
Mining Weighted Sequential Patterns in Incremental Uncertain Databases

Kashob Kumar Roya, Md Hasibul Haque Moona, Md Mahmudur Rahmana, Chowdhury Farhan Ahmeda,∗,
Carson Kai-Sang Leungb

aDepartment of Computer Science and Engineering, University of Dhaka, Bangladesh
bDepartment of Computer Science, University of Manitoba, Canada

Abstract

Due to the rapid development of science and technology, the importance of imprecise, noisy, and uncer-
tain data is increasing at an exponential rate. Thus, mining patterns in uncertain databases have drawn
the attention of researchers. Moreover, frequent sequences of items from these databases need to be dis-
covered for meaningful knowledge with great impact. In many real cases, weights of items and patterns
are introduced to find interesting sequences as a measure of importance. Hence, a constraint of weight
needs to be handled while mining sequential patterns. Besides, due to the dynamic nature of databases,
mining important information has become more challenging. Instead of mining patterns from scratch after
each increment, incremental mining algorithms utilize previously mined information to update the result
immediately. Several algorithms exist to mine frequent patterns and weighted sequences from incremental
databases. However, these algorithms are confined to mine the precise ones. Therefore, we have developed
an algorithm to mine frequent sequences in an uncertain database in this work. Furthermore, we have pro-
posed two new techniques for mining when the database is incremental. Extensive experiments have been
conducted for performance evaluation. The analysis showed the efficiency of our proposed framework.

Keywords: Data Mining, Sequential Pattern Mining, Weighted Sequential Patterns, Uncertain Database,
Incremental Database.

1. Introduction

The way toward mining concealed information from the massive extent of data is known as data mining.
This information can be frequent patterns, irregular patterns, correlated patterns, association rules among
events, etc. Researchers have concentrated mostly on mining frequent patterns, which can be a set of items
or a sequence of itemsets or any substructure that frequently occurs in a given database and a minimum
support threshold. A plethora of mining algorithms have shown their superior performance in different
applications of data.

Apriori [2] is the first algorithm based on candidate generation and testing paradigm in the field of
data mining which finds frequent itemsets and association rules among them. A well-known anti-monotone
(downward closure) property was introduced in [2] to reduce the search space for mining frequent itemsets.
Due to the huge memory and time requirements of Apriori [2] like algorithms, pattern growth-based ap-
proaches [17] have drawn great attention for this task. Consequently, different extensions of frequent itemset
mining problems were introduced i.e., handling weight constraint [18, 49] to mine interesting patterns, and
utility constraint [13, 14, 29, 30] to mine high-utility patterns.

In many applications, the order or sequence of the items in databases is essential and must be maintained
while mining. Thus, the problem of sequential pattern mining was introduced first in [39]. GSP [39] is a

∗Corresponding author at: Department of Computer Science and Engineering, University of Dhaka, Dhaka-1000, Bangladesh.
Email addresses: kashobroy@gmail.com (Kashob Kumar Roy), hasibulhq.moon@gmail.com (Md Hasibul Haque Moon),

mahmudur@cse.du.ac.bd, mahmudur@du.ac.bd (Md Mahmudur Rahman), farhan@du.ac.bd, farhan@cse.du.ac.bd

(Chowdhury Farhan Ahmed), kleung@cs.umanitoba.ca (Carson Kai-Sang Leung)

Preprint submitted to Information Sciences

ar
X

iv
:2

40
4.

00
74

6v
1

 [
cs

.D
B

]
 3

1
M

ar
 2

02
4

generalized solution based on a candidate generation and testing approach. It generates a lot of false-positive
sequences and requires multiple scans of the database to obtain true-positive ones. Afterward, PrefixSpan [36]
was proposed to overcome this limitation in the mining of sequential patterns. It is based on a pattern-
growth approach and follows a depth-first search strategy. Approaches like PrefixSpan employ different
efficient pruning techniques to reduce the search space while growing larger patterns. Rizvee et al. [38]
proposed a tree-based approach to mine sequential patterns and demonstrated their efficient performance.

However, uncertainty is inherent in real-world data due to the noise and inaccuracy of many data
sources. With the increasing use of uncertain data in modern technologies such as sensor data, environment
surveillance, medical diagnosis, security, and manufacturing systems, uncertain databases are growing larger.
Uncertainty of an item in a database makes both the itemset mining and sequential pattern mining difficult.
Several algorithms developed in [1, 20, 23, 24] are able to mine frequent itemsets in uncertain databases.
Uncertain itemset mining with weight constraints is addressed in [3, 21, 27]. Following PrefixSpan [36], there
are several algorithms proposed to mine sequential patterns in uncertain databases [33, 37, 50].

Moreover, many real-life applications reflect that all the frequent sequences are not equally important.
Hence, different weights are assigned to different items of a database corresponding to the significance of
an item. As a result, each sequence gets a weight, and thus interesting sequential patterns can be mined
against different weight and support thresholds. Sequential pattern mining with weight constraints has been
explored in [49]. To maintain the anti-monotone property, the upper bound of weight is commonly set as
the maximal weight of all items in the database [18, 49]. uWSequence [37] can handle weight constraints in
mining uncertain sequence databases. It follows the expected support based mining process. To incorporate
anti-monotone property in the mining process, it has proposed an upper-bound measure of expected support.
Besides, it uses a weighting filter separately to handle the weight constraint in mining sequences. Thus,
it can efficiently mine only those sequences that have high frequencies with high weights. Generally, in
weighted pattern mining, sequences that have low frequencies with high weights or high frequencies with
low weights are also important in several real-life applications. Again, it is necessary to design sophisticated
pruning upper bounds to mine weighted patterns efficiently while maintaining the anti-monotone property
as well as limiting false positive pattern generation.

Therefore, we propose multiple novel pruning upper bounds that are theoretically tightened instead of
respective upper bounds already introduced in the literature. Besides, efficient maintenance of candidate
patterns is required to develop a faster method for computing expected supports of patterns. Hence, we
utilize a hierarchical index structure to maintain candidate patterns in a space-efficient way that leads to a
way faster support computation method than state-of-art methods.

Furthermore, most real-life databases are dynamic in nature. In recent years, a large amount of research
has been conducted in incremental mining, i.e., [4, 13, 19, 30, 34, 46] to frequent itemsets with/without
different constraints such as weight, utility etc., [8, 18, 28] to find the updated set of sequential patterns,
or weighted sequential patterns or high utility sequential patterns from dynamic databases. Note that
all above incremental algorithms are confined into precise databases. Nonetheless, all of these sequential
pattern mining algorithms for uncertain databases are not efficient to handle the dynamic nature of data.
Because, running a batch algorithm like PrefixSpan or uWSequence from scratch for each increment requires
a huge amount of time and memory. Thus the lack of efficient methods on incremental mining of weighted
sequential patterns in uncertain databases and its importance has stimulated us to explore this field.

1.1. Motivation

The use of uncertain data in the modern world is increasing day by day. In most cases, the database
is not static. New increments are added to the database gradually; hence the set of frequent sequences
may change. After each increment, running existing algorithms from scratch, which can mine frequent
sequences in static uncertain databases, is very expensive in terms of time and memory. Therefore it has
become inevitable to design an efficient technique that can maintain and update frequent sequences when
the database grows incrementally. A few scenarios described below reflect the importance of finding frequent
weighted sequences from the incremental uncertain database.

2

1.1.1. Example One

Frequent pattern mining is being widely applied in medical data. It is beneficial to discover hidden knowl-
edge or extract important patterns from massive data on patient symptoms. Health workers/organizations
can use these discovered patterns to give patients proper treatment at the right time or observe disease
behavior during an outbreak. For instance, the novel coronavirus SARS-CoV-2 causes the coronavirus dis-
ease of 2019 (COVID-19), which was first seen in China in late 2019. Researchers from the whole world are
working on the COVID-19 outbreak as the world is expecting to face a huge economic recession with losing
a lot of people. If we see the nature of this disease’s symptoms, then it is clear that the symptoms have
the nature of sequential occurrences. Again, there is uncertainty in the patient data inherently. Because
the same physiological index corresponds to different symptom association probabilities for patients due to
their different physical conditions.

Let us consider a symptom sequence of a COVID-19 patient e.g., {(fever : 0.4), (cough : 0.5), (sore throat :
0.7, breathing problem : 0.9)} where each real value denotes the association probability for the correspond-
ing symptom. Furthermore, all symptoms may not have the same significance to diagnose a disease. Some
symptoms might be severe, but others might not be, e.g., shortness of breath, chest pain, etc., are severe
symptoms for COVID-19; in contrast, dry cough, tiredness, etc., are mild symptoms. Consequently, the
weights of symptoms should play a crucial role in mining important symptom sequences from patient data.
So, considering the nature of the symptoms, it can be said that finding weighted frequent sequences of the
symptoms of the corona patients can be helpful to predict whether someone is infected or even the current
stage of infection. Besides, it will be possible to take proper treatment for an infected patient by predicting
the next stage of infection based on discovered frequent patterns of symptoms. For example, at a particular
stage of infection, a patient may have mild pain. From the database of symptoms, it has been seen that
a patient having mild pain would have severe breathing problems afterward. So it will be helpful to take
proper precautions for the patient.

Moreover, the spreading of the virus is so rapid that the amount of patient data is growing every moment;
its nature is changing over time. Even the nature of COVID-19 is also varying from place to place. Thus,
due to rapidly growing patient data, non-incremental mining algorithms are not efficient enough to find
frequent sequences within a short time; it requires a massive amount of time to run the mining algorithm
on the whole database from scratch every time we get new data. Consequently, an efficient algorithm to
find weighted frequent sequences from incremental databases is very much needed. Therefore, incrementally
mined patterns from massive patient data flow are essential to determine how the symptoms change with
time or vary from one region/country to another.

1.1.2. Example Two

Mining social network behavioral patterns can be another example of uncertain data. These patterns
can be discovered from users’ activities in social networks. If we observe a user’s activities over a while, we
can estimate how similar a user is with a student, a photographer, and so on. In other words, we can assign
a probability associated to each category, e.g., {(student : 0.9), (photographer : 0.7, cyclist : 0.3), (tourist :
0.7)} where it indicates that the probability of being a student for a particular user is estimated after
analyzing his activities over a period of time in social networks, as a photographer or a cyclist after analyzing
his activities over the next period, and so on. This period could be a couple of minutes or hours or even days
or weeks. Again, users are using their social networks at every moment while new users are joining social
networks. As a result, a huge amount of data is being produced at every moment, which means that the
database of users’ activities is growing rapidly. Therefore, an efficient incremental algorithm is required to
mine user behavioral patterns on the fly. Nowadays, these discovered patterns are beneficial in a wide range
of applications. For instance, in this era of social network-based digital marketing, the study of consumer
activities is most important for marketers to understand consumers’ behavioral patterns for their customized
advertisements. If we discover the patterns on the fly, it is possible to customize advertisements on a user’s
newsfeed based on his latest activities over social networks. Besides, different patterns discovered from
social network data are also crucial in influencer marketing, trend analysis, social event detection, social
spam analysis, etc.

3

Furthermore, anomaly or fraud analysis over users’ activities requires observing the behavioral patterns
over a period of time. The behavioral patterns of a fraud user show a deviation from that of regular users
over a while. Thus, to detect fraud users from its social network activities, it needs to mine the behavioral
patterns incrementally for a certain period of time. Therefore, an efficient incremental mining algorithm
can play an essential role in discovering anomalies in the patterns on the fly because it is essential to detect
fraud users or other anomalies, e.g., rumors, within the shortest possible time.

1.1.3. Example Three

The traffic management system is being automated to identify the behavior of vehicles and drivers.
Several methods like Automatic Number Plate Recognition, Speed Recognition, Vehicle Type Recognition,
and Trajectory Analysis produce uncertain data. We can mine different patterns like ”Going to road A first
and then road B is a frequent behavior of 10% of the cars”. These patterns are generally sequential. In an
intelligent transportation system (ITS), different roads/junctions may carry different significance. Again, all
data collected through sensor/GPS are associated with some certainty values. Consequently, it is to be said
that weighted sequential patterns can play an important role in traffic automation, such as planning and
monitoring traffic routes. However, different patterns can be seen in different parts of a day, i.e., patterns at
the office/school opening time are quite the opposite of office/school closing time in a day. Again, weekday
patterns are different from weekend patterns. Patterns even vary between different periods in a year. Note
that patterns may change over different periods of a day, a week, a month, or even a year. Therefore, these
changes in daily patterns, weekly patterns, or yearly patterns can be mined from incrementally growing
traffic databases. Patterns mined from different database increments are helpful to draw the pattern trends
across different periods of a day or even a year. These pattern trends are required for analyzing the seasonal
behavior of traffic in ITS.

A few other applications are TNFR (Tumor Necrosis Factor Receptor) disease analysis, DNA sequenc-
ing (micro-level information with uncertainty), mining in crime data, weather data, fashion trend [37], and
vehicle recognition data [33]; WSN (Wireless Sensor Network) data monitoring [50]; social network behavior
analysis [3] etc., where a benefit of mining weighted frequent sequential patterns is to discover more mean-
ingful hidden knowledge. As the existing algorithms are not efficient to mine weighted sequential patterns
in incremental uncertain databases, finding efficient techniques has become an inevitable research issue.

1.2. Contributions

In this work, we propose a new framework to deal with weight constraints in mining sequential patterns in
uncertain databases to address the issues mentioned above. In this framework, we introduce a new concept
of weighted expected support of a sequential pattern. An efficient algorithm FUWS is developed based upon
this framework to find weighted sequential patterns from any static uncertain databases. Furthermore, we
propose two techniques to find the updated set of weighted sequential patterns when the uncertain database
is of dynamic nature. To the best of our knowledge, this work is the first to do mining weighted sequential
patterns in incremental uncertain databases. Our key contributions of this work are as follows:

1. An efficient algorithm, FUWS, to mine weighted sequential patterns in uncertain databases.

2. Two new techniques, uWSInc and uWSInc+, for mining weighted sequential patterns in incremental
database of uncertain sequences.

3. A new hierarchical index structure, USeq-Trie, for maintaining weighted uncertain sequences.

4. Two upper bound measures, expSupcap and wgtcap, are for expected support and weight of a sequence,
respectively.

5. A pruning measure, wExpSupcap, to reduce the search space of mining patterns.

6. An extensive experimental study to validate the efficiency and effectiveness of our approach and its
supremacy with respect to the existing methods.

4

Although there has been a good amount of work in the broad domain of pattern mining, it is clear that
mining weighted sequential patterns in uncertain databases is not explored well despite its rising importance.
This paper presents solutions to this research issue and provides extensive experimental results to validate
our claims.

The rest of the paper is organized in the following sections: background study and discussion of related
works in Section 2, our proposed solutions with a proper simulation in Section 3, analysis of experimental
results in Section 4 and finally, conclusions in Section 5.

2. Literature Review

As with the development of modern technologies, the usages of data are being intensified day by day. A
lot of varieties have emerged with a variety of information stored and the knowledge required for different
scenarios. Hence, various algorithms have already been developed for mining heterogeneous information. A
review of the literature has been described below.

2.1. Sequential Pattern Mining

A sequence database is a list of data tuples where each tuple is an ordered set of itemsets/events. Unlike
itemset mining, it contains order information for events. Thus, sequential patterns mined from a sequence
database can significantly impact many applications [11]. In recent years, a plethora of research has been
conducted on sequential pattern mining [11, 16, 43]. The problem of Sequential Pattern Mining (SPM) was
first discussed in [39]. Authors proposed a generalized solution named GSP [39] which is inspired by the
itemset mining algorithm Apriori [2]. It has the problem of infrequent pattern generation, and it needs a
massive amount of running time. It also needs extensive memory to store all the k-sequences (i.e., sequences
of length k to use in the generation of (k + 1)-sequences.

Afterward, following FP-Growth [17] for itemset mining, pattern-growth based approach for sequential
pattern mining, PrefixSpan was introduced in [36]. It uses the divide-and-conquer technique to mine frequent
sequences from a precise database. PrefixSpan starts mining from frequent sequences of length 1. Then it
projects databases into smaller parts by taking the frequent sequences as a prefix. Afterward, it expands
longer patterns and further projects into smaller databases recursively. Later, many improvements have been
found in different specific applications by designing efficient pruning techniques in PrefixSpan to reduce the
search space. A recent work [38] has proposed a compact and efficient tree-structure, SP-Tree, to store the
whole database. They have utilized the idea of co-existing item table to facilitate the mining of sequential
patterns and proposed an algorithm named Tree-Miner which holds the build once mine many property.
Still, Tree-Miner algorithm needs a huge amount of memory space to store the whole database which makes
it incompetent for incremental mining.

