Highlights
Predict-then-optimize or predict-and-optimize? An empirical evaluation of cost-sensitive
learning strategies

Toon Vanderschueren, Tim Verdonck,Bart Baesens, Wouter Verbeke

e We review the literature on cost-sensitive learning and differentiate between two key approaches: cost-sensitive
training of models and cost-sensitive decision-making.

e We conduct an extensive empirical analysis to evaluate and compare different cost-sensitive learning strategies
using nine real-world datasets from different application areas.

e The decision-making strategy is generally found to be more important in terms of costs than the objective
function that is used to train a classifier.
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ARTICLE INFO ABSTRACT

Keywords: Predictive models are increasingly being used to optimize decision-making and minimize costs.
Cost-sensitive learning A conventional approach is predict-then-optimize: first, a predictive model is built; then, this
Instance-dependent costs model is used to optimize decision-making. A drawback of this approach, however, is that it only
Classification incorporates costs in the second stage. Conversely, the predict-and-optimize approach proposes
Supervised learning learning a predictive model by directly minimizing the cost of the downstream decision-making

task. This is achieved by using a task-specific loss function incorporating the costs of different
outcomes in the first stage, with the eventual aim of obtaining more cost-effective decisions in the
second stage. This work compares both approaches in the context of cost-sensitive classification.
Conceptually, we use the two-stage framework to categorize existing cost-sensitive learning
methodologies by differentiating between methodologies for cost-sensitive model training and
decision-making. Empirically, we compare and evaluate both approaches using different cost-
sensitive training and decision-making methodologies, as well as both class-dependent and
instance-dependent cost-sensitive methods. This is achieved using real-world data from a range
of application areas and a combination of cost-sensitive and cost-insensitive performance
measures. The key finding is that the decision-making strategy is generally found to be more
effective than training with a task-specific loss or their combination.

1. Introduction

Predictive models are increasingly being used to optimize decision-making. In many applications, the goal is
to minimize the cost incurred through decisions. A conventional approach is to predict-then-optimize: in the first
stage, a predictive model is built to maximize its predictive power; then, in the second stage, decisions are made
based on the model’s predictions and the costs associated with decisions. However, a drawback of this approach
is that it only considers costs in the second decision-making stage. Conversely, several recent works proposed an
alternative, integrated predict-and-optimize approach [14, 45]. This approach works by integrating costs within the
learning objective of the predictive model in the first stage. Thus, model learning is decision-focused: the quality of
the predictions on downstream decision-making is directly considered [45]. The goal of this approach is to make more
cost-effective decisions. Therefore, the model’s predictions need only be accurate insofar as this contributes to optimal
decision-making in the second stage.

We use the predict-and-optimize approach to analyze an earlier line of work on cost-sensitive machine learning
[19, 16]. Although predict-and-optimize has typically been applied to problems such as stochastic programming and
combinatorial optimization [14, 45], the goal of cost-sensitive methodologies is similar to the one in predict-and-
optimize in the sense that both aim to obtain better decisions by aligning the predictive model with the decision-making
context. Even though a variety of cost-sensitive learning methodologies have been proposed to more effectively deal
with classification tasks where different decisions have different costs associated with them, it is not clear which of
these approaches work best and how they relate to each other. The lack of understanding of these methods is due to a
combination of reasons. First, novel approaches are often only compared to their cost-insensitive counterparts. Second,
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a variety of different metrics are used to judge these methodologies. Third, a limited number of datasets are typically
used. These are often also proprietary, making it impossible to replicate findings.

Using the two-stage framework, we categorize existing techniques as either learning cost-sensitive models in the
first stage or making cost-sensitive decisions in the second stage. Thus, we can empirically compare the predict-then-
optimize and predict-and-optimize approaches for cost-sensitive classification. Our main contributions are as follows:

e Conceptually, we review the literature on cost-sensitive learning and differentiate between two general ap-

proaches using the two-stage framework: cost-sensitive training of models and cost-sensitive decision-making.

e Empirically, we conduct an extensive evaluation to compare predict-then-optimize and predict-and-optimize

using nine real-world datasets from different application areas. Moreover, we analyze different methods of
incorporating costs during training and during decision-making, as well as their combinations. We also look
at the effect of incorporating costs at an instance level as opposed to a class level.

e To facilitate replication of the presented results and encourage further research on instance-dependent cost-

sensitive learning, the full experimental code is made publicly available at https://github.com/toonvds/
CostSensitivelLearning.

2. Related work

Before applying the two-stage framework to cost-sensitive classification, we summarize existing work based on
two criteria (see Table 1): 1) whether the costs are class- or instance-dependent (see section 2.1) and 2) whether costs
are integrated before, during or after the training of a classification model (see section 2.2). Before training, instances
can be preprocessed, i.e., they can be sampled, weighted, or relabeled (e.g., MetaCost [13]). During training, costs can
be incorporated in the learning algorithm, e.g., with custom decision tree splitting criteria or through a cost-sensitive
objective function. After training, the decision threshold can be made cost-sensitive.

There are other cost-sensitive strategies that are not covered by these criteria and outside the scope of this work.
Several methodologies look at cost-sensitive feature [28] or model selection [26]. A recent, dedicated framework
and overview of cost-sensitive ensemble methods is presented in [34]. Moreover, whereas this work focuses on cost-
sensitive learning in the context of supervised learning, other work has focused on cost-sensitive semi-supervised [44]
and positive-unlabeled learning [8]. Finally, a related line of work in regression considers asymmetric objectives to
more closely align a regression model’s learning objective with the decision-making task [19].

2.1. Types of costs

In classification, costs can be formalized with a cost matrix [16]. Similar to how the confusion matrix in Table 2a
differentiates between outcomes depending on the actual and predicted class, a cost matrix associates a cost to these
different outcomes. In Table 2b, a cost matrix is shown for the setting with class-dependent costs. When costs are
instance-dependent, each instance will have a different cost matrix, denoted by the index i in Table 2c. Note that this
framework also allows the inclusion of benefits or profits in the form of negative costs.

2.1.1. Class-dependent costs

Various cost-sensitive machine learning techniques have been proposed for dealing with class-dependent costs. In
this setting, one class is more important in terms of costs, and because of that, a cost-sensitive model should focus
more on correctly classifying this class compared to a cost-insensitive model. In the simple case of a linear decision
boundary, class-dependent costs result in a parallel shift away from the more costly class (see Figure 1).

