100, even more configurations result in 100% infeasible
solutions – barely any configurations have not generated POIS different from 0% or 100%. Fig. 5 shows typical EDPOIS when
moving from N ¼ 5 to N ¼ 20 and N ¼ 100 in the same DE configuration. It should be mentioned that there is a small number
of configurations whose EDPOIS do not exhibit any noticeable change when comparing N ¼ 5 to N ¼ 20 and N ¼ 100 (e.g.,
DE/current-to-best/exp dismiss).

Thus, the choice of population size does not appear to be the only factor in describing the variability among EDPOIS.

4.1.2. Comparison across mutation variants
Fig. 6 shows typical differences in EDPOIS for configurations identical in everything but their mutation operator. It is clear

that a change in mutation operator leads to very minor differences in POIS when all other parameters are kept unchanged.
More specifically, such change does not influence the general trend in POIS but rather changes the standard deviation of
EDPOIS; much stronger differences are observed for the maximum value of Cr . Such behaviour is replicated across all con-
figurations also when crossover is factored in.

Thus, the choice of mutation can be excluded from the factors describing the variability among EDPOIS.

4.1.3. Comparison across crossover variants
When comparing EDPOIS for groups of configurations identical in everything but their crossover operator, it becomes evi-

dent that these are two different groups of algorithms. Despite the fact that DE crossover operators are by design unable to
produce unfeasible solutions from two feasible inputs, the cascade process resulting from the use of a mutation operator,
which is responsible for generating ISs, followed by bin or exp crossover algorithms can lead to significantly different POIS.
2 2 crossovers � 4 mutations � 5 strategies � 5 Cr settings � 10 F settings � 3 N settings = 6000
3 2 crossovers � 4 mutations � 5 strategies � 3 N settings = 120
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Generally, with the proposed experimental setup, exp crossover variant seems to result in smaller POIS. Fig. 7 shows two
typical examples of differences in EDPOIS induced by choice of crossover operator.

Thus, the choice of crossover does not appear to be the only factor in describing the variability among EDPOIS. Further discus-
sions regarding differences in crossover variants follow in Section 4.2.3.

4.1.4. Comparison across strategies
The general pattern appears to be the same for all of the strategies for handling infeasible solutions (COTN, dismiss, mir-

ror, saturation, toroidal): for exponential crossover, range of generated POIS narrows down, meanwhile POIS values increase
both with increasing values of F and Cr , while this trend depends mainly on F for binomial crossover.

In both cases, for population sizes 20 and 100; F values of 0:7 and higher rapidly shift the EDPOIS towards the ½0:9;1:0�-
range, either independently on Cr for binomial crossover or as Cr approaches its maximum for exponential crossover. Such
behaviour is observed independently of the feasibility handling strategy, but for COTN and saturation it is slightly less pro-
nounced as F (and Cr) are increasing. For N ¼ 5 and higher values of Cr , the saturation strategy generally shows a wider
spread of the EDPOIS, especially when Cr ¼ 0:99. The mirroring, toroidal and dismiss strategies generally show an indistin-
guishable behaviour in terms of EDPOIS. Overall, we can conclude that COTN, saturation and mirroring, toroidal, dismiss
form two different groups, with the first one resulting in a slightly slower shift of the EDPOIS towards the ½0:9;1:0�-range
as F and Cr increase. Fig. 8 shows configurations for N ¼ 5, exponential crossover and COTN, mirroring, and saturation.
For N ¼ 5, the effects are mostly depending on F, less on Cr , except for saturation with Cr ¼ 0:99. For larger population sizes,
the distributions are quite narrow (see e.g., N ¼ 100 in Fig. 5), and the choice of the strategy for dealing with infeasible solutions
is clearly not the dominating factor in describing the variability among EDPOIS.