2.2. Weighted Sequential Mining

All frequent items, as well as all sequences, are not equally important. Such examples have been discussed
in Section 1.1. Different weights are assigned to different items to reflect the significance of various patterns.
The weight of an itemset or sequence can be calculated using the item weights. To mine interesting patterns,
the concept of weighted support is introduced in [48, 49]. They defined the weighted support of a sequence
as the resultant value of multiplying its support count with weight value. However, this weighted support
violates the anti-monotone property. To apply this property, an upper-bound value of weighted support is
used for a sequence. Based on this upper bound value, sequences are extended from frequent 1-sequences
using PrefixSpan like approach. WIP [48] finds weighted frequent itemsets where WSPAN [49] is popular
for mining weighted frequent sequences. An extra scan of the database is required to find the weighted
support of generated patterns and remove the false ones.

5

2.3. Mining in Uncertain Databases

Handling uncertain databases has become a major concern as their use is increasing in almost every
application field. Several pattern-growth based solutions have been proposed, such as UFP-Growth [22] and
PUF-Growth [23]. Other algorithms for mining patterns in large uncertain datasets [45], mining of weighted
frequent uncertain itemsets [3, 27], mining high-utility uncertain itemsets with both positive and negative
utility [14] are proved to be efficient. Yan et al. [47] explored uncertain data in 2D space.

However, in the case of sequential pattern mining and different constraints in it, it still needs researchers’
attention. Muzammal et al. [32] formulated uncertainty in uncertain sequential pattern mining as source-
level uncertainty, i.e., each tuple contains a probability value and element-level uncertainty, i.e., each event
in tuples contains a probability value. Two measures of frequentness such as expected support and proba-
bilistic frequentness are commonly used in frequent itemset and sequential patterns in uncertain databases.
Muzammal et al. [33] explored source-level uncertainty in probabilistic databases and proposed a dynamic
programming algorithm to calculate the expected support and also breadth-first and depth-first methods
based on candidate generation-and-test paradigm to mine patterns. U-PrefixSpan [50] follows the PrefixSpan
algorithm [36] to mine classic sequential patterns in uncertain databases under the probabilistic frequentness
measure.

In contrast, uWSequence [37] mines sequential patterns based on expected support. It uses a weighting
filter separately to mine interesting patterns. To the best of our knowledge, uWSequence [37] is the only
work to mine weighted sequential patterns from uncertain databases. It proposed an upper-bound measure
of expected support of a sequence called expSupporttop, which is used in the core mining process to project
the database and grow patterns. A research concern is how to determine this upper bound measure to
reduce the search space of the pattern-growth approach.

Another line of research focuses on high utility-based sequential pattern mining in uncertain databases.
Projection-based PMiner algorithm [31] takes into account both average utility and uncertainty factors
to efficiently mine high average-utility sequential patterns in the uncertain databases. [29] proposed a
projection-based PHAUP algorithm with three novel pruning strategies under an innovative high average-
utility sequential pattern mining framework that is superior to mine high average-utility sequential patterns
than PMiner [31]. UHUOPM [6] introduced the concept of Potential High Utility Occupancy Patterns
(PHUOPs) to incorporate three factors: support, probability, and utility occupancy while maintaining the
downward closure property in the mining process. Ahmed et al. [5] proposed an evolutionary model called
MOEA-HEUPM to find the non-dominated high expected-utility patterns from uncertain databases without
prior knowledge by utilizing a multiobjective evolutionary algorithm based on decomposition (MOEA/D).
Authors [40] presented an efficient algorithm HEUSPM to discover high expected utility sequential patterns
in IoCV environments.

2.4. Incremental Mining Algorithms

For incremental frequent itemset mining, FUP [9] is one of the early and well-known contributions which
needs to rescan the database when an item is frequent in the incremented portion but was absent in the
result set before this increment. CanTree [25] proposed a tree structure where nodes are ordered canonically
instead of frequency. It captures the whole transaction database and does not require any rescan of the
whole database or any reconstruction of the tree for any increment. CP-tree [41] periodically restructures
the incremental tree structure according to the frequency descending order of items. Thus, it achieves
not only a highly compressed tree structure but also a remarkable gain in mining time compared to the
corresponding CanTree. Two efficient tree structures [4] have been proposed to mine weighted frequent
patterns from an incremental database with only one scan. Incremental weighted erasable pattern mining
from incremental databases has also been explored in [34] which proposed efficient list structures. Lin
et al. [26] proposed RWFI-Mine and its further improvement named as RWFI-EMine to discover recent
weighted frequent itemsets efficiently in a temporal database while considering both weight and the recency
constraints of patterns. Gan et al. [15] introduced the concept of Recent High Expected Weighted Itemset
(RHEWI) to take the weight, uncertainty and recency constraints of patterns into account. Consequently,
it proposed two projection-based algorithms RHEWI-P and RHEWI-PS to mine RHEWIs from uncertain

6

temporal databases. ILUNA [10] proposed a single-pass incremental mining of uncertain frequent patterns
without false positive patterns.

Recently, a number of incremental methods have been developed to mine high utility patterns in [13,
30, 46]. Wang et al. [45] proposed two incremental algorithms to mine Probabilistic Frequent Itemsets (PFI)
from large uncertain databases: (a) uFUP, which is a candidate generation and test based algorithm inspired
by FUP [9] that mines exact PFI and (b) uFUPapp, which shows more efficiency in time and memory than
uFUP, but mines approximate PFI. Techniques based on maintaining the whole database in a compact tree
enabled efficient mining of the updated set of patterns after each increment.

We naturally need a massive memory space to store the whole database in a tree structure for se-
quential pattern mining because the number of nodes required to store all data sequences is exponentially
high compared to an itemset database. For example, for an itemset {a, b, c}, there are a large number of
possible sequential instances because of different event formation and their order of appearance, such as
< (a)(b)(c) >,< (b)(a)(c) >,< (a)(b, c) >, < (a, b, c) >,< (a, b), (b), (a, c) >, and so on. All of the algorithms
for sequential pattern mining discussed in the previous sections have a common limitation: they are de-
signed to be performed once on the static database. If any update in the database occurs, users have to run
these algorithms from scratch each time. This is very inefficient in terms of time and memory, especially if
the increments are frequent and small. In incremental mining, the challenge is to find the updated set of
frequent sequences in the shortest possible time. Another major concern is that the algorithm cannot be
expensive in memory usage. IncSpan [8] algorithm proposed a solution for incremental mining of sequential
algorithms with the concept of Semi-Frequent Sequences (SFS). Later, IncSpan+ [35] identified its limita-
tion and proposed a corrected version which claimed to give complete results but includes the problem of
full database scanning. However, PBIncSpan [7] proved that IncSpan+ also fails to find complete results.
Using a prefix-based tree structure for pattern maintenance, [7] shows that finding complete results is very
challenging when the number of nodes becomes huge, which is obvious in incremental sequence databases.

PreFUSP-TREE-INS is proposed in [28] to reduce the number of rescans and it incorporates the pre-
large concept. Note that, pre-large sequences are the same as semi-frequent sequences. This paper’s main
limitation is that it performs better only when the increment size is small, such as 0.05%, 0.1%, and 0.2%
of the original database. Besides, there is a safety bound of pre-large concept, i.e., the patterns stored in
the pre-large set can help up to a specific limit of database update. Results in [28] suggest that this safety
bound is very small as it showed efficient performance if the total increment ratio is below 0.2%. These
results motivated us to design an efficient incremental solution for multiple large increments, i.e., to support
both larger increment size and larger total increment ratio.

Moreover, authors in [44] proposed incremental algorithms named IncUSP-Miner, IncUSP-Miner+ to
mine high-utility sequential patterns. They proposed a compact tree structure named Candidate-pattern tree
to maintain the patterns, a tighter upper bound of utility-based measures to prune the tree nodes better,
and few strategies to reduce the tree-node updates and database rescans. The major limitation is that they
perform better only when the ratio between the incremented size and original database size is small.

Nevertheless, to the best of our knowledge, WIncSpan [18] is the only incremental solution for weighted
sequential pattern mining. Similar to IncSpan and IncSpan+, it also uses extra buffers to store semi-frequent
sequences (SFS) from initial database. It also has the same limitation of IncSpan+ that any new pattern
arriving later or any pattern that was initially not in the semi-frequent set cannot be found even if it becomes
frequent after future increments. However, it does not need to rescan the database after any increment.
Results showed that a reasonable amount of buffering SFS becomes enough to find the almost completed
set of the updated result within a very short time.

As shown in Table 1, the current literature suggests re-running uWSequence [37] from scratch every time
after an increment occurs to uncertain sequential databases. It is very costly in terms of time and space
when the database grows larger and larger. Therefore, we have explored this problem and propose two
efficient techniques for incremental mining, uWSInc and uWSInc+, under a novel framework for mining
both unweighted and weighted uncertain sequential patterns, where multiple theoretical tightened pruning
upper bound measures and an efficient hierarchical index structure to maintain patterns, USeq-Trie, have
been developed. Consequently, this framework leads to an efficient design of an algorithm FUWS for
static uncertain databases. In the following discussions, we will be consistent with weighted uncertain

7

General Weighted High Utility Uncertain
Sequential [36], [37] [6], [29] [29], [31], [32]

Pattern Mining [38], [39] [49] [42], [12], [43] [33], [37], [50]
Incremental [9], [25], [41] [4], [19], [34] [30], [10], [45]

Itemset Mining [46]
Incremental [8], [28], [18] [44]

Sequential Mining

Table 1: A brief summary of survey algorithms

pattern mining. Nonetheless, it is to be noted that we can easily adapt our weighted framework for mining
unweighted patterns by setting the weights of all items as 1.0.

3. A Framework for mining Weighted Uncertain Frequent Sequences

Before diving into the detailed description of our proposed framework, we will discuss some preliminaries
which will be referred throughout this paper.

3.1. Preliminaries

Sequences and Uncertain Sequence Database. Let I = { i1, i2,..., in} be the set of all items in
a database. An itemset or event ei = (i1, i2,...,ik) is a subset of I. A sequence S = <e1, e2,..., em> is an
ordered set of itemsets [39]. For example, S1 = <(i2), (i1, i5), (i1)> consists of 3 consecutive itemsets. In
case of uncertain sequences, items in each itemset are assigned with their existential probabilities such as S1

=<(i2: pi2), (i1: pi1 , i5: pi5), (i1: pi1)> [33, 37, 50]. An uncertain sequence database (DB) is a collection of
uncertain sequences. An example database containing six uncertain sequences is shown in Table 2.

Id Uncertain Sequence
1 (a:0.9, c:0.6)(a:0.7)(b:0.3)(d:0.7)
2 (a:0.6, c:0.4)(a:0.5)(a:0.4, b:0.3)
3 (a:0.3)(a:0.2, b:0.2)(a:0.4, b:0.3, g:0.5)
4 (a:0.1, c:0.1)(a:0.3, b:0.1, c:0.4)
5 (d:0.1)(a:0.4)(d:0.1)(a:0.5, c:0.6)
6 (b:0.3)(b:0.4)(a:0.1)(a:0.1, b:0.2)

Table 2: Uncertain Sequential Database, DB

Item Weight
a 0.8
b 1.0
c 0.9
d 0.9
e 0.7
f 0.9
g 0.8

Table 3: Weight of different items

Support and Expected Support. Support of a sequence in a database is the number of data tuples that
contains S as a subsequence. For example, < (a)(b) > has a support of 5 in Table 2. In uncertain databases,
expected support count makes more sense than this general support count. Different authors defined expected
support in several ways for an itemset or a sequence in literature. Here, we adopted the definition of expected
support for a sequence from uWSequence [37] where all items in a sequence are considered independent of
each other. The expected support is defined as the sum of the maximum probabilities of that sequence in
each data tuple. The probability of a sequential pattern is defined simply by multiplying the probability
values of that pattern’s items in a data tuple. In Table 2, for the sequence, < (a)(b) >, where b occurs in
a different event after the occurrence of a, the expected support, expSup(<(a)(b)>) = max(0.9× 0.3, 0.7×
0.3) +max(0.6× 0.3, 0.5× 0.3) +max(0.3× 0.2, 0.3× 0.3, 0.2× 0.3) + 0.1× 0.1 + 0 + 0.1× 0.2 = 0.57. To
explain the maximum probability of the pattern < (a)(b) > in 1st sequence, it is the maximum of 0.9× 0.3
(a in 1st event, b in 3rd event) and 0.7× 0.3 (a in 2nd event, b in 3rd event).

Sequence Size and Length. Size of a sequence α is the number of total itemsets/events in it and is
represented by |α|. Length of a sequence is the total count of items present in all events of the sequence. For
example, size of < (a, c)(a, b, c) > is 2 but its length is 5. Sequence of length m is also called a m-sequence.

8

Extension of a Sequence. A sequence α can be extended with an item i in two ways, i.e., i-extension
and s-extension. If item i is added to the last event of α then the resultant sequence, say β, is called
i-extension of α. For example, < (a)(b, c) > is an i-extension of < (a)(b) > with item c. In i-extension,
size of a sequence does not increase but its length increases. Similarly, if item i is appended to α as a new
event then the new sequence β is called α’s s-extension with i. For example, < (a)(b)(c) > is a s-extension
of < (a)(b) > with item c.

Weight of a sequence. Similar to expected support, there are several definitions of a sequence weight.
We adopted the definition of the weight of a sequence denoted as sWeight in [49, 18] where sWeight is
the sum of its each individual item’s weight divided by the length of the sequence. Weights of the items
are belong to the range between 0 to 1 as shown in Table 3. For an example, sWeight(< (a)(ac) >) =
(0.8 + 0.8 + 0.9)/3 = 0.833.

Frequent and Semi-frequent Sequences. The set of sequences that suffice a given minimum support
threshold (or expected support threshold for uncertain database) are called frequent sequences. Similarly,
the sequences that meet a given minimum threshold of weighted expected support, are called weighted frequent
uncertain sequences or weighted uncertain sequential patterns. A buffer ratio, µ, which is of positive value
less than 1.0, is chosen to lower the minimum support threshold to find semi-frequent sequences that are
not frequent but their values are very closed to the minimum support threshold. As discussed earlier, semi-
frequent sequences are helpful to find the updated set of result sequences when the database is incremental.

In the following subsections, we propose a new framework for mining weighted frequent sequential pat-
terns in uncertain databases where a new concept of weighted expected support is introduced to incorporate
the weight constraint in the mining process. Based on this framework, our proposed algorithms will be dis-
cussed, followed by an example simulation. Before diving into the detailed description, additional required
definitions, proposed measures, and lemmas with proof are presented in the following discussion.

Definition 1. maxPr is the maximum possible probability of the considering sequential pattern in the
projected database. For a pattern α =< (i1)...(im) >, maxPr used in uWSequence [37] can be defined as

maxPr(α) =

|α|∏
k=1

P̂DB|αk−1
(ik) where αk−1 = (i1)...(ik−1) (1)

Here, P̂DB|α(i) = maximum possible probability of item i in the database DB | α, which is projected with
α as current prefix. Rahman et. al. [37] shows that the maxPr measure holds the anti-monotone property.

Example 1. The maxPr value for < (c)(a) > = 0.6 × 0.7 = 0.42 in Table 2 where maximum possible

probability of item c in DB (as shown in Table 2) is P̂DB(< (c) >) = 0.6 and again,

P̂DB|<(c)>(< (a) >) = 0.7 because 0.7 is maximum possible probability of item a in the < (c) >-projected
database, DB |< (c) >.
As an another example, we can find that maxPr(< (a)(c) >) = 0.54.

Definition 2. The maxPrS(α) is defined as the maximum probability of a sequential pattern α in a single
data sequence S. It can be formulated as:

maxPrS(α) = max
E∈Q

(∏
k∈E

pk

)
(2)

where Q denotes a set of all the sets of the sequential positions for each occurrence of the pattern α in S.
In addition, E is a single set of the sequential positions for a particular occurrence of the pattern α in S.
Moreover, pk is the existential probability of the corresponding item at k-th position in S.

Example 2. Suppose, we need to find the masPrS(< (a)(b) >) in the 1st sequence S = S<1> in Table 2.

Here, Q =
{
{1, 4}, {3, 4}

}
.

Therefore, maxPrS(< (a)(b) >) = max(0.9× 0.3, 0.7× 0.3) = 0.27.

9

Definition 3. The expected support for a sequential pattern α can be calculated from a database DB using
the equation as follows,

expSup(α) =

|DB|∑
i=1

maxPrS<i>(α) (3)

Where, S<i> denotes the i-th Sequence in the database DB and |DB| denotes the size of the database DB.

Example 3. To calculate the expSup(< (ac) >) in Table 2, from the definition of maxPrS(α), we get
maxPrS<1>(< (ac) >) = 0.54, maxPrS<2>(< (ac) >) = 0.24, maxPrS<3>(< (ac) >) = 0,
maxPrS<4>(< (ac) >) = 0.12, maxPrS<5>(< (ac) >) = 0.30 and maxPrS<6>(< (ac) >) = 0.
Thus, expSup(< (ac) >) = 1.20.