Even though no general benchmarking studies exist, two works analyze class-dependent cost-sensitive boosting
specifically and find cost-sensitive decision-making to be the most effective strategy [49, 31]. Finally, note that the
literature on class-dependent cost-sensitive learning is intertwined with the literature on learning with class imbalance,
and by using the appropriate costs, similar techniques can be used. For a recent survey on class imbalance, we refer
the reader to [24].

2.1.2. Instance-dependent costs

Conceptually, many of the techniques for dealing with class-dependent costs can and have been transferred to
the instance-dependent setting. However, instance-dependent costs create an additional degree of complexity, as they
depend not only on the class but also on characteristics of the instance (e.g., the transaction’s amount in fraud detection).
For a simple linear classifier, class-dependent costs result in a parallel shift of the cost-insensitive optimal decision
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Table 1: Cost-sensitive learning overview. We present an overview of various cost-sensitive learning methods in
terms of the type of costs, place with respect to model training and classifier(s) used when applicable.

Reference Costs Place with respect to training Classifier(s)
CDh ID Before During After
[32] v v v DR
[41] v v DT
[18] v v DR, NN
[23] v v v v NN
[36] v v BO
[13] v v -
[43] v v SVM
[15] v v DT
[6] v v NB
[40] v v DT
[50] v v v NN
[37] v v -
[39] v v BO
[7] v v -
[12] v v -
[27] v v SVM
[49] v v v BO
[22] v v BO
[38] v v v LR
[21] v v v DT
[17] v v BO
[47] v v -
[48] v v BO
[5] v v SVM
[35] v v DT
[1] v v v LR
[4] v v -
[2] v v DT
[20] v v v BO, LR
Costs CD: class-dependent, ID: instance-dependent

Classifier BO: boosting, DR: decision rule, DT: decision tree, LR: logistic regression, NB: Naive Bayes,
NN: neural network, SVM: support vector machine, -: classifier-agnostic

Table 2: Cost matrix. Extending the confusion matrix (2a) to a class- (2b) and instance-dependent cost matrix (2c).

(a) Confusion matrix (b) Class-dependent cost matrix (c) Instance-dependent cost matrix
Actual Actual Actual
0 1 0 1 0 1
N FN 0 TN FN 0 N FN
Predicted ‘ FP TP Predicted ‘ Z Fp CCT P Predicted Z’F P CC’T P

i i

boundary, whereas instance-dependent costs can additionally result in a rotation of this boundary (see Figure 1). This
illustrates that when costs are instance-dependent, the learner needs to consider both the class distribution (explicitly)
and cost distribution (implicitly). In theory, including instance-dependent costs in decision-making can lead to lower
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Figure 1: Toy example with class-dependent (top) and instance-dependent costs (bottom). (Left) Two classes and the
probability distribution are shown, with the instance size proportional to its misclassification cost. (Middle) The resulting
decision boundary for a cost-insensitive classifier mimics the underlying probability distribution. (Right) For a cost-sensitive
classifier, the decision boundary lies further from the more costly class when costs are class-dependent. With instance-
dependent costs, the decision boundary is not only related to the probability distribution, but also the cost distribution.

overall costs [5]. However, despite the conceptual differences, the benefits and drawbacks of using instance- rather
than class-dependent costs on the performance of the learning algorithms have not yet been examined empirically.

2.2. Cost-sensitive classification in the predict-and-optimize framework

Machine learning models are increasingly being used to support and optimize decision-making. The conventional
two-stage predict-then-optimize approach builds a predictive model with the aim of maximizing its accuracy in the
first stage and then uses this model to optimize decision-making in the second stage. Conversely, predict-and-optimize
is a recent paradigm that directly optimizes a predictive model by using a task-specific loss function in the first stage
to optimize decision-making in the second stage [45]. The benefit of an integrated approach is that it directly learns a
model to minimize the cost of the eventual decisions. The model in the predict-then-optimize approach might produce
more accurate predictions overall, but the model in the predict-and-optimize is decision-focused instead of prediction-
focused: it learns to accurately predict only insofar as it impacts the decision-making in the second stage, and as such,
the resulting decisions are of higher quality [14].

We can apply this two-stage framework to cost-sensitive classification: in the first stage, a predictive model (i.e.,
a classifier) is built; in the second stage, this model is used to assign class labels to instances in order to minimize
the resulting cost. Thus, we can classify existing cost-sensitive learning methodologies as either learning a predictive
model in the first stage or optimizing decisions in the second stage. This distinction is based on whether costs are
integrated before, during or after the training of a model (see Table 1). The first category, cost-sensitive training of
models, consists of techniques that are applied before or during training to build a classifier, whereas the second,
cost-sensitive decision-making, consists of thresholding techniques that are applied after training to make decisions.
Note that several approaches are possible in each stage — several of these are described in the following.

2.2.1. Cost-sensitive training of classification models

In the first stage, a predictive model is learned. A traditional approach learns a model by maximizing its likelihood —
independent of how predictions are used in the downstream task. Alternatively, learning can be done with a task-specific
loss function to align the model with the objective of the downstream task and obtain a cost-sensitive model. Thus, the
quality of the predictions on the resulting solution of the downstream task is directly considered [14].

Training with a traditional classification objective also leads to tradeoffs in the resulting model’s accuracy for
different regions of the input-output space. However, in contrast to the decision-focused approach, this tradeoff might
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not be optimal for the downstream task [14]. An illustration of the different tradeoffs for a cost-insensitive and a
cost-sensitive linear model can be seen in Figure 1.

In general, machine learning algorithms can be understood in terms of risk minimization [42]. In this framework,
the goal of a learning algorithm is to find the classifier that minimizes the risk. Formally, for a distribution p(x, y) and
a classifier fy : X — [0, 1] : X = f,(x) defined by parameters § € 0, the risk to be minimized is:

R(9) = / / L(y,x,0)p(x, y)dxdy,

where L(y, X, ) represents the loss or objective function for a classifier f,(x) and data (x, y) [12]. In reality, the true
joint probability distribution p(x, y) is unknown. Consequently, the learner relies on the empirical density to minimize
the risk given the available training data. This is the principle of empirical risk minimization (ERM) [42]. For a dataset
(x;,¥;) € Dwithi € {1,..., N}, the empirical risk is defined as:

N
1
Ry = _E [£07%.0)] = 5 X £01x:.0).
i i=1

Clearly, it is essential to choose an appropriate loss function L. A first and straightforward candidate is the zero-
one loss comparing the actual y and predicted label $: £9/1(y, ) = I(y # $), although it is common to use a convex
surrogate. A popular choice is the cross-entropy loss, which is equivalent to the maximum likelihood (ML) method
[42]. In binary classification, we have LCE (¥, X;,0):

yilog fo(x;) + (1 —yi)log(l —fe(X,'))- (1)

However, as argued above, a disadvantage of the maximum likelihood approach is that it does not take into account
the costs of different decisions. Consequently, using this loss function, the empirical risk fails to reflect the true risk
of the downstream task. To solve this issue, the ERM framework can be extended to include costs: given a dataset
(x;,y;,¢;) € Dfori € {1,..., N} with an instance’s cost matrix ¢;, a cost-sensitive loss function £(y, X, ¢, 8) can be
defined [12]. In this way, the empirical risk can be made cost-sensitive, and a task-specific loss can be used.