4.2. Additional observations

Additional observations are discussed in this section regarding the control parameter settings (Section 4.2.1) and specif-
ically F (Section 4.2.2), the difference in DE algorithms caused by the crossover operators (Section 4.2.3), the maximum Cr

value (Section 4.2.4), the interaction between parameters (Section 4.2.5) and the number of infeasible solutions are gener-
ated (Section 4.2.6).

4.2.1. Overall observations regarding parameter settings
For all DE configurations, POIS grows with the increase of control parameter values – both independently and simulta-

neously. Minimal values of control parameters induce very low POIS for all considered configurations. Increase in POIS with
the increase in Cr is faster than with the increase in F. At the same time, increase in POIS for smaller population size is slower;
meanwhile for many configurations with higher population size POIS values of either 0% or 100% prevail. This makes it prob-
lematic explaining how such populations manage to maintain higher diversity – a fact suggested by the theoretical analysis
of DE [29]. Furthermore, the increase in POIS is not monotonous in some cases, see Section 4.2.4.

We conclude that connections between POIS and setting of DE control parameters is complex and requires further investigation.

4.2.2. Further discussion on the meaning of control parameter F
As mentioned in Section 2.1.1, parameter F has been originally thought to be within ð0;2�. However, in practice only val-

ues within ð0;1� have been used widely in practice by the community. Results presented in this paper confirm the validity of
such empirical modification since for majority of configurations high settings for F easily lead to 100% infeasible solutions gen-
erated during the run. This has potential to unnecessarily and prematurely decrease population diversity and leads to wors-
ening of the algorithm’s performance.

Thus, setting F 2 ð1;2� is indeed rarely justified unless it is used in conjunction with other components inducing lower POIS such
as very small population size, exp mutation or, sometimes, the maximum value of Cr. All of those, however, also come at a price
for the overall performance of the algorithm.

4.2.3. Exp and bin lead to two very different DE algorithms
Further theoretical inspection of control parameter Cr shows that its meaning depends on the specific crossover logic

used. Algorithm 2 is based on a binomial distribution according to which each design variable has probability of being
exchanged exactly equal to Cr . This means that the expected value of exchanged variables during the crossover process is
Cr . Conversely, if Algorithm 3 is employed, a sequence of m < n consecutive design variables has a probability to get
exchanged which decreases exponentially (i.e. ðCrÞm according to a geometric distribution). Hence, in this case, the crossover
rate does not reflect the expected number of swaps. To tune Cr to reflect a required number of exchanges one can use the
method in [20].

Therefore, results presented in this paper about exp resulting in smaller POIS are perfectly in line with the discussion above.

4.2.4. ‘Collapse’ of some EDPOIS for the maximum value of Cr

An interesting phenomenon is observed for a number of configurations (e.g., Fig. 8c) where POIS slowly increases with the
increase of Cr value, for constant value of F, at times even ‘saturating’ in 100%, only to significantly drop down unexpectedly
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later. Such ‘collapse’ happens only for the maximum Cr but consistently for different population sizes, mutation variants and
strategies. As explained in Section 4.2.3, Cr controls the proportion of values inherited from the mutant vector. Thus, a naive
explanation of the ‘collapse’ phenomena can be that mutant vectors are less prone to be infeasible than vectors after the
crossover.

This observation clearly requires further investigation.
4.2.5. Nontrivial factor analysis
No single factor can be identified for describing the variability among all EDPOIS considered. Higher order factor analysis

is required as considered configurations exhibit significant complex dependencies.
4.2.6. Too many infeasible solutions
In the setup described in this paper, significantly more ISs get generated throughout optimisation runs than what might be

expected. For our experiments here, we have selected standard DE configurations and followed widely accepted recommen-
dations by the DE community for setting control parameters [42]. And yet still, for this relatively low dimensional problem,
nearly every DE configuration ends up having 100% points generated as infeasible for every single run in a of series of 50 runs. The
same observation holds true even if we exclude the runs with F 2 ½1;2�which, over the years since DE has been proposed, has
been excluded by collective intelligence of the community.