Definition 4. expSupcap(α) is an upper bound of expected support of a pattern α which is defined as

expSupcap(α) = maxPr(αm−1)×
∑

∀S∈(DB|αm−1)

maxPrS(im) (4)

Example 4. To compute the expSupcap(< (ac)(b) >) in Table 2, as per the definition,
expSupcap(< (ac)(b) >) = maxPr(< (ac) > ×

∑
∀S∈DB|(<(ac)>) maxPrS(< (b) >)

where, maxPr(< (ac) >) = 0.54 and
∑

∀S∈DB|(<(ac)>) maxPrS(< (b) >) = 0.7: because DB|(< (ac) >)

has three non-empty sequences i.e., < (a : 0.7)(b : 0.3)(d : 0.7) >, < (a : 0.5)(a : 0.4, b : 0.3) >, and
< (a : 0.3, b : 0.1, c : 0.4) >. The values of maxPrS(< (b) >) for these three sequences are 0.3, 0.3, and 0.1.
Consequently, expSupcap(< (ac)(b) >) = 0.54× 0.7 = 0.378.
Similarly, the expSupcap value of another sequence < (ac) >, expSupcap(< (ac) >) = 1.8.

Lemma 1. The expSupcap of a sequential pattern is always greater than or equal to the actual expected
support of that pattern.

Proof. To keep the proof less complicated, we consider a sequential pattern α =< (i0)(i1)....(im) > where
each event/itemset consists of a single item, ik.
According to the definitions, ∀ik ∈ α : maxPr(ik) ≥ maxPrS(ik).
⇒ maxPr(i0)×

∑
∀S∈(DB|i0) maxPrS(i1) ≥

∑
∀S∈DB maxPrS(<(i0)(i1)>)

⇒ maxPr(αm−1)×
∑

∀S∈(DB|αm−1)
maxPrS(im) ≥

∑
∀S∈DB maxPrS(α)

⇒ expSupcap(α) ≥ expSup(α)
∴ The equality holds only when each item has same existential probability for its all positions in whole
database. Otherwise, expSupcap(α) > expSup(α) will always be true.

Lemma 2. For any sequence α, the value of expSupcap(α) is always less than or equal to the expSupporttop(α)
which is used as an upper bound of expected support in uWSequence [37] and can be equivalently defined as
expSupporttop(α) = maxPr(αm−1)×maxPr(im)× supim where supim denotes the support count of im.

Proof. According to definitions, ∀S, ∀ik ∈ α : maxPrS(ik) ≤ maxPr(ik)
⇒

∑
maxPrS(im) ≤ maxPr(im)× supim

⇒ maxPr(αm−1)×
∑

maxPrS(im) ≤ maxPr(αm−1)×maxPr(im)× supim
⇒ expSupcap(α) ≤ expSupporttop(α)

Thus, being a tighter upper bound of expected support, expSupcap can reduce the search space more in
pattern-growth based mining process and hence it generates less false positive patterns than expSupporttop(α).

Definition 5. WES(α) is the weighted expected support of a sequential pattern α defined as

WES(α) = expSup(α)× sWeight(α) (5)

It is inspired by the widely used concept of weighted support for precise databases as described in Section 2.

10

Example 5. According to Table 2 and Table 3, weighted expected support of < (a)(ac) >,
WES(< (a)(ac) >) = (0.1× 0.3× 0.4 + 0.4× 0.5× 0.6)× (0.8 + 0.8 + 0.9)/3 = 0.11.

Definition 6. Weighted Frequent Sequential Pattern: a sequence α is called weighted frequent sequen-
tial pattern if WES(α) meets a minimum weighted expected support threshold named as minWES. This
minimum threshold is defined to be,

minWES = min sup× database size×WAM × wgt fct (6)

Here, min sup is user given value in range [0,1] related to a sequence’s expected support, WAM is
weighted arithmetic mean of all item-weights present in the database defined as

WAM =

∑
i∈I fi × wi∑

i∈I fi
(7)

where wi and fi are the weight and frequency of item i in current updated database. The value of WAM
changes after each increment in the database. wgt fct is user given positive value chosen for tuning the
mining of weighted sequential patterns. Choice of min sup and wgt fct depends on aspects of application.

Example 6. Let us assume that min sup = 0.2 and wgt fct = 0.75.

From Table 2 and Table 3, WAM =
(14× 0.8) + (8× 1.0) + (5× 0.9) + (3× 0.9) + (1× 0.8)

14 + 8 + 5 + 3 + 1
= 0.88;

database size = 6; Therefore, minWES = 0.792.

However, the measure WES does not hold anti-monotone property as any item with higher weight can
be appended to a weighted-infrequent sequence, and the resulting super-sequence may become weighted-
frequent. So, to employ anti-monotone property in mining weighted frequent patterns, we propose two other
upper bound measures, wgtcap and wExpSupcap, which are used as upper bound of weight and weighted
expected support, respectively.

Definition 7. We define an upper bound of weight for a pattern α of length m, wgtcap(α) as follows,

wgtcap(α) = max(mxWDB(DB|αm−1),mxWs(α)) (8)

where mxWDB(DB|αm−1) is the weight of the item with maximum weight value in the projected database
and mxWs(α) is the weight of the item with maximum weight value in the sequential pattern α.

Example 7. Suppose, we need to calculate the wgtcap(α), where, α =< (ac) >.
From Table 3, mxWs(< (ac) >) = max(0.8, 0.9) = 0.9.
Again, items of (DB| < (a) >) are a, b, c, d, and g in Table 2.
So, mxWDB(DB|(< (a) >) = max(0.8, 1.0, 0.9, 0.9, 0.8) = 1.0.
Therefore, wgtcap(< (ac) >) = max(1.0, 0.9) = 1.0.

To handle the downward property of weighted frequent patterns in precise databases, authors in [49, 18]
attempted to use the maximal weight of all items in the whole database as the upper bound of the weight
of a sequence, noticing that this upper bound may generate much more false-positive patterns. To narrow
the search space and keep the number of false candidate patterns as small as possible, we use wgtcap as
an upper bound in mining weighted patterns. Intuitively, using wgtcap instead of the maximal weight of
all items is more beneficial. Moreover, there may be many patterns for which the value of wgtcap is less
than the maximal weight of all items. Hence, the patterns may meet the minimum threshold because of the
higher value of maximal weight but may not satisfy the threshold due to the lower value of wgtcap, resulting
in a narrower search space of mining patterns and fewer candidate patterns.

Lemma 3. For any sequential pattern α of length m, the value of wgtcap(α) is always greater than or equal
to the sWeight value of its all super patterns.

11

Proof. Let us assume that α ⊂ α
′
for some sequential pattern α

′
of length m

′
where m

′
> m.

According to Definition 7, mxWS(α) ≥ sWeight(α). The equality holds when the weights of all item in
α are equal. Similarly, mxWS(α

′
) ≥ sWeight(α

′
).

Now, if the weights of all items in database are not equal, thenmxWDB(DB|αm−1) ≥ mxWDB(DB|α′

m′−1
)

must hold since DB|αm−1 contains all frequent items of DB|α′
m′−1

.

Moreover, it is straightforward that mxWS(α
′
) is always greater than or equal to mxWS(α). Neverthe-

less, when mxWS(α
′
) > mxWS(α), the item with maximum weight in α

′
must come from the projected

database, DB|αm−1 and thus mxWS(α
′
) ≤ mxWDB(DB|αm−1).

∴ max(mxWS(α
′
),mxWDB(DB|α′

m′−1
)) ≤ max(mxWS(α),mxWDB(DB|αm−1))

⇒ wgtcap(α
′
) ≤ wgtcap(α)

⇒ sWeight(α
′
) ≤ wgtcap(α)

Again, if the weights of all items are equal, then wgtcap(α
′
) = sWeight(α

′
) = sWeight(α) = wgtcap(α)

Therefore, we can conclude that the value of wgtcap(α) is always greater or equal to the value of sWeight(α)
or sWeight(α

′
) which is true for all cases.

Definition 8. As mentioned before, the upper bound of weighted expected support is wExpSupcap(α),
defined as:

wExpSupcap(α) = expSupcap(α)× wgtcap(α) (9)

Example 8. Considering the pattern α =< (ac) >, the value of wExpSupcap(< (ac) >) = 1.8× 1.0 = 1.8
where expSupcap(α) = 1.8 (as computed in Example 4) and wgtcap(< (ac) >) = 1.0 (see in Example 7).

Lemma 4. The value of wExpSupcap(α) is always greater than or equal to weighted expected support of a
sequential pattern α, WES(α). Hence, using the wExpSupcap value of any pattern as the upper bound of
weighted expected support in mining patterns, it may generate some false positive frequent patterns.

Proof. Lemma 1 and 3 has showed that for a sequential pattern α,
expSupcap(α) ≥ expSup(α) and wgtcap(α) ≥ sWeight(α)
⇒ expSupcap(α)× wgtcap(α) ≥ expSup(α)× sWeight(α)
⇒ wExpSupcap(α) ≥ WES(α)
∴ The value of wExpSupcap(α) is always greater than or equal to the value of WES(α) for any sequence α.
As a result, some patterns might be introduced as frequent patterns due to its higher value of wExpSupcap

being not actually weighted frequent.

Lemma 5. If the value of wExpSupcap for a sequential pattern, α, is below the minimum weighted expected
support threshold minWES, the value of WES for that pattern and its all super patterns must not satisfy
the threshold. In other words, the pattern α and its all super patterns must not be frequent if the value
of wExpSupcap(α) does not satisfy the threshold. Thus, the anti-monotone property holds while mining
patterns.

Proof. Assume that α ⊆ α
′
for some patterns α

′
. Recall that, expSup(α) =

∑
∀S∈DB maxPrS(α) [37].

By definition, expSup(α) ≥ expSup(α′).
Again, expSupcap(α) ≥ expSup(α) ⇒ expSupcap(α) ≥ expSup(α′).
Moreover, wgtcap(α) ≥ sWeight(α′).
Now, wExpSupcap(α) = expSupcap(α)× wgtcap(α) ≥ expSup(α′)× sWeight(α′) = WES(α′)
So, if wExpSupcap(α) < minWES holds, then WES(α′) < minWES must hold for any α′ ⊇ α.
Therefore, upper bound wExpSupcap could be able to find out the complete set of frequent patterns.

Pruning Condition. In pattern-growth based mining algorithms, we define a pruning condition to
reduce the search space. According to Lemma 5, we can safely define our pruning condition which is to be
used in mining algorithm as follows:

wExpSupcap(α) ≥ minWES (10)

12

The wExpSupcap(α) determines whether the current pattern α will be used to generate its super patterns
or not. To prune weighted infrequent patterns earlier during the mining process but maintain the anti-
monotone property, the wExpSupcap is calculated instead of WES to mine potential candidate patterns. If,
for any k-sequence α, wExpSupcap(α) < minWES, then any possible extension of α to a (k + 1)-sequence
can be safely pruned, i.e, mining of longer patterns with prefix α can be ignored without missing any actual
frequent patterns. However, to get actual frequent patterns, we must prune out false positive patterns from
the set of candidate patterns because wExpSupcap is an approximate value.

3.2. USeq-Trie: Maintenance of Patterns

In our proposed algorithms, we have used a hierarchical data structure, USeq-Trie, to store patterns
compactly and to update their weighted expected support efficiently. Each node in USeq-Trie will be
created as either an s-extension or i-extension from its parent node. Each edge is labeled by an item. In an
s-extension, the edge label is added as a different event. In an i-extension, it is added in the same event as
its parent. The sequence of the edge labels in a path to a node from the root node denotes a pattern.

root

(a)

(b)
(c)

(d)

(ab)
(c)(d)

a

b

b c

d

d

Figure 1: Storing frequent sequences in a USeq-Trie

For example, <(a)>, <(ab)>, <(b)>, <(c)>, <(c)(d)>, and <(d)> are frequent sequential patterns
which are stored into USeq-Trie shown in Figure 1. In this figure, the s-extensions are denoted by solid lines
and i-extensions by dashed lines. By traversing the USeq-Trie in depth-first order, we will get all patterns
stored in it. Each node represents the pattern up to that node from the root node and stores its weighted
expected support which is ignored in Figure 1 for simplicity.

Insertion and Deletion. To insert patterns into the USeq-Trie, we start to traverse it from the root
node and take the first item in a pattern as the current item. If there is a child node with an edge labeled
by the current item, we go to that node. Otherwise, we create a child node with an edge labeled by the
current item. Then we move to the child node and set the next item in the pattern as the current item.
Recursively, we follow the same process up to the last item in the pattern. For example, now we insert
<(ab)(c)> into the USeq-Trie shown in Figure 1. The root node has a child node with an edge labeled by
a. So, we go to the child node labeled by (a) and check whether it has an edge labeled by b. The extension
has to be an i-extension as a and b are in the same event. As we can see, such a node already exists. So,
we go to the node which is labeled by (ab). Afterward, we have to check if there is an s-extension by an
edge labeled c. But there is no such child node. Therefore, we create a node by s-extension and set c as the
edge label and (ab)(c) as the node label. Similarly, we insert <(b)(c)> and <(cd)> into the USeq-Trie. The
updated USeq-Trie is shown in Figure 2. To delete a pattern from USeq-Trie, we traverse the corresponding
path which represents the pattern in bottom-up order. The node in the path having no child nodes in the
USeq-Trie will be removed while traversing the corresponding path from the leaf node to the root node.
The resulting USeq-Trie after deleting <(ab)(c)> is shown in Figure 3.

Support Calculation. We propose an efficient method denoted as SupCalc by using USeq-Trie to
calculate weighted expected support of patterns. In this method, it reads sequences from the dataset one
by one and updates the support of all candidate patterns stored into the USeq-Trie against this one. For a
sequence S = <e1e2..en> (where ei is an event or itemset), the steps are defined as follows:

• At each node, define an array the size of S, which is n in this case. At the root node, all values of
the array will always be 1.0.

13

root

(a)

(b)

(b)(c)

(c)

(cd)

(d)

(ab)

(ab)(c)

(c)(d)

a

b

b

c

c

d

d
d

c

Figure 2: After insertion of patterns

root

(a)

(b)

(b)(c)

(c)

(cd)

(d)

(ab)
(c)(d)

a

b

b

c

c

d

d
d

Figure 3: After deleting <(ab)(c)> pattern

root

(d):0.81

(c):0.27

(cd):0.0

(c)(d):0.24

(b):0.7

(b)(c):0.2

(a):0.72

(ab):0.57

0.8 0.0 0.9 0.0 0.0

0.0 0.0 0.0 0.3 0.00.0 0.6 0.7 0.0 0.0

0.0 0.0 0.0 0.0 0.9

1.0 1.0 1.0 1.0 1.0

WES(<(a)>) = 0+0.9*0.8 = 0.72

0.0 0.0 0.63 0.0 0.0

WES(<(ab)>)
= 0+0.63*(0.8+1.0)/2 = 0.57 WES(<(b)>)

= 0+0.7*1.0 = 0.7

WES(<(b)(c)>)
= 0+0.21*(1.0+0.9)/2 = 0.2

WES(<(c)>) = 0+0.3*0.9 = 0.27

WES(<(c)(d)>)
= 0+0.27*(0.9+0.9)/2 = 0.24

WES(<(cd)>)
= 0+0.0*(0.9+0.9)/2 = 0.0

WES(<(d)>)
= 0+0.9*0.9 = 0.81

0.0 0.0 0.0 0.21 0.0
0.0 0.0 0.0 0.0 0.27

0.0 0.0 0.0 0.0 0.0

Figure 4: Pattern Maintenance and WES calculation using USeq-Trie

• Traverse the Useq-Trie in depth-first order. After following an edge, let the current pattern from root
to a particular node be α which ends with the item ik. The maximum weighted expected support of
the pattern α is stored at proper indices of the following node’s array. These proper indices are the
ending positions of α as a sub-sequence in S. Set values to zero at other indices.

• While traversing the USeq-Trie, iterate all events in S. (i) For s-extension with an item ik, we calculate
the support of the current pattern α (ends with ik in a new event) by multiplying the probability of
item ik in current event, em with the maximum probability in the parent node’s array up to the event
em−1. The resulting support is stored at position m in the following node’s array. (ii) For i-extension,
the support will be calculated by multiplying the probability of the item ik in em with the value at
position m in the parent node’s array and stored at position m in the following child node’s array.
After that, the maximum value in the resulting array multiplied with its weight will be added to the
weighted expected support of the current patterns at the corresponding node.

• Use the resultant array to calculate the support of all super patterns while traversing the next nodes.