A first approach for a task-specific loss is to weight the training examples by their misclassification cost [16, 48].
This can be formulated in terms of a weighted cross-entropy loss function LwCE i X;.€;,0) [12]:

eI Nylog fo(x) + P (1 = yplog(1 = fo(x)). 2)

Note that this approach is equivalent to oversampling proportional to misclassification costs [12].

A second task-specific approach builds on the idea that the optimal cost-sensitive prediction minimizes the expected
cost [16]. Using this, an alternative loss function can be defined that equals the expected cost [ 1, 20]. The corresponding
empirical risk is the average expected cost LAEC(y,, x;, c;, 0):

yi<f0(xi)c,-TP + (1 - fa(xi))ciFN> +(1- yi)(fe(xi)c,-FP + (1 - fa(xi))ciTN)' G

2.2.2. Cost-sensitive decision-making

The predictive model learned in the first stage is used to make decisions in the second stage. In the case of cost-
sensitive classification, the predicted posterior probabilities are used to classify instances with the aim of minimizing
the resulting cost. This is achieved by applying an appropriate decision threshold. There are several policies that can
be used to optimize decision-making in the second stage.

The first and most natural candidate is the instance-dependent cost-sensitive threshold, which predicts the class
with the minimal expected risk. Because this risk depends not only on the posterior probabilities but also on the
associated costs, an instance’s optimal classification should consider both its posterior probability and its cost related
to the different outcomes [16]. Formally, for an instance i, a prediction J; has a certain risk R(J;|x;, y) associated with
it depending on its posterior probability and cost matrix:

RG:[x.0 ) = PG = 01x)e] N + p(y; = 1xe/ N if ;=0
e P = 01x)e/ P + p(y; = 1xp)e! P if p, = 1
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The optimal decision $* minimizes this risk, i.e., 9 = Lif R(J; = 1]x;) < R(J; = O|x;). Using this, the optimal
decision threshold ¥ for an instance can be found: y7 = 1if p(y; = 1|x;) > 7, with

: G )
= .
i FP _ ciTN 4 ciFN _ ciTP

For a given classifier 0, the score f,(X;) can be used as an estimate of the posterior probability p(y; = 1|x;). However,
it is important to note that this requires the model to produce calibrated probabilities or that some calibration method
is first applied to the model’s output.

In addition to the instance-dependent cost-sensitive threshold, several alternative decision-making strategies are
possible. For example, by using the average cost matrix, a single class-dependent cost-sensitive threshold can be
used for all instances. Furthermore, instead of the theoretically motivated optimal thresholds, several alternatives are
possible. Empirical thresholding searches for the threshold that gives the lowest cost on a validation set [37]. Moreover,
a common heuristic is to use the class imbalance threshold, which uses the prior probability of the minority class as
a threshold ¢/ = P(Y = 1). The idea is that this will compensate for the lack of focus on this class, which is often
more important in terms of costs.

3. Methodology

The goal of this work is to empirically analyze different instance-dependent cost-sensitive learning approaches on
the resulting classification performance in terms of both costs and errors. Therefore, following the presented analysis of
the literature, we formulate three key research questions to study the effect of cost-sensitive training using task-specific
loss (RQ1), cost-sensitive decision-making (RQ2) and their combination (RQ3). Moreover, we look at the effect of
considering costs at an instance level (RQ4). For each question, several hypotheses are proposed.

RQ1. Does instance-dependent cost-sensitive training result in improved performance compared to training
without costs?
e H1.1: In terms of costs, cost-sensitive training results in better performance compared to training without costs.
e H1.2: In terms of errors, cost-insensitive training results in better performance compared to training with costs.

RQ2. Does instance-dependent cost-sensitive thresholding result in improved performance compared to class-
dependent thresholding?
e H2.1: In terms of costs, instance-dependent cost-sensitive thresholding results in improved performance
compared to class-dependent thresholding.
e H2.2: In terms of costs, calibrating probabilities results in more effective thresholding.
e H2.3: In terms of errors, instance-dependent cost-sensitive thresholding results in improved performance
compared to class-dependent thresholding.
e H2.4: In terms of errors, calibrating probabilities results in more effective thresholding.

RQ3. Does combining cost-sensitive training and cost-sensitive thresholding result in improved performance
compared to either method separately or completely cost-insensitive classification?
e H3.1: In terms of costs, combining cost-sensitive training and cost-sensitive thresholding results in improved
performance compared to either method separately or completely cost-insensitive classification.
e H3.2: In terms of errors, combining cost-sensitive training and cost-sensitive thresholding results in improved
cost performance compared to either method separately or completely cost-insensitive classification.

RQ4. Is it beneficial to train with instance-dependent costs instead of class-dependent costs?
e H4.1: In terms of costs, using instance-dependent costs results in better performance compared to class-
dependent costs.
e H4.2: In terms of errors, using instance-dependent costs results in better performance compared to class-
dependent costs.

3.1. Experimental design
In this section, we describe the experimental design that is used to answer the proposed research questions
empirically. We analyze the effect of different factors in the decision-focused learning framework (see Figure 2 for
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Table 3: Overview of the different models. These are obtained by combining the different objective functions with
the different types of classifiers.

Logistic Neural Gradient
regression network boosting
LCE logit net boost
LWCE wlogit wnet wboost
LAEC cslogit csnet csboost

an overview): cost-sensitive training of models in the first stage, cost-sensitive decision-making in the second stage
and the combination of both. Finally, to look at the effect of training with instance-dependent costs, we also compare
these models with models trained with class-dependent costs in terms of both the scores and decisions.

3.1.1. Cost-sensitive training

To compare different approaches to learn a predictive model in the first stage, we will compare a traditional,
cost-insensitive approach (cross-entropy £F) with two cost-sensitive task-specific objective functions: an indirect,
weighted approach (weighted cross-entropy £“¢£) and a direct approach (average expected cost LAFC) (see equations
1, 2 and 3). These are implemented using three different types of classifiers: logistic regression, neural network and
gradient boosting. For the neural network, we use a multilayer perceptron with one hidden layer and hyperbolic tangent
as activation function. This results in a total of 9 models (see Table 3). For neural networks and gradient boosting,
hyperparameter selection is based on the best value of the objective function on a validation set.