Objective function f 0 considered in this paper is indeed extremely difficult to be ‘optimised’ and this might be the reason
for such a high number of ISs. In our opinion, POIS discussed here should serve as upper bounds for POIS generated for regular
objective functions that are necessarily smoother than f 0.

Another reason for high POIS in results in this paper is the dimensionality. Researchers in computational intelligence and
related fields routinely claim that, by modern standards, a 30-dimensional problem is in fact low dimensional [29]. However,
mathematically speaking, it is not as it does present symptoms of the well-known ‘curse of dimensionality’ [1].
5. Conclusions and future work

This piece of research sheds light on the effect of different operators and parameters on the tendency of DE to generate
infeasible solutions during optimisation runs rather than being exclusively contained within the domain boundaries. By
doing this, we draw attention to an often overlooked aspect of DE’s algorithmic behaviour. Indeed, our experimental
methodology puts in evidence that many more solutions than what is generally expected are generated outside the ‘box’
within a single optimisation run. Studying the distribution of the proportions of infeasible solutions has led us to confirm
some ‘rule of thumb’ for DE and its parameter settings, but also to observe several non-trivial facts about DE - as reported
below:

[-] Judging by our careful inspection of literature, researchers and practitioners are rarely aware of the high number of the
ISs that get generated in various widely used DE configurations.

[-] A large number of ISs potentially disrupts any search. However, having a relatively low number of such solutions
allows the algorithm to ‘learn’ the boundaries, preferably without over-exploring this area. Absence of ISs might sig-
nify the under-exploration of some parts of the domain.

[-] It is extremely easy to generate an IS in a highly multidimensional problem. Thus, choice of the strategy of dealing
with ISs should not be neglected when designing algorithms for such problems. Practitioners should expect that in rel-
atively highly dimensional problems, there is a fair chance that the vast majority of solutions evolved by an algorithm
will be generated outside of the domain and therefore require to be somehow ‘brought back’ into the feasibility region,
i.e. the domain. The proportion of such points can easily reach 100%.

[-] The choice of strategy of dealing with generated infeasible solutions is among parameters that control the proportion of
infeasible solutions generated during the DE run. Thus, it should not be omitted during the design of a particular DE
used [12,22]. Other factors controlling POIS, to a varying degree, are the three DE parameters.

[-] Results on POIS for f 0 presented in this paper should be considered as the upper bounds on POIS for general objective
functions.

[-] A carefully selected and tuned strategy of dealing with infeasible solutions can potentially warrant the algorithm’s
performance. Where possible, practitioners should routinely include tracking the (final) POIS within their
implementations.

[-] Researchers should better acknowledge the long established and confirmed differences in DE/*/bin and DE/*/exp

configurations. No overreaching conclusions should be made about DE in general – it is highly doubtful that such con-
clusions would universally hold for both types of configurations.

[-] Results of this paper suggest that setting of F 2 ð1;2� is indeed rarely justified which follows the empirical ‘wisdom’ of
the DE community.
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A number of aspects discussed in this paper requires further study. Among others, the connection between POIS and settings
of the DE control parameters requires careful evaluation. Further work will also include higher order factor analysis of
aspects influencing POIS distributions and devising ways to reliably interpolate EDPOIS for (F;Cr)-values not included in
the original tabulation. Finally, we will continue searching for better, more compact and interpretable versions of EDPOIS
visualisations.

CRediT authorship contribution statement

Anna V. Kononova: Conceptualization, Methodology, Validation, Visualization, Formal analysis, Investigation, Writing -
original draft, Writing - review & editing. Fabio Caraffini:Methodology, Validation, Software, Data curation, Formal analysis,
Investigation, Writing - original draft, Writing - review & editing. Thomas Bäck: Formal analysis, Investigation, Writing -
original draft, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] R.E. Bellman, Dynamic programming, Princeton University Press, NJ, 1957.
[2] R. Biedrzycki, Handling bound constraints in cma-es: An experimental study, Swarm and Evolutionary Computation 52 (2020) 100627.
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