For example, we consider a data sequence, S = <(a : 0.8)(b : 0.6)(a : 0.9, b : 0.7)(c : 0.3)(d : 0.9)>. To
calculate weighted expected support, the size of array is equal to 5 where each value is set initially as 1. For
the edge label a, the values at indices 1 and 3 of the array will be 0.8 and 0.9, respectively, and at other
indices will be 0. The maximum value in the array which is 0.9 multiplied with its weight 0.8 will be added
to WES of the current pattern at the child node which is labeled by (a). (ab) is an i-extension of (a) with
item b. Item b is only in the e3 itemset in S. The value of (ab) at position 3 in the array of node labeled by
(ab) will be the probability of item b in e3 itemset in S multiplied with the value at position 3 in the array
of node labeled by (a) which is 0.7× 0.9 = 0.63. The values at other positions in the array of node (ab) will

14

Algorithm 1 Procedure of SupCalc

Input: DB: initial database, candidateTrie: stores candidate patterns
Output: Calculated weighted expected supports for all patterns

1 procedure SupCalc(DB, candidateTrie)
2 for all S =< e1, e2, e3, ..., en > ∈ DB do ▷ ek is an itemset/event
3 ar ← the array of size equals to the number of events in |S| which is initialized as 1
4 wgt sum, itm cnt← 0 and 0 ▷ wgt sum - sum of items’ weights and itm cnt - their counts in a pattern
5 TrieTraverse(S, null, candidateTrie.root, ar, wgt sum, itm cnt)

6 procedure TrieTraverse(S, cur itmset, cur node, ar, wgt sum, itm cnt)
7 for all node ∈ cur node.descendents do
8 cur edge← edge label between current child node and cur node
9 cur ar ← the array of size ar initialized as 0

10 for all ek ∈ S do
11 if S-Extension Is TRUE then
12 cur itmset← cur edge
13 if cur itmset ∈ ek then
14 mxSup ← maxk−1

i=1 ari
15 cur ark ← mxSup× pcur edge ▷ pcur edge denotes the existential probability of cur edge in ek

16 if cur itmset /∈ ek then
17 cur ark ← 0

18 if I-Extension Is TRUE then
19 cur itmset← (cur itmset ∪ cur edge) ▷ cur itmset is extended with cur edge
20 if cur itmset ∈ ek then
21 cur ark ← ark × pcur edge ▷ pcur edge denotes the existential probability of cur edge in ek

22 if cur itmset /∈ ek then
23 cur ark ← 0

24 mxSup← max
|S|
i=1 cur ari

25 cur wgt sum← wgt sum+ wgtcur edge ▷ wgtcur edge denotes the weight of cur edge
26 cur itm cnt← itm cnt+ 1
27 node.WES ← node.WES +mxSup× cur wgt sum

cur itm cnt

28 TrieTraverse(S, cur itmset, node, cur ar, cur wgt sum, cur itm cnt)

be 0.0. The maximum value in the resulting array (0.63) multiplied with its sWeight ((0.8 + 1.0)/2 = 0.9)
will be added to the WES of node (ab). Afterward, by traversing the USeq-Trie in depth-first order, let us
consider the next branch from the root node of the USeq-Trie. The array for the edge label b contains values
of 0.6 and 0.7 at indices 2 and 3, respectively. The WES of the node labeled by (b) equals to the value of
max(0.6,0.7) multiplied with the weight of b. Next, (b)(c) is a s-extension of (b) with item c. Item c is only
in the e4 event in S. The value of (b)(c) at position 4 in the array of node labeled by (b)(c) will be the
probability of item c in e4 event in S multiplied with the maximum value up to the index 3 in the array of
node labeled by (b), which is 0.3× 0.7 = 0.21. The values at other positions in the array of node (b)(c) will
be 0.0. The maximum value in the resulting array (0.21) multiplied with its sWeight ((1.0 + 0.9)/2 = 0.95)
will be added to the WES of node (b)(c). Similarly, the support of all other patterns at corresponding nodes
will be calculated. The results are shown in Figure 4.

The pseudo-code has been given in Algorithm 1. It takes O(N×|S|) to update N number of nodes against
the sequence S. Therefore, the total time complexity of actual support calculation is O(|DB|×N×k) where
k is the maximum sequence length in the dataset. It outperforms the procedure used in uWSequence [37]
which needs O(|DB|×N×k2). Moreover, we can remove false-positive patterns and find frequent ones with
O(N) complexity. Thus, the use of USeq-Trie leads our solution to become more efficient.

15

3.3. FUWS : Faster Mining of Uncertain Weighted Frequent Sequences

In order to reduce the number of false-positive patterns by introducing a sophisticated upper bound
measure, wExpSupcap, and to make mining patterns more efficient, we develop an algorithm named as
FUWS inspired by PrefixSpan [36], to mine weighted sequential patterns in an uncertain database. The
sketch of FUWS algorithm is as follows,

• Process the database such that the existential probability of an item in a sequence is replaced with the
maximum probability of its all next occurrences in this sequence. This idea is similar to the prepro-
cess function of uWSequence [37]. In addition, sort the items in an event/itemset in lexicographical
order. This preprocessed database will be used to run the PrefixSpan like mining approach to find the
candidates for frequent sequences.

• Calculate WAM of all items present in the current database and set the threshold of weighted expected
support, minWES.

• Find 1-length frequent items and, for each item, project the preprocessed database into smaller parts
and expand longer patterns recursively. Store the candidates into a USeq-Trie.

• While growing longer patterns, extend current prefix α to α′ with an item β as s-extension or i-extension
according to the pruning condition defined in Equation 10.

• Use of wExpSupcap value instead of actual support generates few false-positive candidates. Scan the
whole actual database, update weighted expected supports and prune false-positive candidates based
on their weighted expected support.

Algorithm 2 Procedure of FUWS

Input: DB: initial database, min sup: support threshold, wgtFct: weight factor
Output: FS: set of weighted frequent patterns

1 procedure FUWS(DB, min sup, wgtFct)
2 pDB,WAM ← preProcess(DB)
3 minWES ← min sup× |pDB| ×WAM × wgt fct
4 extItms,maxPrs, iWgts← Determine(pDB) to find the set of potential s-extendable items.
5 for all β ∈ extItms do
6 expSupcap(β)← ×

∑
∀S∈(pDB) maxPrS(β)

7 wgtcap(β)← max(iWgts) ▷ iWgts - List of all items’ weights in pDB
8 if wExpSupcap(β) = expSupcap(β)× wgtcap(β) ≥ minWES then
9 candidateTrie← FUWSP (pDB|β, β,maxPrsβ , iWgtsβ , iWgtsβ , 1)

10 Call SupCalc(DB, candidateTrie)
11 FS ← Remove false positives and find frequent patterns from candidateTrie

12 procedure FUWSP(DB, α, maxPrα, mxWα, sWgtα, |α|)
13 extItms, mxPrs, iWgts← Determine(DB) to find set of potential i or s-extendable items for prefix α.
14 for all β ∈ extItms do
15 expSupcap(α ∪ β)← maxPrα ×

∑
∀S∈(DB|α) maxPrS(β)

16 wgtcap(α ∪ β)← max(mxWα, iWgts) ▷ iWgts - List of all items’ weights in DB
17 if wExpSupcap(α ∪ β) = expSupcap(α ∪ β)× wgtcap(α ∪ β) ≥ minWES then
18 maxPrα∪β ← maxPrα ×mxPrsβ
19 sWgtα∪β ← sWgtα + sWgtsβ
20 FUWSP (DB|β, (α ∪ β),maxPrα∪β ,max(mxWα, sWgtsβ), sWgtα∪β , |α ∪ β|)

Pseudo-code for FUWS is shown in Algorithm 2. The function preProcess in Line 2 prepares the input
database for pattern-growth approach FUWSP in FUWS. It computes WAM to incorporate our weight

16

constraint. In Algorithm 2, the function, Determine, finds the set of all the potential extendable items, the
maximum probabilities of items in the processed database, and their weights from the weight vector. In our
mining process FUWSP, we have used wExpSupcap, the upper bound for weighted expected support of a
sequence, to find out the set of i-extendable and s-extendable items and their probabilities and weights in
Line 13. In Lines 14-20, when the value of wExpSupcap(α ∪ β) satisfies the threshold minWES, FUWSP is
called recursively for the pattern (α ∪ β) to generate its super sequences. Otherwise, the algorithm prunes
the current pattern (α ∪ β) and its super patterns. As a result, FUWSP generates all potential candidate
sequences recursively. In addition to that, we use candidateTrie which is a USeq-Trie to store candidates
and update their weighted expected support efficiently. However, at Lines 10-11, FUWS calls the SupCalc
function in Algorithm 1 to calculate weighted expected support for all candidate sequences stored into the
candidateTrie and remove false ones. An extensive simulation of FUWS and its experimental results are
discussed in Section 3.5 and 4 respectively.

3.4. Two Approaches for Incremental Database

As we have mentioned, mining the complete set of frequent weighted sequential patterns is very expensive
with respect to time and space when the database grows dynamically, so to find out the almost complete set of
weighted frequent sequences (FS), we propose two techniques, uWSInc and uWSInc+. In both approaches,
we lower the minimum threshold minWES to minWES

′
= minWES×µ where 0 < µ < 1 is an user-chosen

buffer ratio. Sequences with weighted expected support less than minWES but at least equal to minWES′

are stored as weighted semi-frequent sequences, which are named as SFS.

3.4.1. uWSInc : Faster Incremental Mining of Uncertain Weighted Frequent Sequences

Instead of running an algorithm from scratch after each increment, uWSInc algorithm works only on the
appended part of the database. At first, it runs FUWS once to find FS and SFS from the initial dataset and
uses USeq-Trie to store frequent and semi-frequent sequences. After each increment ∆DB, the algorithm
follows the steps as listed below:

1. Update database size and WAM value. Calculate the new threshold of weighted expected support.

2. For each sequence α in FS and SFS, update its weighted expected support, WESα, by using our
proposed faster support calculation method, SupCalc, described in Algorithm 1.

3. Update the FS and SFS by comparing updated WESα values with the new minWES and minWES
′

respectively. A sequence may go to one of the updated FS’ or SFS’, or vice versa or it may become
infrequent. Once a pattern becomes infrequent, it will be removed and its information will get lost.

4. Use FS’ and SFS’ as FS and SFS for the next increment.

Pseudocode for uWSInc is given in Algorithm 3. The uWSInc algorithm runs FUWS once on the initial
database, DB. In Line 2, it stores both FS and SFS into a single seqTrie which brings out more space
compactness. For each increment ∆DBi, it calls SupCalc function in Algorithm 1 to update the weighted
expected support (WES) values of all FS and SFS accordingly. In Line 9-11, it traverses the seqTrie and
removes patterns whose WES is less than minWES

′
. Finally, it traverses the seqTrie to find frequent

patterns whose WES is greater or equal to the threshold minWES that is FS. The simulation of uWSInc by
using an example has been explained in Section 3.5 and the details of result analysis are shown in Section 4.

3.4.2. uWSInc+ : Incremental Mining of Uncertain Weighted Frequent Sequences for Better Completeness

Let us consider some cases: (a) an increment to the database may introduce a new sequence which was
initially absent in both FS and SFS but appeared frequently in later increments; (b) a sequence had become
infrequent after an increment but could have become semi-frequent or even frequent again after next few
increments. There are many real-life datasets where new frequent patterns might appear in future increments
due to their seasonal behavior, different characteristics, or concept drift. The uWSInc algorithm does not
handle these cases. To address these cases, we maintain another set of sequences denoted as promising

17

Algorithm 3 Procedure of uWSInc

Input: DB: initial database, ∆DB : new increments, min sup: support threshold, µ: buffer ratio, wgt fct: weight
factor

Output: FS: set of weighted frequent patterns

1 procedure InitialMining(DB, ∆DBi, min sup, µ, wgt fct)
2 seqTrie← FUWS(DB,min sup× µ,wgt fct)
3 for all ∆DBi do
4 DBSize← DBSize+∆DBiSize
5 seqTrie← uWSInc(∆DBi, min sup, µ, wgt fct, seqTrie)

6 procedure uWSInc(∆DBi, min sup, µ, wgt fct, seqTrie)
7 Call SupCalc(∆DBi, seqTrie)
8 minWES ← min sup×DBsize×WAM × wgt fct
9 for all β ∈ (FS ∨ SFS) stored into seqTrie do

10 if wExpSup(β) < (minWES × µ) then
11 Remove pattern β from seqTrie

12 FS ← seqTrie.find frequent patterns(minWES)

frequent sequences (PFS) after each increment ∆DB introduced into DB. Promising frequent sequences
are neither globally frequent nor semi-frequent, but their weighted expected supports satisfy a user-defined
support threshold named as LWES that is used to find locally frequent patterns in ∆DB at a particular
point. Here, whether a pattern is globally frequent (or semi-frequent) or not is determined by its frequency
in the entire database, and whether a pattern is locally frequent or not is determined by its frequency in
an increment. Intuitively, it can be assumed that locally frequent patterns may become globally frequent
or semi-frequent after the next few increments. The patterns whose WES values do not meet the local
threshold, LWES, are very unlikely to become globally frequent or semi-frequents. Thus maintaining PFS
may significantly increase the performance of an algorithm in finding the almost complete set of frequent
patterns after each increment. To incorporate the concept of promising frequent sequences (PFS) in mining
patterns, we propose another approach, called uWSInc+, shown in Algorithm 4.

Promising
Frequent
Sequences

(PFS)

Frequent
Sequences

(FS)

Semi-frequent
Sequences

(SFS)
Initial

Database

In-Frequent
Sequences

(IFS)

PFS
IFS

Frequent
Sequences

(FS)

Semi-frequent
Sequences

(SFS)

Promising
Frequent
Sequences

(PFS)

In-Frequent
Sequences

(IFS)

Blue arrow --> our algorithm captures and stores these patterns
Red arrow --> our algorithm does not store these patterns

FS

PFS

SFS

IFS

FS

SFS

PFS

FS

SFS

IFS

PFS

FS

SFS

IFS

Figure 5: Determination of sequences in our proposed uWSInc+ architecture.

18

In Figure 5, the determination of sequences in our proposed uWSInc+ architecture has been presented.
Each frequent sequence will be either frequent, semi-frequent, promising frequent, or infrequent after each
increment. Similarly, one of the four cases will occur to each semi-frequent or promising frequent sequence.
uWSInc+ stores FS, SFS and PFS into USeq-Trie and maintains them for next increments. Nevertheless,
when any sequence becomes an infrequent sequence, it will not be stored further. As a result, uWSInc+
loses that information. Again, any infrequent sequence can be PFS or SFS or FS after several increments.
Intuitively, an infrequent sequence will become PFS before being SFS or FS as the size of an increment
is usually smaller than that of the whole database. Since uWSInc+ stores PFS, consequently, it would be
able to capture them. Therefore, the maintenance of PFS makes uWSInc+ more robust to any concept
drifts in incremental databases.

Algorithm 4 Procedure of uWSInc+

Input: DB: initial database, ∆DB : new increments, min sup: minimum support threshold, µ: buffer ratio, wgt fct:
weight factor

Output: FS: set of frequent patterns

1 procedure InitialMining(DB, ∆DBi, min sup, µ, wgt fct)
2 seqTrie← FUWS(DB,min sup× µ,wgt fct)
3 pfsTrie← Trie to store PFS which is initialized as empty
4 for all ∆DBi do
5 DBSize← DBSize+∆DBiSize
6 seqTrie, pfsTrie ← uWSInc+(∆DBi, min sup, µ, wgt fct, seqTrie, pfsTrie)

7 procedure uWSInc+(∆DBi, min sup, µ, wgt fct, seqTrie, pfsTrie)

8 LWES = 2×min Sup× µ×∆DBiSize×WAM
′
× wgt fct ▷ choice of LWES may vary

9 lfsTrie← FUWS(∆DBi, 2×min Sup× µ,wgt fct)
10 Call SupCalc(∆DBi, seqTrie)
11 Call SupCalc(∆DBi, pfsTrie)
12 minWES ← min sup×DBsize×WAM × wgt fct
13 for all α ∈ (FS ∨ SFS) stored into seqTrie do
14 if wExpSup(α) < (minWES × µ) then
15 Delete pattern α from seqTrie
16 if wExpSup(α) ≥ LWES then
17 Insert pattern α into pfsTrie

18 for all β ∈ PFS stored into pfsTrie do
19 if wExpSup(β) ≥ (minWES × µ) then
20 Delete pattern β from pfsTrie
21 Insert pattern β into seqTrie
22 else if wExpSup(β) < LWES then
23 Delete pattern β from pfsTrie

24 for all γ ∈ LFS stored into lfsTrie do
25 if wExpSup(γ) ≥ (minWES × µ) then
26 Insert γ into seqTrie
27 else if wExpSup(γ) ≥ LWES) then
28 Insert γ into pfsTrie

29 FS ← seqTrie.find frequent patterns(minWES)

Similar to uWSInc, frequent and semi-frequent sequences generated by running FUWS on the initial
database are stored as FS and SFS. For space efficiency, we store FS and SFS together into a single USeq-
Trie instead of using two different USeq-Trie structures. In addition, a different USeq-Trie, which is initially
empty, is used to store promising frequent sequences (PFS).