These classifiers are frequently adopted in both science and industry, and can be considered as representative of
prominent and diverse types of machine learning techniques: they span both linear and nonlinear models, both tree-
based and neural-based models, as well as both ensembles and single classifiers. This selection is further motivated
by strong performance reported across various benchmarking studies [e.g., 25]. Finally, as all three methodologies
optimize an objective function, they allow for a direct and fair comparison of general cost-sensitive learning strategies.

3.1.2. Cost-sensitive decision-making

To consider the effect of cost-sensitive decision-making in the second stage, we compare a range of nine different
thresholding strategies: the theoretically optimal instance-dependent cost-sensitive threshold (IDCS) (see equation 4)
or the equivalent with calibrated probabilities (IDCS*), as well as their class-dependent variants (CDCS and CDCS*).
Calibration is performed with the nonparametric isotonic regression, which has been shown to achieve good results
when enough data are available [30]. Furthermore, we include different types of empirical thresholding techniques by
finding the best threshold in terms of instance-dependent costs, class-dependent costs and F1 score on a validation set.
Finally, we also include using the class-imbalance (CI) ratio P(Y = 1) and the default threshold for binary classification
(t=0.5).

To summarize, instance-dependent cost-sensitive learning is analyzed by comparing different objective functions
for different classifiers in the first stage and decision-making strategies in the second stage. This allows us to compare

Data 1. Training 2. Decision-making
Classifier Objective function
Score Calibration Threshold Decision
o — > * Logistic regression 4 | ¢ Cross-entropy N BN L-3 N
Xi, Yi) Ci fo(zi) (optionally) t* 7 =1I(fo(x:) > t*)
¢ Neural network * Weighted cross-entropy
¢ Gradient boosting * Average expected cost Cost-sensitive

decision-making

Cost-sensitive training

Figure 2: Overview of the experimental design using the two-staged framework. In the first stage, a predictive model is
built by training a type of classifier with an objective function, which can be both cost-sensitive or cost-insensitive. In the
second stage, the predictions of this model are used to make decisions. Both the scores and decisions are evaluated.
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the predict-then-optimize and predict-and-optimize approaches, as well as to analyze different cost-sensitive techniques
in each stage. Moreover, we also look at the effect of using instance-dependent costs as opposed to using class-
dependent costs.

3.2. Experimental procedure and evaluation metrics

For the empirical evaluation, a 2 X 5-fold stratified cross-validation procedure is used (see Algorithm 1). This
is repeated for each dataset. Using this framework, we conduct two experiments for each model: one with instance-
dependent costs and one with class-dependent costs. The full experimental procedure is available in the code.

Algorithm 1: Experimental procedure per dataset
Result: Evaluation metrics
Load data;
Initialize cost matrix;
Split data into 5 stratified folds;
foreachfoldie 1l : 5 do
for each repetition j €1 : 2 do
Test data = fold i;
Training data = 75% of remaining data;
Validation data = 25% remaining data;

# Preprocess data:
Convert categorical features (using WoE encoding);
Standardize data: z = Z=£;
if training with class-dependent costs then
Average cost matrix for training set;
Average cost matrix for validation set;
end

# Train and evaluate models:

Train models;

Set decision thresholds;

Evaluate model outputs and predictions for different thresholds;

end
end
Summarize evaluation metrics over all folds;

We use a variety of metrics to evaluate the models. These can be categorized based on two criteria: whether these
incorporate costs (cost sensitivity) and whether they look at probabilities or decisions (threshold dependency). To assess
the importance of costs during training independently from the thresholding strategy, we rely on threshold-independent
metrics. To compare the different thresholding strategies, we use threshold-dependent metrics.

Several cost-insensitive metrics are used to assess the models’ ability to accurately classify instances. First,
two threshold-independent metrics are the area under the ROC curve (AUROC) and average precision (AP), which
summarize the ROC and precision-recall curves, respectively. The latter may be more informative given the high degree
of class imbalance that is typically encountered in cost-sensitive applications [10]. Moreover, the Brier score is used to
assess whether the model’s outputs are calibrated probabilities. Finally, to evaluate the impact of the decision-making
threshold, we use the F1-score.

Moreover, performance is also judged in terms of costs. Again, several threshold-independent metrics are
applicable. First, the average expected cost (AEC, see equation 3) is used. Second, Spearman’s rank correlation
coefficient p is used to look at the correlation between probabilities and costs for positive instances. This metric
analyzes whether cost-sensitive models prioritize correctly classifying costlier instances. Finally, one cost-sensitive,
threshold-dependent metric is also used: cost savings. These compare the total costs incurred by a model to classify
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by predicting all instances as the cheapest default class (either 0 or 1) [1]:

Savings = Cost( f(x)) — min{Cost( f(x)), Cost(f;(x))} )
Cost(f5(x))

The domain of this ratio is [—oo, 1], where 1 is the perfect model, but when the model does better than predicting the
default class, we obtain savings in 0, 1].

To test the statistical significance of the results, we use two types of tests depending on whether we are performing
multiple or pairwise comparisons [11]. In the case of multiple comparisons, Friedman tests with Nemenyi post hoc
correction are used. These are visualized using critical difference diagrams that show the average rankings (where
a lower rank is better). Models that are not connected in this diagram have significantly different mean ranks. For
pairwise comparison, Wilcoxon signed-rank tests are used. A significance level of 5% is used primarily, except where
both 5% and 10% are used when indicated.

4. Empirical results

In this section, the empirical results are presented. First, the data and corresponding cost matrices are described.
Second, the results are presented, and these findings are used to answer the proposed research questions.

4.1. Data

The data are from a diverse set of classification tasks where costs are instance-dependent: fraud detection, direct
marketing, customer churn and credit scoring (see Table 4). All datasets are publicly available (see appendix A). In
each dataset, there is some degree of class imbalance with the positive class being the minority, though some cases are
more extreme than others. The cost matrices depend on the application area and are adopted from earlier work (for an
overview, see Table 5). The idea behind these is provided below.

Table 4: Overview of the datasets. Size (N), dimensionality (D) and degree of class imbalance (% Pos) are shown.

Application Dataset Abbr. N D % Pos
Fraud detection Kaggle Credit Card Fraud KCCF 282,982 29 0.16
Kaggle IEEE Fraud Detection KIFD 590,540 431 3.50
Direct marketing KDD Cup 1998 KDD 191,779 22 5.07
UCI Bank Marketing UBM 45,211 15 11.70
Churn prediction Kaggle Telco Customer Churn KTCC 7,032 19 26.58
TV Subscription Churn SC 9,379 46 4.79
Credit scoring Kaggle Give Me Some Credit GMSC 112,915 10 6.74
UCI Default of Credit Card Clients Dccc 30,000 23 22.12
VUB Credit Scoring VCS 18,917 16 16.95

Fraud detection In fraud detection, a positive prediction triggers an investigation that has a fixed cost ¢, while a
missed fraudulent transaction incurs a cost equal to its amount A; (see Table 5a). For both datasets, ¢, is set to 10
following [20].

Direct marketing A similar reasoning applies here: any direct marketing action results in a fixed cost ¢ 7, and missing
a potential success incurs an instance-dependent cost (see Table 5b). Whereas KDD uses the amount A; and ¢, = 0.68
following both [47] and [34], UBM instead uses the expected interest given A; and ¢ r= 1, following [2].

Customer churn For customer churn prediction, ¢/” and ¢/ are set at 2 and 12 times the monthly amount A; for
KTCC, respectively, following [34] (see Table 5c). For TSC, the cost matrix provided with the dataset is used (not
shown here, see [3]).

Credit scoring Finally, for credit scoring, the costs of a F P and F N are calculated following [1] with both a function
of the loan amount A;.
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Table 5: Cost matrices for the different application areas. For each application, we present the different costs
associated with different outcomes. A;, I'nt;, ciF N and ciF P represent instance-dependent costs, and ¢ ’ is a fixed cost.

(a) Fraud detection (b) Direct marketing (c) Customer churn (d) Credit scoring
y y y y
1 0 1 1 1
. 0] o© A, . 0| 0  A/Inm, . 0] 0 124 . 0] o0 cFN
¥y y FP !
L] ¢ ¢y L] ¢ cr 1| 24; 0 1] ¢ 0

4.2. Results

In this section, we report the results of the experiments and discuss the implications for the research questions of
this study. First, we compare training with the three different objective functions with threshold-independent metrics.
Second, we use threshold-dependent metrics to analyze the different thresholding strategies for the different models.
Third, we compare the results of this analysis by training with class-dependent costs. Complete results on the different
experiments can be found in the digital appendix.

4.2.1. Cost-sensitive training

We start by looking at two traditional evaluation metrics: the area under the ROC curve (AUROC) and the average
precision (AP) (see Figure 3). The cost-insensitive methodologies (net, boost, logit) have the best scores for both of
these metrics, although only the difference with the worst classifier, cslogit, is significant at a 5% level.

CcD CcD
| b
1 2 3 4 5 6 7 8 9 1 2 3 éll 5 6 7 z|3 ?
net — cslogit net L— cslogit
bOOS.t W|0g|t boost —8 L csboost
logit csboost logit wlogit
csnet wnet wboost csnet
wboost wnet
(a) Area under the ROC curve (AUROC) (b) Average precision (AP)

Figure 3: Cost-insensitive metrics: critical difference diagrams for the AUROC and AP

The AUROC and AP do not consider costs. Therefore, the next metric is the average expected cost (AEC) (see
Figure 4a). Unsurprisingly, the best performing classifiers are those directly optimizing this expected cost. In almost
all cases, the differences with the cost-insensitive models are statistically significant at the 5% level. Models trained
with a cost-weighted objective function perform worse but still better than the cost-insensitive classifiers.

Similarly, Spearman’s rank correlation coefficient p is used to compare the correlation between the predicted
probabilities and costs for the positive instances (see Figure 4b). The cost-sensitive classifiers perform better on average.
For this metric, there does not seem to be a substantial difference between training with weighted cross-entropy and
the average expected cost.

The tradeoff between minimizing costs or errors seems to more strongly affect the least flexible classifier, logistic
regression. Cslogit has the worst performance for the cost-insensitive metrics but the best performance in terms of
AEC. In contrast, logit performs well for AUROC and AP but is the worst in terms of the cost-sensitive metrics. This
indicates that there is a larger tradeoff between minimizing costs and errors for a more inflexible, linear model compared
to the neural networks and gradient boosting.

In conclusion, cost-sensitive models perform worse on average for traditional, cost-insensitive evaluation metrics
but better in terms of cost-sensitive metrics. This indicates that minimizing errors or minimizing costs are two
fundamentally different objectives. Moreover, the type of objective function seems to be more important than the type
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CD CD
e — P
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
L 1 1 1 1 1 1 L n 1 1 1 1 1 1
cslogit —— L— logit wnet logit
csboost net csboost — L———— net
csnet ——— L—— boost cslogit —mM8 L—— boost
wboost wlogit wboost —M8 L csnet
wnet wlogit
(a) Average expected cost (AEC) (b) Spearman’s rank correlation coefficient p

Figure 4: Cost-sensitive metrics: critical difference diagrams for the AEC and Spearman p.

of classifiers, as neither logistic regression, neural networks nor gradient boosting consistently outperform another
category.

4.2.2. Cost-sensitive decision-making

To analyze the different approaches to cost-sensitive decision-making, we first compare the savings (see Table 6)
and then the F1 scores (see Table 8) for each model and thresholding strategy averaged across all datasets. This also
allows us to analyze the effect of using a cost-sensitive objective function in the first stage on the quality of the decisions
in the second stage.

Table 6: Savings: comparison of the different thresholding strategies (averaged across all datasets). Best and
second-best result for each model are denoted in bold and izalic.

Empirical

* ®
IDCS IDCS CDCS CDCS D D F1 CI 0.5
logit 0.36 0.35 0.29 0.30 0.30 0.30 0.24 0.09 0.06
wlogit 0.14 0.36 0.06 0.37 0.37 0.37 0.34 -1.33 0.37
cslogit 0.38 0.37 0.38 0.38 0.38 0.38 0.37 0.38 0.38
net 0.41 0.40 0.35 0.35 0.35 0.35 0.29 0.20 0.12
wnet 0.13 0.36 0.13 0.39 0.39 0.39 0.35 -0.66 0.40
csnet 0.36 0.39 0.34 0.35 0.35 0.34 0.29 0.34 0.34
boost 0.41 0.40 0.35 0.36 0.36 0.36 0.29 0.32 0.13
wboost 0.30 0.37 0.25 0.36 0.36 0.36 0.30 0.23 0.32
csboost 0.39 0.36 0.39 0.39 0.39 0.39 0.34 0.39 0.38

In terms of savings (see Table 6), the importance of the decision-making strategy is strongly related to the objective
function that is used to train a classifier. For the cost-insensitive models (trained with cross-entropy), it is absolutely
crucial to not use the default threshold 0.5 and instead use the instance-dependent cost-sensitive threshold. When a
cost-weighted objective function is used, good results can be obtained either when ¢+ = 0.5, when probabilities are
calibrated and a cost-sensitive threshold is used, or when the threshold is tuned empirically. Conversely, the models
trained with AEC achieve relatively stable savings across thresholding strategies. In other words, using a task-specific
loss function is related to the performance of different decision-making strategies, with the direct approach giving the
most consistent results across strategies.