After each increment ∆DB, the steps of the algorithm are as follows:

1. Update database size, WAM, minWES, and minWES
′
.

19

2. Run FUWS only in ∆DB to find locally frequent sequences against a local threshold, LWES and store
them into a USeq-Trie, named as LFS. Users can choose LWES based on the aspects of application.

3. For all α in FS, SFS and PFS, update WESα by using SupCalc method in Algorithm 1.

• if WESα < LWES, delete α’s information.

• else if WESα < minWES′, move α to PFS’.

• else if WESα < minWES, move α to SFS’.

• else move α to FS’.

4. Move each pattern α from LFS to PFS’ or SFS’ or FS’ based on WESα.

5. Use FS’, SFS’, and PFS’ as FS, SFS, and PFS respectively for the next increment.

In Algorithm 4, uWSInc+ stores FS and SFS into seqTrie which are generated from running FUWS
once on the initial databae DB in Line 2. It initializes pfsTrie as an empty USeq-Trie in Line 3. Then for
each increment ∆DBi, it runs FUWS only in ∆DBi to find locally weighted frequent sequences considering
LWES and stores them into another USeq-Trie named as lfsTrie in Line 9. After that, it calls SupCalc
function to update the weighted expected support for all patterns (FS ∨SFS) stored into seqTrie and PFS
stored into pfsTrie. In Line 13-28, it updates the seqTrie and pfsTrie according to the updated WES of all
patterns. Finally, it finds the frequent sequences FS by traversing the seqTrie.

The proposed algorithms uWSInc and uWSInc+ never generate any false positive patterns which can
be verified from Lemma 6.

Lemma 6. uWSInc and uWSInc+ algorithms never generate any false-positive sequences. In other words,
any generated sequential pattern α, that is generated by one of uWSInc algorithm or uWSInc+ algorithm,
must be a true-positive pattern.

Proof. Assume that a mined weighted frequent sequential pattern, α, is a false positive pattern. Then,
there could be two sources of this pattern.

1. Case 1: The pattern α is mined by uWSInc algorithm

2. Case 2: The pattern α is mined by uWSInc+ algorithm

As, every mined sequential pattern, α, is mined using either uWSInc algorithm or uWSInc+ algorithm
in the proposed incremental architectures.

According to the proposed system architecture, both uWSInc and uWSInc+ approaches apply FUWS
algorithm to mine weighted frequent sequences(FS) and semi-frequent sequences(SFS) from initial database.

Now, let us assume that a mined weighted frequent sequence, α, is a false positive pattern. Then,

1. Case 1: The sequence α is mined by uWSInc algorithm:

From Algorithm 3, we can see that the uWSInc process applies the FUWS algorithm to find all the
weighted frequent sequence FS and weighted semi-frequent sequence SFS from the initial database.
If α is a sequence mined by uWSInc, then α must be a sequence from the set of FS or SFS. (1)
So, a sequence α mined by FUWS algorithm can be a false positive sequence. (2)
But, according to Lemma 5, all the sequences mined by FUWS must be true positive. (3)
Thus, analyzing the Statements (1), (2), and (3), we can say that it is clearly a contradiction.
∴ A sequence α, which is mined by uWSInc algorithm, must be a true positive sequence. And none
of the mined sequences by uWSInc algorithm can be a false-positive sequence. (4)

2. Case 2: The sequence α is mined by uWSInc+ algorithm:

From Algorithm 4, we can see that all the sequences generated by the uWSInc+ algorithm mined
from one of the two processes below:

20

• Process 1: using the FUWS algorithm to find all the weighted frequent sequence FS and weighted
semi-frequent sequence SFS from the initial database

• Process 2: measuring the frequent measure for the incremental databases, it finds two sets of
sequences as local frequent sequences LFS and promising frequent sequence PFS.

For Process 1,
If α is a sequence mined by uWSInc+, then α must be a sequence from the set of FS or SFS. (5)
So, a sequence α mined by FUWS algorithm can be a false positive sequence. (6)
But, according to Lemma 5, all the sequences mined by FUWS must be true positive. (7)
Thus, analyzing the Statements (5), (6) and (7), we can say that it is clearly a contradiction, too.

For Process 2,
It can be said that the local frequent measure lacks the global occurrences
Thus, all the local measures must be lower than the global measures. So, there is no chance of getting
any false-positive sequences.

∴ A sequence α which is mined by uWSInc+ algorithm, must be a true positive sequence. And none
of the mined sequences by the uWSInc+ algorithm can be a false-positive sequence. (8)

∴ From the Statements (4) and (8), we can conclude that ”uWSInc and uWSInc+ algorithms never
generate any false-positive sequences. In other words, any generated sequence α which is generated by the
uWSInc or uWSInc+ algorithms, must be a true positive sequence.”

Details of an example simulation and result analysis are shown in Section 3.5 and Section 4, respectively.

3.5. Example Simulation

Let us consider Table 2 as the initial database DB and the increments shown in Table 4. For this
simulation, set the support threshold min sup=20%, buffer ratio µ=0.7, and wgt fct = 1.0. As a result, the
minimum weighted expected support threshold for frequent sequences, minWES = 1.06 and for semi-frequent
sequences, minWES

′
= 0.74.

The detailed simulations of FUWS on DB in Table 2 are shown in Figure 6 where we compared the
value of wExpSupcap for a sequence with minWES

′
to find out the candidates of frequent and semi-frequent

sequences together. The semi-frequent sequences will be used in our incremental techniques later.
FUWS algorithm processes DB in the way that has been described in Algorithm 2. The preprocessed

database has been shown as pDB in Figure 6. The FUWS algorithm uses pDB to find the potential
candidates. An item is called s-extendable (or i-extendable) when the the value of wExpSupcap for the
sequence extension (or itemset extension) of a prefix by that item satisfies the threshold minWES

′
. First

of all, it finds extendable items considering the prefix pattern which is empty initially. Thus the resulting
super sequences are <(a)> : 2.8, <(b)> : 1.40, <(c)> : 2.0 where the real numbers associated with each item
denote the value of wExpSupcap for the respective super patterns. It projects the database recursively while
considering the newly generated super pattern as prefix pattern and finds out extendable items following
the same process. In Figure 6, an edge label indicates an extendable item and the edge type indicates the
extension type; solid lines are for s-extensions and dashed lines are for i-extensions.

In this example, FUWS algorithm considers<(a)> as first prefix pattern and it projects pDB accordingly.
After that, the algorithm finds i-extendable item <(c)> and s-extendable items for the prefix pattern
<(a)> which are <(a)>,<(b)> and <(c)>. Consequently, newly generated super patterns are <(a)(a)> :
2.25, <(a)(b)> : 1.08, <(a)(c)> : 0.90 and <(ac)> : 1.8. Then it considers each super patterns as prefix
pattern individually and tries to find out longer patterns by following the same process recursively. In this
example, the algorithm does not find any extendable items for prefix patterns <(a)(a)>,<(a)(b)>,<(a)(c)>,
except for <(ac)> : 1.8 which has only one super sequence < (ac)(a) >: 0.81, so then it backtracks to
project the database considering <(b)> as next 1-length prefix pattern. Again, there are no extendable

21

wExpSupcap : 0.0
maxPr : 0.0
wgtcap : 1.0

Preprocessed Database, pDB
(a:0.9, c:0.6)(a:0.7)(b:0.3)(d:0.7)
(a:0.6, c:0.4)(a:0.5)(a:0.4, b:0.3)
(a:0.4)(a:0.4, b:0.3)(a:0.4, b:0.3, g:0.5)
(a:0.3, c:0.4)(a:0.3, b:0.1, c:0.4)
(d:0.1)(a:0.5)(d:0.1)(a:0.5, c:0.6)
(b:0.4)(b:0.4)(a:0.1)(a:0.1, b:0.2)wExpSupcap : 2.8

maxPr : 0.90
wgtcap : 1.0

Projected Database
(-, c:0.6)(a:0.7)(b:0.3)(d:0.7)
(-, c:0.4)(a:0.5)(a:0.4, b:0.3)
(a:0.4, b:0.3)(a:0.4, b:0.3, g:0.5)
(-, c:0.4)(a:0.3, b:0.1, c:0.4)
(d:0.1)(a:0.5, c:0.6)
(a:0.1, b:0.2)

wExpSupcap : 1.40
maxPr : 0.40
wgtcap : 1.0

Projected Database
(d:0.7)
(a:0.4, b:0.3, g:0.5)
(-, c:0.4)
(b:0.4)(a:0.1)(a:0.1, b:0.2)

wExpSupcap : 2.0
maxPr : 0.60
wgtcap : 1.0

Projected Database
(a:0.7)(b:0.3)(d:0.7)
(a:0.5)(a:0.4, b:0.3)
(a:0.3, b:0.1, c:0.4)

wExpSupcap : 2.25
maxPr : 0.63
wgtcap : 1.0

Projected Database
(b:0.3)(d:0.7)
(a:0.4, b:0.3)
(-, b:0.3)(a:0.4, b:0.3, g:0.5)
(-, b:0.1, c:0.4)
(-, c:0.6)
(-, b:0.2)

wExpSupcap : 1.08
maxPr : 0.27
wgtcap : 1.0

Projected Database
(d:0.7)
(a:0.4, b:0.3, g:0.5)
(-, c:0.4)

wExpSupcap : 0.90,
maxPr : 0.54,
wgtcap : 0.9

Projected Database

wExpSupcap : 1.8
maxPr : 0.54
wgtcap : 1.0

Projected Database
(a:0.7)(b:0.3)(d:0.7)
(a:0.5)(a:0.4, b:0.3)
(a:0.3, b:0.1, c:0.4)

wExpSupcap : 0.9
maxPr : 0.42
wgtcap : 1.0

Projected Database
(b:0.3)(d:0.7)
(a:0.4, b:0.3)
(-, b:0.1, c:0.4)

Weight
a : 0.8
 b : 1.0
c : 0.9
d : 0.9
e : 0.7
f : 0.9

g : 0.8

<(a)(a)>

<(a)(b)>
<(a)(c)> <(ac)>

<(c)(a)>

Initial Database
(a:0.9, c:0.6)(a:0.7)(b:0.3)(d:0.7)
(a:0.6, c:0.4)(a:0.5)(a:0.4, b:0.3)
(a:0.3)(a:0.2, b:0.2)(a:0.4, b:0.3, g:0.5)
(c:0.1, a:0.1)(a:0.3, b:0.1, c:0.4)
(d:0.1)(a:0.4)(d:0.1)(a:0.5, c:0.6)
(b:0.3)(b:0.4)(a:0.1)(a:0.1, b:0.2)

Candidate Patterns
<(a)>,<(a)(a)>,<(a)(b)>,<(a)(c)>,<(ac)>,

<(ac)(a)>,<(b)>,<(c)>, <(c)(a)>.

FS : <(a)> : 2.24, <(b)> : 1.4, <(c)> : 1.8
SFS : <(a)(a)> : 1.03, <(ac)> : 1.02

<(b)>

<(a)>
<c)>

wExpSupcap : 0.81
maxPr : 0.38
wgtcap : 1.0

Projected Database
(b:0.3)(d:0.7)
(a:0.4, b:0.3)
(-, b:0.1, c:0.4)

<(ac)(a)>

min_sup : 20%
buffer ratio : 0.7

wgt_fct : 1.0

minWES = 1.06
minWES' = 0.74

Figure 6: FUWS simulation for Initial Database, DB in Table 2

items for <(b)>. It takes <(c)> as next prefix pattern and finds only one extendable item, which is <(a)>.
The algorithm repeats the same process for <(c)(a)>. No extendable items are found for prefix pattern
<(c)(a)>. As there are no unexplored patterns, the recursive process terminates. It stores all potential
candidate patterns into USeq-Trie.

To remove false positive patterns, the algorithm scans the database DB to calculate the actual weighted
expected support WES for all candidates. Finally, it finds frequent and semi-frequent sequences by compar-
ing the values of WES with minWES and minWES

′
. The resultant FS : <(a)> : 2.24, <(b)> : 1.4, <(c)> :

1.8 and SFS : <(a)(a)> : 1.03, <(ac)> : 1.02 where the real values correspond to WES.
After the first increment, ∆DB1, the updated value of minWES is 1.74. The uWSInc algorithm scans the

∆DB1 and updates the weighted expected support values for patterns in FS and SFS which are found in the
initial DB. As a result, FS and SFS are updated as shown in Table 5. The second approach, uWSInc+ runs
FUWS and finds the locally frequent set, LFS, for ∆DB1 using 0.96 as LWES. Users can set different local
threshold LWES based on the size and nature of increments, distribution of items, etc. In this simulation,
let us assume that LWES = 2×min sup× |∆DBi| ×WAM ×µ×wgt fct for ∆DBi. By scanning ∆DB1,
it updates the WES for FS, and SFS which are found in initial database DB. After that FS, SFS and PFS

22

Increment Id Sequence

∆DB1

7 (c:0.6, a:0.7)(a: 0.8)(f:0.9, a:0.6)
8 (c:0.6, a:0.4)(c:0.8)(a:0.6)(f:0.5)(g:0.4, c:0.7)
9 (f:0.8)(a:0.3)(c:0.9)(d:0.9)(f:0.5, a:0.7, d:0.4)
10 (c:0.7)(a:0.1)(a:0.8, c:0.6, d:0.8)

∆DB2

11 (f:0.1)(f:0.3, c:0.7)(a:0.9)(d:0.9)(f:0.2, g:0.1)
12 (a:0.2, c:0.1)(b:0.8)(f:0.4, e:0.4)(g:0.1)(e:0.5, g:0.2)
13 (c:0.6)(a:0.9)(d:0.6)(e:0.6)(a:0.5, e:0.4, c:0.1)

Table 4: Increments, ∆DBi

Inc. uWSInc uWSInc+

∆DB1

FS:

< (a) >: 4.56
LFS:

< (a) >: 2.32, < (c) >: 2.7, < (d) >: 1.53, < (f) >: 1.98,
< (a)(a) >: 1.90 < (a)(f) >: 0.99, < (ac) >: 0.97, < (c)(a) >: 1.83,
< (ac) >: 1.99 < (c)(f) >: 1.23, < (f)(c) >: 0.96
< (c) >: 4.50

FS:
< (a) >: 4.56, < (a)(a) >: 1.9, < (ac) >: 1.99,
< (c) >: 4.50, < (c)(a) >: 1.83, < (f) >: 1.98

SFS: < (b) >: 1.4
SFS: < (c)(d) >: 1.23, < (b) >: 1.4, < (c)(f) >: 1.25, < (d) >: 1.53
PFS: < (a)(f) >: 0.99, < (f)(c) >: 0.96

∆DB2

FS:
LFS:

< (a) >: 1.6, < (a)(d) >: 1.15, < (b) >: 0.8, < (c) >: 1.26,
< (a) >: 6.16 < (d) >: 1.35, < (c)(d) >: 0.89, < (c)(a) >: 1.99,
< (a)(a) >: 2.26 < (c)(a)(d) >: 0.77, < (e) >: 0.77
< (c) >: 5.76

FS:
< (a) >: 6.16, < (a)(a) >: 2.26, < (c) >: 5.76,
< (c)(a) >: 2.82, < (d) >: 2.88, < (f) >: 2.61

SFS:
< (ac) >: 2.05 SFS: < (ac) >: 2.05, < (b) >: 2.2, < (c)(d) >: 2.12
< (b) >: 2.20

PFS:
< (a)(d) >: 1.15, < (c)(f) >: 1.41, < (a)(f) >: 1.22,
< (e) >: 0.77, < (f)(c) >: 1.03, < (c)(a)(d) >: 0.77

Table 5: Simulation for Increments, ∆DBi

have been updated according to the updated minWES and LWES. The results are shown in Table 5. From
Table 5, we can see that new pattern <(c)(a)> and <(f)> appear in FS and < (b) >, <(d)>, <(c)(d)> and
<(c)(f)> appear in SFS of uWSInc+ but not in uWSInc. These patterns <(d)>, <(c)(d)> and <(c)(f)>
might be frequent later after few increments. The uWSInc+ might be able to find them which uWSInc
could never do.

Similarly for the second increment ∆DB2, the uWSInc and uWSInc+ algorithms use FS, SFS, and PFS
which are updated after first increment and follow the same process to generate updated FS, SFS, and PFS.
The results are shown in Table 5. Finally, we can see that three patterns <(c)(a)>, <(d)> and <(f)>
have become frequent after this increment which are found by uWSInc+ but not uWSInc. This makes the
difference between our two approaches clear as uWSInc+ can find them but uWSInc cannot.

3.6. Analysis of Time and Space Complexity

Before going to the experimental performance evaluation in Section 4, it is necessary to discuss the
runtime and memory complexity of our proposed algorithms. We use Big-O-notation to denote the upper
bound of complexity while considering that each computer operation takes approximately constant time.
Here, throughout this section, M indicates the total number of sequences in the given dataset. Similarly, N
- the number of nodes in USeq-Trie, L - the maximum length of a data sequence, D - the maximum depth of
USeq-Trie (aka maximum length of candidate patterns), and S - the maximum size of an extendable itemset.