Moreover, the type of decision-making strategy that is used in the first stage, i.e., the threshold, is more important
than the type of objective function used to train the predictive model in the first stage. In fact, given that an appropriate
threshold is used, it is only beneficial in terms of savings to use a cost-sensitive objective function for the simplest
model: logistic regression. For neural networks and gradient boosting, the cost-insensitive models also achieve good
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results given that the optimal threshold is used. The best savings overall are obtained when a cost-insensitive model is
combined with instance-dependent cost-sensitive thresholding.

Calibrating probabilities achieve better results only for either the weighted cross-entropy or for class-dependent
cost-sensitive thresholds. In fact, the two best savings are obtained without calibration. For models trained with a
normal cross-entropy loss, calibration does not result in a higher Brier score, suggesting that these probabilities were
already calibrated (see Table 7). Although the largest improvement of calibration is observed for the models trained
with AEC, this only leads to an improvement in terms of savings for csnet. Only the models trained with weighted
cross-entropy have a much better performance after calibration.

In terms of savings, it is clearly beneficial to consider costs during decision-making: empirical thresholding with
the F1-score, the class imbalance heuristic or t = 0.5 can obtain bad results (depending on the objective function).
In general, thresholding on an instance level also seems to be favorable to class-dependent thresholding. Finally, both
theoretical and empirical thresholding can achieve good results.

Table 7: Brier score before and after calibration for the different models (averaged across all datasets). The Brier
score of models trained with a cost-sensitive objective function improves considerably, whereas it is stable for the
models trained with a cross-entropy loss.

Calibration |  logit  wlogit  cslogit | net wnet csnet | boost whoost  cshoost
Before 0.07 0.16 0.24 0.07 0.16 0.23 0.07 0.13 0.19
After 0.07 0.07 0.08 0.07 0.07 0.07 0.07 0.08 0.08
Difference | 000  -009  -017| 000 009 -016| 000 005 -0.1

The best thresholding strategies in terms of F1 scores do not necessarily achieve the lowest costs (see Table 8).
This emphasizes that there is also a clear difference between minimizing errors and costs in the decision-making
stage. The best results in terms of the F1 score are obtained when the threshold is tuned empirically to maximize
this metric. Again, calibrating probabilities is only beneficial for the models trained with weighted cross-entropy. For
these models, however, empirical thresholding is more effective than theoretical thresholding. Finally, note how using
t = 0.5 achieves relatively good results in terms of the F1 score, even though it does not result in large cost savings.

Table 8: F1 Score: comparison of the different thresholding strategies (averaged across all datasets). Best and
second-best result for each model are denoted in bold and ifalic.

Empirical

IDCS IDCS CDCS CDCS D CD F1 CI 0.5
logit 0.33 0.33 0.39 0.39 0.39 0.39 0.42 0.30 0.31
wlogit 0.23 0.30 0.26 0.39 0.38 0.38 0.41 0.21 0.39
cslogit 0.36 0.31 0.39 0.39 0.38 0.38 0.39 0.39 0.39
net 0.36 0.36 0.42 0.42 0.42 0.42 0.47 0.34 0.37
wnet 0.23 0.29 0.26 0.39 0.38 0.39 0.43 0.22 0.39
csnet 0.39 0.35 0.41 0.42 0.41 0.42 0.45 0.41 0.43
boost 0.39 0.36 0.45 0.44 0.43 0.44 0.48 0.40 0.40
wboost 0.31 0.32 0.35 0.41 0.41 0.41 0.45 0.33 0.43
csboost 0.35 0.28 0.36 0.36 0.36 0.36 0.40 0.36 0.38

4.2.3. Is it beneficial to train with instance-dependent costs instead of class-dependent costs?

First, we look at the effect of using instance-dependent costs during training as opposed to training with class-
dependent costs in terms of cost-insensitive metrics (see Tables 9 and B1). Although the results are fairly similar for
the two settings, training with class-dependent costs achieves better results for these metrics for almost all cases. Based
on this observation, it can be concluded that training with instance-dependent costs may be disadvantageous in terms
of errors.
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Table 9: Instance-dependent or class-dependent costs: cost-insensitive metrics per model. Significantly better
results are denoted in bold (5%) and italic (10%).

Metric Costs ‘ wlogit cslogit wnet csnet whboost csbhoost
AUROC ID 0.76 0.72 0.76 0.77 0.77 0.76
CD 0.77 0.73 0.78 0.77 0.78 0.79
AP ID 0.38 0.27 0.40 0.38 0.42 0.38
CD 0.42 0.27 0.45 0.36 0.45 0.44
F1 IDCS ID 0.23 0.36 0.23 0.39 0.31 0.35
CD 0.24 0.37 0.25 0.39 0.32 0.38
F1 IDCS* 1D 0.30 0.31 0.29 0.35 0.32 0.28
CD 0.34 0.32 0.35 0.35 0.35 0.35
F1 CDCS ID 0.26 0.39 0.26 0.41 0.35 0.36
CD 0.27 0.39 0.27 0.42 0.34 0.41
F1 CDCS* ID 0.39 0.39 0.39 0.42 0.41 0.36
CD 0.41 0.39 0.42 0.42 0.43 0.43
FI1EmpID ID 0.38 0.38 0.38 0.41 0.41 0.36
CD 0.41 0.39 0.42 0.42 043 0.43
FI1EmpCD 1ID 0.38 0.38 0.39 0.42 0.41 0.36
CD 0.41 0.39 0.42 042 0.43 0.43
FlEmpF1 1D 0.41 0.39 0.43 0.45 0.45 0.40
CD 0.44 0.39 0.46 0.45 0.46 0.47
F1 CI ID 0.21 0.39 0.22 0.41 0.33 0.36
CD 0.21 0.39 0.21 0.42 0.33 0.40
F10.5 ID 0.39 0.39 0.39 0.43 0.43 0.38
CD 0.41 0.39 0.42 043 0.45 0.44

Next, we consider cost-sensitive metrics (see Tables 10 and B2). Here, training with instance-dependent costs
achieves comparatively better results. Using instance-dependent costs consistently leads to lower average expected
costs (though the difference is not always significant). Additionally, in terms of Spearman’s p, it is better for all models,
and this difference is significant except for csnet. In terms of savings, instance-dependent costs are better on average,
although not consistently.

5. Discussion

In this section, we draw upon the results of the empirical evaluation to answer the four key research questions that
were previously proposed. An overview of findings per research question can be found in Table 11.

Does cost-sensitive training result in improved performance compared to training without costs? Cost-sensitive
training achieves better performance in terms of cost-sensitive, but performs worse in terms of cost-insensitive metrics.
Cost-sensitive objectives result in a lower expected cost and learn to prioritize costly instances based on the Spearman
correlation between model outputs and costs for positive instances. This is observed for both cost-sensitive objective
functions: the indirect, weighted approach (weighted cross-entropy) and the direct approach (average expected cost).
These findings illustrate that there is a tradeoff between minimizing costs or minimizing errors during training,
indicating that these are two fundamentally different objectives.

Does instance-dependent cost-sensitive thresholding result in improved performance compared to class-
dependent thresholding? In terms of costs, cost-sensitive thresholding at an instance level was observed to be the most
successful decision-making strategy, outperforming all other decision-making thresholds. Calibrating probabilities
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An empirical evaluation of cost-sensitive learning strategies

results are denoted in bold (5%) and italic (10%). AEC is normalized between 0 and 1 per dataset (lower is better).

Metric Costs ‘ wlogit cslogit whnet csnet whoost csboost
AEC ID 0.56 0.07 0.47 0.18 041 0.06
CD 0.68 0.25 0.59 0.18 0.48 0.21
Spearman’s p ID 0.09 0.11 0.16 -0.06 0.13 0.23
CD -0.10 -0.05 -0.10 -0.07 -0.07 -0.10
Savings IDCS ID 0.14 0.38 0.13 0.36 0.30 0.39
CD 0.14 0.32 0.17 0.36 0.30 0.38
Savings IDCS* ID 0.36 0.37 0.36 0.39 0.37 0.36
CD 0.38 0.36 0.40 0.39 0.38 0.39
Savings CDCS ID 0.06 0.38 0.13 0.34 0.25 0.39
CD 0.03 0.31 0.08 0.34 0.22 0.35
Savings CDCS* 1D 0.37 0.38 0.39 0.35 0.36 0.39
CD 0.32 0.31 0.34 0.35 0.34 0.35
Savings EmpID  ID 0.37 0.38 0.39 0.35 0.36 0.39
CD 0.32 0.31 0.34 0.34 0.34 0.35
Savings Emp CD ID 0.37 0.38 0.39 0.34 0.36 0.39
CD 0.32 0.31 0.34 0.34 0.34 0.35
Savings Emp F1 ~ ID 0.34 0.37 0.35 0.29 0.30 0.34
CD 0.27 0.31 0.27 0.29 0.26 0.27
Savings CI ID -1.33 0.38 -0.66 0.34 0.23 0.39
CD -1.59 0.31 -0.81 0.34 0.19 0.34
Savings 0.5 1D 0.37 0.38 0.40 0.34 0.32 0.38
CD 0.33 0.31 0.35 0.34 0.29 0.34

was only beneficial when the weighted cross-entropy or a class-dependent threshold was used. The differences in
best-performing thresholds when optimizing for savings or F1 score illustrate that minimizing errors and costs are also
two different objectives in the decision-making stage.

Does combining cost-sensitive training and cost-sensitive thresholding result in improved performance com-
pared to either method separately or completely cost-insensitive classification? Combining cost-sensitive training
and decision-making did not necessarily achieve better results. In fact, the best savings were obtained by training with
a cost-insensitive objective function and using the instance-dependent cost-sensitive threshold. This illustrates that the
type of thresholding is more important than the type of objective function in terms of costs.

Is it beneficial to train with instance-dependent costs instead of class-dependent costs? In terms of both training
and thresholding, using instance-dependent instead of class-dependent costs was observed to achieve better results
for cost-sensitive metrics, but worse results for traditional cost-insensitive metrics. Specifically, not using costs at
all is preferential for minimizing errors, using instance-dependent costs is optimal for minimizing costs, and using
class-dependent costs lies somewhere between these two.

6. Conclusion

In this paper, we presented a focused review and empirical analysis of instance-dependent cost-sensitive classifica-
tion. Conceptually, we reviewed cost-sensitive classification through the lens of predict-and-optimize and differentiated
between different methods for both cost-sensitive training and decision-making. Several key methodologies were
implemented for different classifiers, and the resulting models were compared empirically on nine datasets from
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Table 11: Summary of the key findings. We present a summary of the results per research question and hypothesis.
Performance is judged in terms of costs and errors. Each question is answered with yes (v'), no () or inconclusive (?).

Research question Costs  Errors

1. Does instance-dependent cost-sensitive training result in improved performance compared to training
without costs?

Instance-dependent cost-sensitive training results in better performance compared to training
without costs.

v

2. Does instance-dependent cost-sensitive thresholding result in improved performance compared to class-
dependent thresholding?

Instance-dependent cost-sensitive thresholding results in improved performance compared to

class-dependent thresholding. v

Calibrating probabilities results in more effective thresholding. ? ?

3. Does combining cost-sensitive training and cost-sensitive thresholding result in improved performance
compared to either method separately or completely cost-insensitive classification?

Combining cost-sensitive training and cost-sensitive thresholding results in improved perfor-
mance compared to either method separately or completely cost-insensitive classification.

4. Is it beneficial to train with instance-dependent costs instead of class-dependent costs?

Using instance-dependent costs results in better performance compared to class-dependent costs. v

different application areas. Based on the experimental results obtained from this large-scale benchmarking experiment,
we answered four research questions (see Table 11 for an overview).

These findings stress the importance of considering the right objective for an application. Optimizing for accuracy
can be detrimental to a classifier’s performance when the actual objective is to minimize costs, which is the case in
a large variety of business applications. For this, it is especially important to consider the right type of thresholding
strategy. Overall, a conceptually simple yet well-performing strategy is to first train a cost-insensitive model and only
introduce costs in a second stage through instance-dependent thresholding. In other words, using a task-specific loss
in the first stage does not result in better decisions in the second stage, given that the optimal decision-making policy
is used.