• SupCalc (in Algorithm 1) - This function scans the given dataset sequence by sequence and calls
TrieTraverse function for each data sequence to calculate the support of all candidate patterns where

23

TrieTraverse function takes O(N ×L). Therefore, overall runtime complexity will be O(M ×N ×L).
Moreover, in the worst possible cases, memory complexity will be O(D × L) due to the depth-first
traversal on USeq-Trie.

• FUWS (in Algorithm 2) - To process the whole data-set by using preProcess function, it may require
O(M × L) units of time and O(M × L) units of memory space. Then Determine function may take
O(M × L) time along with O(M × S) unit memory. Moreover, the execution tree of the recursive
process FUWSP could expand exhaustively, though any branch could be pruned out. Thus in the
worst possible case, the runtime will be O(SD ×M × L) to find potential candidate patterns from an
uncertain database.

• uWSInc (in Algorithm 3) - This algorithm will take O(N ×M ×L) to find updated set of FS and SFS
after updating their support using SupCalc function for each increment into the dataset.

• uWSInc+ (in Algorithm 4) - Since it runs FUWS on each increment ∆DBi to find LFS, the first
part of its complexity will be same as the runtime complexity of FUWS algorithm. Its complexity
mostly depends on the complexity of FUWS. Besides that, the complexity for the rest of this algorithm
depends on the complexity of SupCalc algorithm to update the weighted support of FS, SFS, and PFS,
which are generated from previous increments along with to update the FS, SFS, and PFS after each
increment. Approximately, it will be O(N ×M × L).

The above complexity analysis shows that our proposed algorithms can find weighted frequent sequences
from both static and incremental datasets efficiently with respect to time and memory. Extensive exper-
imental performance analysis on different real-life datasets is provided in the following section to validate
this claim.

4. Performance Evaluation

To evaluate our algorithms and show the effect of weights and uncertainty in data mining, we needed
real-life standard datasets with noise and probability. Unfortunately none of the datasets given in data
mining repositories such as SPMF1 and FIMI2 are uncertain. Hence, we have used the general sequence
datasets after assigning weights and probabilities by using different distributions to demonstrate and analyze
the performance of our proposed solutions.

Datasets. Among the datasets that we have used, Retail, Foodmart, OnlineRetail, and Chainstore
are market-basket data; Kosarak, FIFA, and MSNBC are click stream data; Sign contains sign language
utterance; Accident contains traffic accident data and Leviathan is a dataset of word sequences converted
from a famous novel, Leviathan. However, the Retail, OnlineRetail, Foodmart, and Chainstore datasets are
given in itemset format. So, we have converted them into SPMF sequential format where each transaction
is a single sequence and its each individual item is considered to be a single event. A short description of
all the tested datasets is given in Table 6.

Assignment of Probability and Weight. We have used a normal distribution to assign probability
in the existing popular real-life datasets to reflect the nature of uncertainty. The normal distribution is more
prominent in statistics and is widely used in the field of data mining as it fits many natural phenomena.
We have assigned the existential probability to each item using a gaussian distribution with mean µ = 0.5
and standard deviation σ = 0.25 for our general experimental purpose. Moreover, the weight for an item
has been assigned using a gaussian distribution with µ = 0.5 and σ = 0.125 as a general-purpose. Figure 7
shows the distributions for probability and weight values in the general setting of our experiments.

Besides this general processing, we have tested the performance of our proposed algorithm with respect
to different distributions of probability and weight values. We have also analyzed the results by changing
different parameters to verify the correctness and efficiency of our algorithms. All of these analyses are

1http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
2http://fimi.uantwerpen.be/data/

24

http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
http://fimi.uantwerpen.be/data/

Dataset Total
Sequences

Average
Lenth

Distinct
Items

Remarks

Retail 88,163 11.306 16,471 Customar transcations data of 5
consecutive months

Kosarak 990,000 8.1 41,270 Click-stream Data from a news
portal

Accidents 340,184 34.808 469 Traffic-accident data for the pe-
riod 1991-2000

Chainstore 1,112,949 7.2 46,086 Customer transaction data
where incremental mining can
be greatly effective

Foodmart 4,141 4.424 1,559 Market-basket data with huge
variety of items

OnlineRetail 541,909 4.37 2,603 A sparse market-basket dataset

Leviathan 5,834 26.34 9,025 Conversion of the novel
Leviathan into word sequences

FIFA 26,198 34.74 2,990 click stream data from FIFA
World Cup 98 website

Sign 730 51.997 267 Sign language utterance

MSNBC 31,790 13.33 17 Click-stream data from news
website

Table 6: Dataset Description

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

Existential Probabilities Item Weights

Figure 7: Distribution of Probability Values and Item Weights

discussed in the following sections. Section 4.1 demonstrates the performance of our static algorithm,
FUWS, for mining weighted/unweighted sequential patterns from uncertain databases. Section 4.2 shows
the efficiency of our proposed techniques, uWSInc and uWSInc+, for the incremental mining. We have
implemented our algorithms using Python programming language and a machine that has Core™ i5-9600U
2.90GHz CPU with 8GB RAM.

4.1. Performance of Uncertain Sequential Pattern Miner, FUWS

Here we provide the experimental results that show the performance of FUWS. We have compared the
performance with the existing algorithm, uWSequence [37], which is discussed in Section 2.3. uWSequence
proposed a framework where the definition of weighted sequential pattern is different from our proposed

25

definition that is inspired by the widely accepted concept of weighted support in the literature of weighted
pattern mining from precise datasets. While uWSequence is the current best algorithm of mining weighted
sequential patterns from uncertain databases, the authors also showed that it outperforms the existing
methods for mining sequential patterns in uncertain databases without weight constraint. Hence, it is
sufficient to compare the performance with uWSequence to show the efficiency of our proposed FUWS. We
have set the weights of all items to 1.0, which brings both algorithms under a unifying framework as the
definition of the weighted sequential pattern differs.

Evaluation Criteria. We have considered two main criteria to evaluate the performance of uWSe-
quence and FUWS for the same support threshold and same assignment of probability values in a dataset.

(a) Total number of candidates generated. Recall that both FUWS and uWSequence, like Pre-
fixSpan, use different upper bounds for actual expected support value. For this reason, both of them
generate some false positive candidates which get removed when their actual expected support values
are measured through an extra scan of the database. The performance of a mining algorithm should
be called superior if it generates fewer candidates than other state-of-art algorithms and finds an equal
number of actual patterns.

(b) Total running time required. Runtime is an established criterion to evaluate the efficiency of
pattern mining algorithms. The less the total required time, the more efficient the algorithm is. We
conduct experiments on several real-life datasets to demonstrate the performance of FUWS compared
to the current best state-of-art algorithm uWSequence.

Experiments on this section are conducted by varying the following parameters:

(a) Minimum support threshold. The minimum support threshold, min sup%, is a value between 0.0
to 1.0, which is used to calculate the minimum (weighted) expected support threshold for determining
the (weighted) sequential patterns. Experiments are conducted for different min sup% for each dataset
to show the effectiveness of FUWS at any threshold based on the appl ication requirements and
discussed elaborately in Sections 4.1.1 and 4.1.2.

(b) Probability distribution. As the item existential probability values are assigned by ourselves, we
have run both the algorithms several times with different probability distributions and discussed the
experimental results in Section 4.1.3.

(c) Choice of weight factor. The parameter wgt fct has been introduced to tune the mining of
weighted patterns. The concept is to get patterns with more weighted expected support by setting
this factor to a higher value. We have run our algorithm on several datasets with the same support
threshold, same probability, and weight assignment but different weight factors to demonstrate this
feature. The results are shown in Section 4.1.4.

4.1.1. Comparison of Candidate Generation with uWSequence

FUWS uses expSupcap as the upper bound measure which is theoretically tighter than the expSupporttop

used in uWSequence. As a result, it generates fewer false positive candidates (Lemma 2). Figure 8a shows
the comparison of candidate generation between FUWS and uWSequence in Sign dataset for different
support thresholds. We have plotted the count of sequences in the y-axis on a logarithmic scale for a better
graphical representation. As we can see, FUWS generates 542 candidates, where uWSequence generates
7874 candidates when the support threshold is 20%. However, only 64 of them are found to be weighted
frequent after calculating their actual weighted expected support (using the efficient SupCalc method).

Thus, FUWS generates 88.19% false positive candidates whereas this number is 99.18% for uWSequence
which is shown in Figure 8b. The difference is about 11 percentage points in this case. We have observed
that this difference gets lower when the support threshold decreases. Both FUWS and uWSequence generate
more false positive candidates for a smaller support threshold.

Similarly, comparison of candidate generation in other datasets such as Kosarak, Retail, MSNBC, FIFA
and Accident are shown in Figures 8c, 9a, 9b, 9c, and 9d. The difference between FUWS and uWSequence

26

1

10

100

1000

10000

100000

40% 30% 20% 15% 10%

Nu
m

be
r o

f P
at

te
rn

s

Minimum support threshold, min_sup%

uWSeq. FUWS Actual Patterns

(a) Number of candidate patterns in Sign dataset

85%

88%

90%

93%

95%

98%

100%

20% 18% 15% 12% 10%

Fa
lse

 Po
sit

ive
 Ca

nd
ida

te
s

Minimum support threshold, min_sup%

uWSeq. FUWS

(b) % of false positive candidates in Sign dataset

1

10

100

1000

10000

100000

1000000

0.2% 0.18% 0.15% 0.12% 0.1%

Nu
m

be
r o

f P
at

te
rn

s

Minimum support threshold, min_sup%

uWSeq. FUWS Actual patterns

(c) Number of candidate patterns in Kosarak dataset

70%

75%

80%

85%

90%

95%

100%

0.2% 0.18% 0.15% 0.12% 0.1%

Fa
lse

 Po
sit

ive
 Ca

nd
ida

te
s

Minimum support threshold, min_sup%

uWSeq. FUWS

(d) % of false positive candidates in Kosarak dataset

Figure 8: Comparison of candidate generation between FUWS and uWSequence in Sign and Kosarak datasets

is huge in the Accident dataset. We could not run the uWSequence algorithm for lower thresholds on this
dataset within our 8GB memory capacity. We were able only to find the results with a support threshold
not less than 40%. From the results in all datasets, we can conclude that a strict upper bound of weighted
expected support calculation leads to a significant reduction in candidate generation in the mining process.
However, the ratio between the number of candidate patterns and frequent patterns increases with the
decrease in the support threshold. Nonetheless, the ratio for FUWS is much lower than uWSequence for all
datasets.

4.1.2. Comparison of Runtime with uWSequence

Figure 10a shows comparison of runtime in Sign dataset for different support thresholds. As we can
see, the difference between the runtime of the two algorithms increases with the decrease in the support
threshold. The curve representing FUWS rises slowly, but the curve of uWSequence rises up very fast with a
slight decrease in the threshold. Figure 10b shows the runtime comparison between FUWS and uWSequence
in Kosarak dataset. It is quite similar to the result in Sign. The difference in the runtime between FUWS
and uWSequence algorithms increases exponentially with the decreasing values of the support threshold.

The reasons behind increasing difference in runtime are as follows,

(a) uWSequence generates more false-positive candidates than FUWS for the same support threshold.

(b) even if the number of candidates was the same, uWSequence would consume more time as its complexity
of calculating actual weighted expected support is worse than that of FUWS.

The use of faster support calculation method SupCalc based on USeq-Trie gives a benefit to FUWS in the
latter case. Results in Retail, FIFA, MSNBC, and Leivathan datasets are also shown in Figure 10. In every
dataset, FUWS outperforms the existing uWSequence at any minimum support threshold.

27

1

10

100

1000

10000

0.5% 0.4% 0.35% 0.3% 0.25%

Nu
m

be
r o

f P
at

te
rn

s

Minimum support threshold, min_sup%

uWSeq. FUWS Actual Patterns

(a) Retail dataset

1

10

100

1000

30% 20% 10% 8% 7.5%

Nu
m

be
r o

f P
at

te
rn

s

Minimum support threshold, min_sup%

uWSeq. FUWS Actual Patterns

(b) MSNBC dataset

1

10

100

1000

10000

20% 18% 17% 16% 15%

Nu
m

be
r o

f P
at

te
rn

s

Minimum support threshold, min_sup%

uWSeq. FUWS Actual Patterns

(c) FIFA dataset

1

10

100

1000

10000

100000

50% 47.50% 45% 42.50% 40%

Nu
m

be
r o

f P
at

te
rn

s

Minimum support threshold, min_sup%

uWSeq. FUWS Actual Patterns

(d) Accident dataset

Figure 9: Comparison of candidate generation between FUWS and uWSequence in Retail, MSNBC, FIFA, and Accident

4.1.3. Analysis for Different Probability Distributions

Figure 11a shows the analysis for different values of standard deviation in Sign dataset with 5% min sup.
When the standard deviation value is large, the difference between an item’s minimum and maximum
existential probability in data sequences is most likely to become larger. This affects the calculation of
expSupcap in FUWS and expSupporttop in uWSequence for a prefix sequence. The larger standard deviation
value makes the upper bound of expected support calculation less tight in both algorithms. Consequently,
both algorithms generate more false-positive candidates than those with a smaller standard deviation. Figure
11b shows a similar result in OnlineRetail dataset with a 0.1% support threshold. Note that, whatever the
distribution is, expSupcap is always less than or equal to expSupporttop. Hence, FUWS, using expSupcap,
always generates fewer false-positive candidates than uWSequence. Based on the results, it can be said that
FUWS outperforms uWSequence in any dataset for any kind of distribution of the uncertainty values.

4.1.4. Analysis with respect to Different Choice of Weight Factor

The results in FIFA, Leviathan, and Retail datasets are shown in Figure 12 with support thresholds
15%, 5%, and 0.2% respectively. As we can see, when the weight factor is 0.75, FUWS finds 718 patterns
to be weighted frequent. When this factor is increased to 1.25 to find patterns with more weight values,
FUWS gives 303 patterns as weighted frequent sequences. Thus, the choice of weight factor lets the user
find interesting sequences according to their necessity.

4.2. Performance of the incremental approaches, uWSInc and uWSInc+

To the best of our knowledge, there is no algorithm to mine weighted sequential patterns from incremental
uncertain databases. The baseline approach is to run the FUWS algorithm from scratch after every incre-
ment. This section compares the two proposed algorithms with the baseline and highlights the differences
between them in different datasets.

28

0

1000

2000

3000

4000

5000

6000

7000

8000

40% 30% 20% 15% 10%

Ru
nt

im
e (

se
co

nd
s)

Minimum support threshold, min_sup%

uWSeq FUWS

(a) Sign dataset

0

5000

10000

15000

20000

25000

30000

35000

40000

0.25% 0.22% 0.2% 0.18% 0.15%

Ru
nt

im
e (

se
co

nd
s)

Minimum support threshold, min_sup%

uWSeq. FUWS

(b) Kosarak dataset

0

50

100

150

200

250

300

350

400

450

500

0.5% 0.4% 0.35% 0.3% 0.25%

Ru
nt

im
e (

se
co

nd
s)

Minimum support threshold, min_sup%

uWSeq. FUWS

(c) Retail dataset

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

20% 18% 17% 16% 15%

Ru
nt

im
e (

se
co

nd
s)

Minimum support threshold, min_sup%

uWSeq. FUWS

(d) FIFA dataset

1

10

100

1000

10000

100000

50% 30% 20% 10% 8%

Ru
nt

im
e (

se
co

nd
s)

Minimum support threshold, min_sup%

uWSeq. FUWS

(e) MSNBC dataset

10

100

1000

10000

100000

10% 7.5% 5% 4% 3%

Ru
nt

im
e (

se
co

nd
s)

Minimum support threshold, min_sup%

uWSeq. FUWS

(f) Leviathan dataset

Figure 10: Comparison of runtime between FUWS and uWSequence for various support threshold in different datastets

Evaluation Criteria. The criteria to evaluate the performance of incremental approaches are as
follows,

(a) Required time to find the updated result. An incremental approach is efficient if it requires
significantly less time than this baseline approach which runs the FUWS algorithm in the whole
updated database after every increment. The baseline approach is naturally very expensive.

(b) Completeness of the result. The set of weighted frequent sequences found by the baseline
approach is the complete set of actual patterns. The completeness of an incremental algorithm is
defined to be the percentage of patterns found compared to this complete set.