These results correspond with empirical research in the class-dependent setting: two works compared cost-sensitive
boosting algorithms with cost-sensitive thresholding and found the latter to be the more effective strategy [49, 31].
Nevertheless, theoretical results in the class-dependent setting suggest that cost-sensitive training can be optimal
under certain conditions. For example, under model misspecification, a cost-sensitive objective function [12] can be
preferential to theoretical thresholding. Consequently, a direction for future research is to extend the theoretical analysis
from the class-dependent setting toward instance-dependent costs. Additionally, it will be interesting to investigate the
influence of the characteristics of the cost distribution and cost matrix on the performance of instance-dependent
cost-sensitive training and decision-making methods. By sharing our code, we hope to encourage and facilitate further
research on instance-dependent cost-sensitive learning.
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A. Data

The data sets that are used in the experiments presented in this paper are publicly available online (names are
clickable links):

e Kaggle Credit Card Fraud [9]

e Kaggle IEEE Fraud Detection

e UCI KDD98 Direct Mailing

e UCI Bank Marketing [29]

e Kaggle Telco Customer Churn

e TV Subscription Churn [3]

e Kaggle Give Me Some Credit

e UCI Default of Credit Card Clients [46]
e VUB Credit Scoring [33]

B. Training with instance-dependent or class-dependent costs: results per dataset

Detailed results comparing training with instance-dependent and class-dependent costs per dataset can be found in
Tables B1 and B2.

Table B1: Instance-dependent or class-dependent costs: cost-insensitive metrics per dataset. Significantly better
results are denoted in bold (5%) and italic (10%).

Metric Costs | KCCF GMSC KIFD KTCC KDD TSC UBM DCCC VCS
AUC ID 0.96 0.81 0.89 0.82 0.51 0.61 0.73 0.72 0.76
CD 0.96 0.81 0.90 0.82 0.53 0.62 0.76 0.75 0.77
AP ID 0.72 0.30 0.45 0.61 0.05 0.08 0.29 0.46 0.38
CD 0.77 0.31 0.51 0.60 0.06 0.08 0.37 0.49 0.39
Brier score ID 0.00 0.16 0.05 0.25 0.40 0.19 0.17 0.21 0.24
CD 0.00 0.17 0.06 0.25 0.42 0.19 0.16 0.23 0.25
F1 IDCS ID 0.41 0.22 0.27 0.54 0.10 0.12 0.31 0.43 0.40
CD 0.46 0.22 0.28 0.55 0.10 0.12 0.33 0.44 0.40
F1 IDCS* ID 0.40 0.30 0.28 0.57 0.06 0.12 0.28 0.37 0.40
CD 0.49 0.31 0.38 0.57 0.06 0.12 0.31 0.44 0.43
F1 CDCS ID 0.63 0.22 0.27 0.54 0.10 0.12 0.32 0.44 0.40
CDh 0.74 0.22 0.27 0.55 0.10 0.12 0.32 0.45 0.39

|
|
|
|
|
F1 CDCS* ID ‘ 0.75 0.31 0.40 0.57 0.10 0.13 0.36 0.48 0.43
|
|
|
|
|

CD 0.81 0.31 0.45 0.57 0.10 0.14 0.42 0.51 0.44
F1 Emp ID ID 0.70 0.32 0.40 0.56 0.10 0.13 0.36 0.49 0.44
CD 0.81 0.31 0.45 0.57 0.10 0.14 0.42 0.51 0.44
F1 Emp CD ID 0.75 0.31 0.40 0.57 0.10 0.13 0.36 0.48 0.43
CDh 0.81 0.31 0.45 0.57 0.10 0.14 0.42 0.51 0.44
F1 Emp F1 ID 0.77 0.39 0.49 0.61 0.10 0.13 0.37 0.49 0.44
CDh 0.82 0.39 0.54 0.61 0.10 0.13 0.43 0.53 0.46
F1 CI ID 0.50 0.22 0.24 0.56 0.10 0.12 0.31 0.45 0.40
CDh 0.53 0.22 0.23 0.57 0.10 0.12 0.31 0.45 0.40
F10.5 ID 0.74 0.33 0.43 0.59 0.10 0.13 0.37 0.49 0.44
CD 0.81 0.33 0.47 0.59 0.10 0.14 0.41 0.51 0.45
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Table B2: Instance-dependent or class-dependent costs: cost-sensitive metrics per dataset. Significantly better
results are denoted in bold (5%) and italic (10%).

Metric Costs | KCCF GMSC KIFD KTCC KDD TSC UBM DCCC VCS
AEC ID 0.08 45890 253 82.05 0.72  60.22 0.52 15674.65 0.08
CD 0.08 460.81 3.05 81.32 0.72  60.42 0.67 16724.90 0.09
Spearman’s p ID 0.17  -0.04 0.09 0.12 0.03 -0.35 0.55 0.05 0.36
CD -0.07  -0.15 -0.17 0.12  -0.14 -0.30 0.18  -0.30 0.11
Savings IDCS ID 0.54 0.24 0.47 021 -0.01 -0.09 0.57 0.29 0.36
CD 0.68 0.23 0.42 022 -0.01 -0.09 0.51 0.21 0.34
Savings IDCS* ID 0.66 0.47 0.60 026 -0.08 0.07 0.61 0.32 0.42
CD 0.70 0.48 0.61 026  -0.09 0.06 0.62 0.36 0.43
Savings CDCS 1D) 0.62 0.23 0.38 021 -0.01 -0.10 0.45 0.22 0.34
CD 0.65 0.22 0.28 022 -0.01 -0.10 0.26 0.16 0.30
Savings CDCS* ID 0.67 0.47 0.59 026 -0.01 0.06 0.55 0.35 0.41
CD 0.67 0.47 0.50 026  -0.01 0.06 0.42 0.29 0.38
Savings Emp ID 1D) 0.67 0.47 0.59 026  -0.01 0.06 0.56 0.35 0.42
CD 0.67 0.47 0.50 026  -0.02 0.06 0.42 0.29 0.38
Savings EmpCD  ID 0.67 0.47 0.59 026 -0.01 0.06 0.55 0.35 0.41
CD 0.67 0.47 0.50 026  -0.02 0.06 0.42 0.29 0.38
Savings Emp F1 1D) 0.66 0.40 0.52 0.10  -0.03 0.05 0.54 0.35 0.39
CD 0.64 0.39 0.41 0.10  -0.08 0.05 0.38 0.30 0.33
Savings CI ID -2.58 0.23 0.24 022 -0.01 -0.10 0.43 0.25 0.35
CD -3.05 0.23 0.14 023 -0.02 -0.10 0.24 0.18 0.31
Savings 0.5 1D) 0.66 0.47 0.59 020 -0.03 0.06 0.55 0.35 0.41
CD 0.66 0.47 0.49 021  -0.05 0.06 0.43 0.30 0.37
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