Note that an incremental approach may require scanning the whole database after each increment in the
worst case to ensure a complete result by an incremental solution. On the other hand, a significant im-

29

1000

10000

100000

1000000

0.05 0.1 0.125 0.15 0.25

Nu
m

be
r o

f P
at

te
rn

s

Standard deviation of the distribution

uWSeq. candidates FUWS candidates Actual Patterns

(a) Sign dataset

0

1000

2000

3000

4000

5000

6000

0.05 0.1 0.125 0.15 0.25

Nu
m

be
r o

f P
at

te
rn

s

Standard deviation of the distribution

uWSeq. candidates FUWS candidates Actual Patterns

(b) OnlineRetail dataset

Figure 11: Change in candidate generation for various distribution of probabilities in Sign and OnlineRetail datasets

0

1000

2000

3000

4000

5000

6000

7000

8000

0.5 0.75 1 1.25 1.5

Nu
m

be
r o

f r
es

ult
an

t p
at

te
rn

s

Weight factor, wgt_fct

Sign 0.1% FIFA 15% Leviathan 5% Retail 0.2%

Figure 12: Change in number of patterns for different weight factors in Sign, FIFA, Leviathan, and Retail datasets

provement in the runtime can be achieved with only a small sacrifice in completeness, as we will see in the
following subsections.

To use the datasets as incremental ones, we used 50% of the dataset to be the initial part. We then
introduced five increments (each one randomly chosen to be 20 to 60% of the initial size). However, in the
case of the Retail dataset, which is mentioned to be a dataset of five months, we used the first one-fifth of
its transactions to be the initial portion. We then introduced four increments which roughly represent the
next four months. We have also conducted experiments by varying initial size and increment size and tested
the scalability. Parameters for these experiments are:

(a) Minimum support threshold. Experiments are conducted for different min sup% for each dataset
to validate the efficacy of our incremental approaches in finding almost complete results at any thresh-
old based on the application requirements, which is discussed elaborately in Sections 4.2.1 and 4.2.2.

(b) Buffer ratio. Buffer ratio, µ, is used to lower the minimum weighted expected support. When
µ = 1.0, it means no buffer to store semi-frequent sequences (in uWSInc, uWSInc+). Lower values of
µ mean larger buffers. With this lowered threshold, more candidates are generated and tested. As a
result, this requires more time. However, it can find more patterns using the semi-frequent sequences.
Detailed results are shown in Section 4.2.3.

(c) Increment size. Many incremental algorithms have the limitation that they do not perform well

beyond a certain increment size. This is also called update ratio, i.e., (size of ∆DB)
(size of initial DB) . We have

run our algorithms several times by changing the update ratio when other parameters are fixed and
showed the efficiency in Section 4.2.4.

30

(d) Dataset size. Besides the increment size, this is another form of testing the scalability of the
incremental approach. We have gradually increased the dataset and plotted the total time needed to
find the updated result after each increment starting from an initial dataset. The update ratio is not
fixed in this case, rather drawn from a range of 0.2 to 0.6 randomly. Results in Section 4.2.5 show how
the algorithms performs for such scaled datasets.

(e) Intial dataset size. Existing incremental mining algorithms focus on almost complete results by
only buffering semi-frequent sequences (SFS) depend on the initial dataset size. Thus, we develop our
uWSInc+ algorithm to overcome this limitation. Hence, we have compared between uWSInc (buffers
SFS only) and uWSInc+ (along with SFS, it buffers extra promising frequent sequences that are
mined locally in the increments) in Section 4.2.6 by setting different initial dataset size when other
parameters are fixed.

4.2.1. Runtime Analysis with respect to Support Threshold

To analyze the runtime with respect to different support thresholds, we have run the baseline approach,
uWSInc, and uWSInc+ in a database several times and exhibited the average runtime for each support
threshold. Total time required by an approach in the dataset for a single support threshold is the sum of
the amount of time required after each increment plus the amount of time required for mining in the initial
part. Figure 13a shows the result in the Leviathan dataset for different support thresholds. As we can see,
at 6% support threshold, it requires 402.36 seconds in baseline approach whereas uWSInc and uWSInc+
takes only 47.94 and 58.67 seconds, respectively.

uWSInc takes 8.39 times less time than the baseline approach; for uWSInc+, this number is 6.86.
The difference between uWSInc runtime and baseline is around 354.42 seconds and the difference between
uWSInc and uWSInc+ is around 10.73 seconds. These differences with the baseline change very rapidly
with a slight change in the support threshold. In the Retail dataset, when the minimum support threshold
is 0.4%, the difference between uWSInc and the baseline is 159.73 seconds, the difference between uWSInc+
and the baseline is 137.27 seconds, and the difference between uWSInc and uWSInc+ is 22.46 seconds as
depicted in Figure 13c. When the threshold decreases to 0.2%, the above differences rise to 428.51, 360.88,
and 67.63 seconds respectively. Figure 13e shows the runtime analysis with respect to minimum support
threshold in MSNBC dataset which is similar to the result of the Leviathan dataset.

4.2.2. Analysis of Completeness with respect to Different Support Thresholds

Figure 13b shows the completeness comparison between uWSInc and uWSInc+ in Leviathan dataset
for support threshold values ranging between 2% and 6%. As we can see, at any support threshold point,
uWSInc+ gives better completeness. Figure 13d shows the difference in completeness between uWSInc and
uWSInc+ in Retail dataset for different support thresholds. The difference is more understandable than
that was seen in Leviathan dataset. Foodmart dataset has results similar to Retail as shown in Figure 14b.
Datasets like Leviathan and Bible 3 contain almost all the patterns (frequent word sequences) in their initial
50% portion. Any new word that appears in future increments generally does not have enough support to
become frequent. Thus, the completeness of our two approaches is very close in these cases for different
min sup values. On the other hand, market basket datasets like Retail and Foodmart have scenarios that
any item that was initially infrequent or absent can come up in future increments with enough support to
be frequent. Most of these new patterns can be found by uWSInc+ where uWSInc can find none of them.
Thus, a significant difference in completeness is found in these datasets. Completeness of the result for
both algorithm achieve completeness very close to 100% in datasets like MSNBC and Kosarak as shown in
Figures 13f and 14a.

3Details of Leviathan, Bible, Retail, and Foodmart dataset can be found at http://www.philippe-fournier-viger.com/

spmf/index.php?link=datasets.php

31

http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

6% 5% 4% 3% 2%

Ru
nt

im
e

(s
ec

on
ds

)

Minimum support threshold, min_sup%

Baseline uWSInc uWSInc+

(a) Runtime in Leviathan

85%

88%

90%

93%

95%

98%

100%

6% 5% 4% 3% 2%

Co
m

pl
et

en
es

s o
f P

at
te

rn
 S

et

Minimum support threshold, min_sup%

uWSInc uWSInc+

(b) Completeness in Leviathan

0

100

200

300

400

500

600

700

0.40% 0.35% 0.30% 0.25% 0.20%

Ru
nt

im
e

(s
ec

on
ds

)

Minimum support threshold, min_sup%

Baseline uWSInc uWSInc+

(c) Runtime in Retail

65%

70%

75%

80%

85%

90%

95%

100%

0.40% 0.35% 0.30% 0.25% 0.20%

Co
m

pl
et

en
es

s o
f P

at
te

rn
 S

et

Minimum support threshold, min_sup%

uWSInc uWSInc+

(d) Completeness in Retail

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

10% 8% 6% 4% 2%

Ru
nt

im
e

(s
ec

on
ds

)

Minimum support threshold, min_sup%

Baseline uWSInc uWSInc+

(e) Runtime in MSNBC dataset

85%

88%

90%

93%

95%

98%

100%

8.0% 6.0% 0.5% 4.0% 2.0%

Co
m

pl
et

en
es

s o
f P

at
te

rn
 S

et

Minimum support threshold, min_sup%

uWSInc uWSInc+

(f) Completeness in MSNBC dataset

Figure 13: Performance analysis of uWSInc and uWSInc+ against various support threshold

4.2.3. Analysis with respect to Buffer Ratio

An incremental mining algorithm that consumes reasonably more time might be preferred to another
only if it gives better completeness. Nevertheless, it is a matter of deciding what is an acceptable level of
sacrifice. This decision may depend on many factors that vary from user to user. As we have seen runtime
and completeness difference between uWSInc and uWSInc+ for varying support thresholds in Leviathan,
Retail, and Foodmart dataset, let us discuss the effect of buffer ratio in them while using incremental
approaches.

The change in runtime between uWSInc and uWSInc+ in Leviathan is shown Figure 15a. This figure
validates our claim as stated above. As we can see, when we use no buffer, i.e., buffer ratio = 1.0, both
uWSInc and uWSInc+ consume a very short amount of time compared To the baseline. However, there is
a slight difference between their runtimes. uWSInc+ takes slightly more time because it has to run FUWS
locally in each increment that occurs and maintains promising frequent sequences. uWSInc does not need

32

85%

88%

90%

93%

95%

98%

100%

0.2% 0.18% 0.15% 0.12% 0.1%

Co
m

pl
et

en
es

s o
f P

at
te

rn
 S

et

Minimum support threshold, min_sup%

uWSInc uWSInc+

(a) Kosarak dataset

60%

65%

70%

75%

80%

85%

90%

95%

100%

0.20% 0.18% 0.15% 0.12% 0.10%

Co
m

pl
et

en
es

s o
f P

at
te

rn
 S

et

Minimum support threshold, min_sup%

uWSInc uWSInc+

(b) Foodmart dataset

Figure 14: Completeness of result in Kosarak and Foodmart datasets against various support threshold

this kind of step at all. It is easily observed that the runtime of both uWSInc and uWSInc+ increases with
the decrease in buffer ratio. At the same time, the decreased buffer ratio helps to achieve more completeness
by maintaining extra sequences. which can be observed in Figure 15b. For datasets like Leviathan and
Kosarak, an average choice of buffer ratio = 0.85 gives a satisfactory result.

From Figure 15c and 15d, we can point out an interesting case. uWSInc achieves around 91% complete-
ness using buffer ratio = 0.5 and it takes around 168 seconds. Whereas, a result of the same completeness
can be achieved by uWSInc+ in around 127 seconds by using buffer ratio = 0.85. Foodmart is also a market
basket dataset like Retail. However, in this dataset, both the initial part and the increments are small in
size. Runtime and completeness analysis in Foodmart for different choice of buffer ratio is shown in Fig-
ures 15e and 15f respectively. In every case, both runtime and completeness for uWSInc+ is larger than
that of uWSInc. Based on the results here, we can conclude that a lower value of buffer ratio gives better
completeness, but at the same time, it also increases the amount of time required to generate the result.

4.2.4. Increment Size.

To evalulate the effect of increment size, we have run our algorithms several times with different update
ratios ranging from 0.1 to 0.5 in the Chainstore dataset and from 0.025 to 0.3 in the Kosarak dataset.
Here, the size of the initial dataset is 20,000 sequences. Hence, update ratio = 0.2 means an increment of
20000×0.2 = 4000 new sequences. Results in Figures 16 and 17 show that both of our incremental algorithms
are very efficient not only for smaller increments but also for larger increments. However, the choice between
uWSInc and uWSInc+ can be made considering the trade-off between runtime and completeness as discussed
in previous sections. We highlight that the efficiency of our incremental mining algorithms is not limited by
the update ratio or the total number of increments. Hence, they are highly scalable.

4.2.5. Dataset Size

To test scalability against the dataset size, we have run our proposed algorithms and the baseline ap-
proach in several large datasets such as Chainstore and Kosarak. We have considered the first 10 thousand
transactions as the initial dataset and then introduced several increments of varying sizes to use the full-
length dataset.

Figure 18a shows the performance analysis for the Chainstore dataset with min sup 0.05%. Figure 18b
shows the scalability performance for the Kosarak dataset with min sup 0.1%. Both uWSInc and uWSInc+
take an equal amount of time in the initial phase, and it is slightly higher than the baseline approach. The
reason is that our proposed algorithms find and store additional patterns in the initial phase compared to
the baseline approach for the same support threshold. Later on, for each increment, the baseline approach
runs FUWS from scratch in the updated database that leads to consuming huge time and memory. In
contrast, our proposed algorithms consume less time. Thus, both our algorithms outperform the baseline
approach in large datasets and are efficient in handling multiple updates.

33

0

250

500

750

1000

1250

1500

1 0.85 0.75 0.6 0.5

Ru
nt

im
e

(s
ec

on
ds

)

Buffer Ratio, µ

Baseline uWSInc uWSInc+

(a) Runtime in incremental Leviathan, min sup 3%

40%

50%

60%

70%

80%

90%

100%

1 0.85 0.75 0.6 0.5

Co
m

pl
et

en
es

s o
f P

at
te

rn
 S

et

Buffer Ratio, µ

uWSInc uWSInc+

(b) Completeness in incremental Leviathan, min sup 3%

0

50

100

150

200

250

300

1 0.85 0.75 0.6 0.5

Ru
nt

im
e

(s
ec

on
ds

)

Buffer Ratio, µ

Baseline uWSInc uWSInc+

(c) Runtime in incremental Retail, min sup 0.3%

40%

50%

60%

70%

80%

90%

100%

1 0.85 0.75 0.6 0.5

Co
m

pl
et

en
es

s o
f P

at
te

rn
 S

et

Buffer Ratio, µ

uWSInc uWSInc+

(d) Completeness in incremental Retail, min sup 0.3%

0

5

10

15

20

25

30

35

40

45

1 0.85 0.75 0.6 0.5

Ru
nt

im
e

(s
ec

on
ds

)

Buffer Ratio, µ

Baseline uWSInc uWSInc+

(e) Runtime in incremental Foodmart, min sup 0.2%

40%

50%

60%

70%

80%

90%

100%

1 0.85 0.75 0.6 0.5

Co
m

pl
et

en
es

s o
f P

at
te

rn
 S

et

Buffer Ratio, µ

uWSInc uWSInc+

(f) Completeness in Foodmart, min sup 0.2%

Figure 15: Performance analysis of uWSInc and uWSInc+ for different buffer ratio

4.2.6. Completeness Analysis with Different Initial Size of Database

The completeness of our proposed algorithms varies with the initial size of the datasets. The larger
the initial size, the more patterns they can find and maintain to update in future increments. The smaller
the initial size, the more initially infrequent sequences are found as new frequent patterns after successive
increments. We have considered different sizes of the initial dataset, such as the first 10,000, first 20,000,
first 30,000, and so on. After that, we have introduced a sufficient number of increments to cover the entire
dataset. The size of increments was chosen randomly each time from the range of update ratio 0.4-0.8 to
reflect the real-life use cases. Results for the Chaninstore and OnlineRetail datasets are shown in Figure
19. It can be seen that uWSInc has a positive trend, which indicates greater completeness, with the larger
initial dataset. Because uWSInc updates the result after each increment based on only the semi-frequent
patterns stored by mining in the initial phase, a larger initial dataset helps to find and store more potential
patterns.

34

0

20

40

60

80

100

120

Ba
se

lin
e

uW
SIn

c

uW
SIn

c+

Ba
se

lin
e

uW
SIn

c

uW
SIn

c+

Ba
se

lin
e

uW
SIn

c

uW
SIn

c+

Ba
se

lin
e

uW
SIn

c

uW
SIn

c+

Ba
se

lin
e

uW
SIn

c

uW
SIn

c+

0.1 0.2 0.3 0.4 0.5

Ru
nt

im
e (

se
co

nd
s)

Update Ratio in increments

Initial Database 1st Increment

(a) Upto first increment

0

100

200

300

400

500

Ba
se

lin
e

uW
SIn

c

uW
SIn

c+

Ba
se

lin
e

uW
SIn

c

uW
SIn

c+

Ba
se

lin
e

uW
SIn

c

uW
SIn

c+

Ba
se

lin
e

uW
SIn

c

uW
SIn

c+

Ba
se

lin
e

uW
SIn

c

uW
SIn

c+

0.1 0.2 0.3 0.4 0.5

Ru
nt

im
e (

se
co

nd
s)

Update Ratio in increments

Initial Database 1st Increment 2nd Increment
3rd Increment 4th Increment 5th Increment

(b) Upto five increments

Figure 16: Performance of incremental solution for different increment size in Chainstore dataset with min sup 0.01%

0

200

400

600

800

1000

1200

1400

1600

Ba
se

lin
e

uW
SIn

c

uW
SIn

c+

Ba
se

lin
e

uW
SIn

c

uW
SIn

c+

Ba
se

lin
e

uW
SIn

c

uW
SIn

c+

Ba
se

lin
e

uW
SIn

c

uW
SIn

c+

Ba
se

lin
e

uW
SIn

c

uW
SIn

c+

0.025 0.05 0.1 0.2 0.3

Ru
nt

im
e (

se
co

nd
s)

Update Ratio in increments

Initial Dataset 1st Increment

(a) Upto first increment

0

1000

2000

3000

4000

5000

6000

7000

Ba
se

lin
e

uW
SIn

c

uW
SIn

c+

Ba
se

lin
e

uW
SIn

c

uW
SIn

c+

Ba
se

lin
e

uW
SIn

c

uW
SIn

c+

Ba
se

lin
e

uW
SIn

c

uW
SIn

c+

Ba
se

lin
e

uW
SIn

c

uW
SIn

c+

0.025 0.05 0.1 0.2 0.3

Ru
nt

im
e (

se
co

nd
s)

Update Ratio in increments

Initial Dataset 1st Increment 2nd Increment
3rd Increment 4th Increment 5th Increment

(b) Upto five increments

Figure 17: Performance of incremental solution for different increment size in Kosarak dataset with min sup 0.03%

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

20k 30k 45k 55k 70k 80k 100k 125k 150k 180k 200k

Ru
nt

im
e

(s
ec

on
ds

)

Number of data sequences

Baseline uWInc uWSInc+

(a) Chainstore dataset with min sup 0.05%

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

10k 15k 20k 25k 30k 35k 40k 45k 50k 60k 70k

Ru
nt

im
e

(s
ec

on
ds

)

Number of data sequences

Baseline uWSInc uWSInc+

(b) Kosarak dataset with min sup 0.1%

Figure 18: Performance of incremental solution for increasing database size

On the other hand, uWSInc+ is less dependent on the initial size as it also mines locally in the in-
cremented portions, which helps to find new patterns. It also keeps track of patterns that have become
infrequent recently and uses them as promising frequent sequences in the next increment. Thus, the trend
for completeness of uWSInc+ is somewhat neutral with respect to the initial dataset size, which means that
the completeness of uWSInc+ is less affected by the size of initial datasets. The completeness of incremental
approaches also depends on the distribution of items among the increments. However, for any initial dataset
size, completeness values are always higher for uWSInc+ than for uWSInc.

Our extensive experimental analysis demonstrates that our proposed FUWS outperforms the existing

35

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

20k 30k 50k 75k 100k 150k 200k

Co
m

pl
et

en
es

s o
f P

at
te

rn
 S

et

Number of sequences in initial phase

uWSInc uWSInc+

(a) Chainstore dataset with min sup 0.05%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

20k 30k 50k 75k 100k 150k 200k

Co
m

pl
et

en
es

s o
f P

at
te

rn
 S

et

Number of sequences in initial phase

uWSInc uWSInc+

(b) OnlineRetail dataset with min sup 0.05%

Figure 19: Performance of incremental solution for different dataset size of initial phase

best solution uWSequence [37] to mine frequent sequences in uncertain databases. The results also validate
the efficiency of uWSInc and uWSInc+; that they can find the almost complete set of frequent patterns
within a very short amount of time after each increment is introduced. Finally, one thing to highlight is
that though uWSInc+ is better than uWSInc in terms of completeness, uWSInc is faster than uWSInc+.

5. Conclusions

In this work, we have developed an algorithm, FUWS, to mine weighted sequential patterns in uncer-
tain databases and proposed two new incremental mining approaches, uWSInc and uWSInc+, to mine
weighted sequential patterns efficiently from incremental uncertain databases. The FUWS algorithm ap-
plies wExpSupcap as an upper bound of weighted expected support to find all potential frequent sequences
and then prunes false-positive sequences. We have used a hierarchical index structure named USeq-Trie to
maintain patterns and SupCalc to calculate their support in a faster way. By using FUWS as a tool and
buffering semi-frequent sequences, the uWSInc algorithm works efficiently in mining frequent sequences from
incremental uncertain databases which have a uniform distribution of items. In the case of those datasets,
the uWSInc algorithm is very efficient because most of the frequent sequences are either found in the initial
dataset or will come from semi-frequent sequences, and the appearance of new items after increments are
sporadic. On the other hand, due to seasonal behavior, concept drifts, or different characteristics of datasets,
new patterns can be largely introduced in some real-life datasets. In those cases, the uWSInc+ algorithm
maintains promising sequences after each increment, additionally along with semi-frequent sequences to find
new patterns effectively. We have tested them in many real-life and popular datasets by varying different
parameters to prove their efficiency. These results show that our proposed techniques could be an excellent
tool for many real-life applications that use uncertain sequential data, such as medical reports, sensor data,
image processing data, social network data, privacy-preserving data, and so on. In the future, this work
can be extended to mine weighted sequential patterns in uncertain data streams. Furthermore, incremental
mining of maximal and closed sequential patterns can be interesting for further research.

Acknowledgements

We would like to express our deep gratitude to the anonymous reviewers of this paper. Their insightful
comments have played a significant role in improving the quality of this work. This work is partially
supported by NSERC (Canada) and the University of Manitoba.

References

[1] Aggarwal, C.C., Li, Y., Wang, J., Wang, J., 2009. Frequent pattern mining with uncertain data, in: Proceedings of the
15th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 29–38.

36

[2] Agrawal, R., Srikant, R., et al., 1994. Fast algorithms for mining association rules, in: Proc. 20th int. conf. very large
data bases, VLDB, pp. 487–499.

[3] Ahmed, A.U., Ahmed, C.F., Samiullah, M., Adnan, N., Leung, C.K.S., 2016. Mining interesting patterns from uncertain
databases. Information Sciences 354, 60–85.

[4] Ahmed, C.F., Tanbeer, S.K., Jeong, B.S., Lee, Y.K., Choi, H.J., 2012. Single-pass incremental and interactive mining for
weighted frequent patterns. Expert Systems with Applications 39, 7976–7994.

[5] Ahmed, U., Lin, J.C.W., Srivastava, G., Yasin, R., Djenouri, Y., 2020. An evolutionary model to mine high expected
utility patterns from uncertain databases. IEEE transactions on emerging topics in computational intelligence 5, 19–28 .

[6] Chen, C., Chen, L., Gan, W., Qiu, L., Ding, W., 2021. Discovering high utility-occupancy patterns from uncertain data.
Inf. Sci. 546, 1208–1229 . doi:10.1016/j.ins.2020.10.001.

[7] Chen, Y., Guo, J., Wang, Y., Xiong, Y., Zhu, Y., 2007. Incremental mining of sequential patterns using prefix tree, in:
Pacific-Asia Conference on Knowledge Discovery and Data Mining, Springer. pp. 433–440.

[8] Cheng, H., Yan, X., Han, J., 2004. IncSpan: incremental mining of sequential patterns in large database, in: Proceedings
of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, ACM. pp. 527–532.

[9] Cheung, D.W., Han, J., Ng, V.T., Wong, C., 1996. Maintenance of discovered association rules in large databases: An
incremental updating technique, in: Proceedings of the twelfth international conference on data engineering, IEEE. pp.
106–114.

[10] Davashi, R., 2021. ILUNA: single-pass incremental method for uncertain frequent pattern mining without false positives.
Inf. Sci. 564, 1–26 . doi:10.1016/j.ins.2021.02.067.

[11] Fournier-Viger, P., Lin, J.C.W., Kiran, R.U., Koh, Y.S., Thomas, R., 2017. A survey of sequential pattern mining. Data
Science and Pattern Recognition 1, 54–77.

[12] Gan, W., Lin, J.C., Zhang, J., Chao, H., Fujita, H., Yu, P.S., 2020. ProUM: Projection-based utility mining on sequence
data. Inf. Sci. 513, 222–240 . doi:10.1016/j.ins.2019.10.033.

[13] Gan, W., Lin, J.C.W., Fournier-Viger, P., Chao, H.C., Hong, T.P., Fujita, H., 2018. A survey of incremental high-utility
itemset mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 8, e1242.

[14] Gan, W., Lin, J.C.W., Fournier-Viger, P., Chao, H.C., Tseng, V.S., 2017a. Mining high-utility itemsets with both positive
and negative unit profits from uncertain databases, in: Pacific-Asia Conference on Knowledge Discovery and Data Mining,
Springer. pp. 434–446.

[15] Gan, W., Lin, J.C.W., Fournier-Viger, P., Chao, H.C., Wu, J.M.T., Zhan, J., 2017b. Extracting recent weighted-based
patterns from uncertain temporal databases. Engineering Applications of Artificial Intelligence 61, 161–172 .

[16] Gan, W., Lin, J.C.W., Fournier-Viger, P., Chao, H.C., Yu, P.S., 2019. A survey of parallel sequential pattern mining.
ACM Transactions on Knowledge Discovery from Data (TKDD) 13, 1–34,.

[17] Han, J., Pei, J., Yin, Y., Mao, R., 2004. Mining frequent patterns without candidate generation: A frequent-pattern tree
approach. Data mining and knowledge discovery 8, 53–87.

[18] Ishita, S.Z., Noor, F., Ahmed, C.F., 2018. An efficient approach for mining weighted sequential patterns in dynamic
databases, in: Industrial Conference on Data Mining, Springer. pp. 215–229.

[19] Lee, G., Yun, U., 2018. Single-pass based efficient erasable pattern mining using list data structure on dynamic incremental
databases. Future generation computer systems 80, 12–28.

[20] Lee, G., Yun, U., Ryang, H., 2015. An uncertainty-based approach: frequent itemset mining from uncertain data with
different item importance. Knowledge-Based Systems 90, 239–256.

[21] Leung, C.K.S., MacKinnon, R.K., Jiang, F., 2014. Reducing the search space for big data mining for interesting patterns
from uncertain data, in: 2014 IEEE International Congress on Big Data, IEEE. pp. 315–322.

[22] Leung, C.K.S., Mateo, M.A.F., Brajczuk, D.A., 2008. A tree-based approach for frequent pattern mining from uncertain
data, in: Pacific-Asia Conference on Knowledge Discovery and Data Mining, Springer. pp. 653–661.

[23] Leung, C.K.S., Tanbeer, S.K., 2012. Fast tree-based mining of frequent itemsets from uncertain data, in: International
Conference on Database Systems for Advanced Applications, Springer. pp. 272–287.

[24] Leung, C.K.S., Tanbeer, S.K., 2013. PUF-tree: a compact tree structure for frequent pattern mining of uncertain data,
in: Pacific-Asia Conference on Knowledge Discovery and Data Mining, Springer. pp. 13–25.

[25] Leung, C.S., Khan, Q.I., Hoque, T., 2005. CanTree: a tree structure for efficient incremental mining of frequent patterns,
in: Fifth IEEE International Conference on Data Mining (ICDM’05), IEEE. pp. 274–281.

[26] Lin, J.C.W., Gan, W., Fournier-Viger, P., Chao, H.C., Hong, T.P., 2017. Efficiently mining frequent itemsets with weight
and recency constraints. Applied Intelligence 47, 769–792.

[27] Lin, J.C.W., Gan, W., Fournier-Viger, P., Hong, T.P., Tseng, V.S., 2016. Weighted frequent itemset mining over uncertain
databases. Applied Intelligence 44, 232–250.

[28] Lin, J.C.W., Hong, T.P., Gan, W., Chen, H.Y., Li, S.T., 2015. Incrementally updating the discovered sequential patterns
based on pre-large concept. Intelligent Data Analysis 19, 1071–1089.

[29] Lin, J.C.W., Li, T., Pirouz, M., Zhang, J., Fournier-Viger, P., 2020a. High average-utility sequential pattern mining based
on uncertain databases. Knowledge and Information Systems 62, 1199–1228.

[30] Lin, J.C.W., Pirouz, M., Djenouri, Y., Cheng, C.F., Ahmed, U., 2020b. Incrementally updating the high average-utility
patterns with pre-large concept. Applied Intelligence 50, 3788–3807.

[31] Lin, J.C.W., Wu, J.M.T., Fournier-Viger, P., Chen, C.H., Li, T., 2019. A project-based PMiner algorithm in uncertain
databases, in: 2019 International Conference on Technologies and Applications of Artificial Intelligence (TAAI), IEEE.
pp. 1–5.

[32] Muzammal, M., Raman, R., 2010. On probabilistic models for uncertain sequential pattern mining, in: International
Conference on Advanced Data Mining and Applications, Springer. pp. 60–72.

37

http://dx.doi.org/10.1016/j.ins.2020.10.001
http://dx.doi.org/10.1016/j.ins.2021.02.067
http://dx.doi.org/10.1016/j.ins.2019.10.033

[33] Muzammal, M., Raman, R., 2011. Mining sequential patterns from probabilistic databases, in: Pacific-Asia Conference
on Knowledge Discovery and Data Mining, Springer. pp. 210–221.

[34] Nam, H., Yun, U., Yoon, E., Lin, J.C.W., 2020. Efficient approach for incremental weighted erasable pattern mining with
list structure. Expert Systems with Applications 143, 113087.

[35] Nguyen, S.N., Sun, X., Orlowska, M.E., 2005. Improvements of IncSpan: Incremental mining of sequential patterns in
large database, in: Pacific-Asia Conference on Knowledge Discovery and Data Mining, Springer. pp. 442–451.

[36] Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu, M.C., 2004. Mining sequential patterns
by pattern-growth: The PrefixSpan approach. IEEE Transactions on knowledge and data engineering 16, 1424–1440.

[37] Rahman, M.M., Ahmed, C.F., Leung, C.K.S., 2019. Mining weighted frequent sequences in uncertain databases. Infor-
mation Sciences 479, 76–100.

[38] Rizvee, R.A., Arefin, M.F., Ahmed, C.F., 2020. Tree-Miner: Mining sequential patterns from SP-Tree, in: PAKDD,
Springer. pp. 44–56.

[39] Srikant, R., Agrawal, R., 1996. Mining sequential patterns: Generalizations and performance improvements, in: Interna-
tional Conference on Extending Database Technology, Springer. pp. 1–17.

[40] Srivastava, G., Lin, J.C., Jolfaei, A., Li, Y., Djenouri, Y., 2021. Uncertain-driven analytics of sequence data in IoCV
environments. IEEE Trans. Intell. Transp. Syst. 22, 5403–5414 . doi:10.1109/TITS.2020.3012387.

[41] Tanbeer, S.K., Ahmed, C.F., Jeong, B.S., Lee, Y.K., 2009. Efficient single-pass frequent pattern mining using a prefix-tree.
Information Sciences 179, 559–583.

[42] Truong, T.C., Duong, H.V., Le, B., Fournier-Viger, P., 2020. EHAUSM: an efficient algorithm for high average utility
sequence mining. Inf. Sci. 515, 302–323 . doi:10.1016/j.ins.2019.11.018.

[43] Truong-Chi, T., Fournier-Viger, P., 2019. A survey of high utility sequential pattern mining, in: High-Utility Pattern
Mining. Springer, pp. 97–129.

[44] Wang, J.Z., Huang, J.L., 2018. On incremental high utility sequential pattern mining. ACM Transactions on Intelligent
Systems and Technology (TIST) 9, 1–26.

[45] Wang, L., Cheung, D.W.L., Cheng, R., Lee, S.D., Yang, X.S., 2011. Efficient mining of frequent item sets on large
uncertain databases. IEEE Transactions on Knowledge and Data Engineering 24, 2170–2183.

[46] Wu, J.M.T., Teng, Q., Lin, J.C.W., Cheng, C.F., 2020. Incrementally updating the discovered high average-utility patterns
with the pre-large concept. IEEE Access 8, 66788–66798.

[47] Yan, D., Zhao, Z., Ng, W., Liu, S., 2014. Probabilistic convex hull queries over uncertain data. IEEE Transactions on
Knowledge and Data Engineering 27, 852–865.

[48] Yun, U., 2007. Efficient mining of weighted interesting patterns with a strong weight and/or support affinity. Information
Sciences 177, 3477–3499.

[49] Yun, U., 2008. A new framework for detecting weighted sequential patterns in large sequence databases. Knowledge-Based
Systems 21, 110–122.

[50] Zhao, Z., Yan, D., Ng, W., 2013. Mining probabilistically frequent sequential patterns in large uncertain databases. IEEE
transactions on knowledge and data engineering 26, 1171–1184.

38

http://dx.doi.org/10.1109/TITS.2020.3012387
http://dx.doi.org/10.1016/j.ins.2019.11.018

	Introduction
	Motivation
	Example One
	Example Two
	Example Three

	Contributions

	Literature Review
	Sequential Pattern Mining
	Weighted Sequential Mining
	Mining in Uncertain Databases
	Incremental Mining Algorithms

	A Framework for mining Weighted Uncertain Frequent Sequences
	Preliminaries
	USeq-Trie: Maintenance of Patterns
	FUWS : Faster Mining of Uncertain Weighted Frequent Sequences
	Two Approaches for Incremental Database
	uWSInc : Faster Incremental Mining of Uncertain Weighted Frequent Sequences
	uWSInc+ : Incremental Mining of Uncertain Weighted Frequent Sequences for Better Completeness

	Example Simulation
	Analysis of Time and Space Complexity

	Performance Evaluation
	Performance of Uncertain Sequential Pattern Miner, FUWS
	Comparison of Candidate Generation with uWSequence
	Comparison of Runtime with uWSequence
	Analysis for Different Probability Distributions
	Analysis with respect to Different Choice of Weight Factor

	Performance of the incremental approaches, uWSInc and uWSInc+
	Runtime Analysis with respect to Support Threshold
	Analysis of Completeness with respect to Different Support Thresholds
	Analysis with respect to Buffer Ratio
	Increment Size.
	Dataset Size
	Completeness Analysis with Different Initial Size of Database

	Conclusions

