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Abstract

The internet is filled with fake face images and videos synthesized by deep generative models. These realistic Deep-
Fakes pose a challenge to determine the authenticity of multimedia content. As countermeasures, artifact-based
detection methods suffer from insufficiently fine-grained features that lead to limited detection performance. DNN-
based detection methods are not efficient enough, given that a DeepFake can be created easily by mobile apps and
DNN-based models require high computational resources. For the first time, we show that DeepFake faces have fewer
feature points than real ones, especially in certain facial regions. Inspired by feature point detector-descriptors to
extract discriminative features at the pixel level, we propose the Fused Facial Region Feature Descriptor (FFR FD)
for effective and fast DeepFake detection. FFR FD is only a vector extracted from the face, and it can be constructed
from any feature point detector-descriptors. We train a random forest classifier with FFR FD and conduct extensive
experiments on six large-scale DeepFake datasets, whose results demonstrate that our method is superior to most state
of the art DNN-based models.
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1. Introduction

Misinformation has become ubiquitous, a conse-
quence of the ability to easily create multimedia con-
tent and share it on social platforms. The remarkable
development of deep generative models has further led
to the synthesis of super-realistic images or videos. For
example, the well-known DeepFake refers to swapping
faces in a video through generative adversarial networks
(GANs) [1] or autoencoders (AEs) [2]. Some mobile
apps (e.g., Avatarify [3] and Reface [4]) also enable the
manipulation of faces. DeepFakes can be abused mali-
ciously, such as by creating revenge pornography [5, 6]
or striking at politicians [7]. This fake multimedia in-
formation can easily deceive the human senses, raising
concerns of privacy, social risks, and even national se-
curity. The detection of DeepFakes to authenticate mul-
timedia content is a crucial need.

DeepFakes generated by imperfect synthesis algo-
rithms will introduce noticeable visual artifacts, inspir-
ing many artifact-based detection methods [8, 9]. How-
ever, with improved means of generating DeepFakes,
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these methods have struggled. Hence, it is neces-
sary to capture more fine-grained differences between
real and fake faces, and this is a specialty of deep
neural networks (DNNs), whose impressive classifica-
tion performance has spawned many detection models
[10, 11, 12, 13, 14]. Some models directly take the
original image pixels as input, and detection by DNNs
automatically extracting features still struggles to meet
the challenge of more advanced DeepFakes [15]. In
addition, a trained detector is likely based on the spe-
cific features of one dataset, and cannot extrapolate to
other datasets, i.e., it lacks the ability to generalize. To
more effectively detect DeepFakes, some recent work
has meticulously designed DNNs to combine modules
or features with positive detection capabilities, such as
an attention mechanism [16, 17, 18], texture features
[19, 20], audio and visual modalities [21], and fre-
quency spectrum [22]. Concomitantly, to drive large
and complex DNNs with large-scale datasets requires
significant computing resources (e.g., GPUs) and train-
ing (e.g., parameter adjustment), which decrease effi-
ciency.

To quickly and effectively detect DeepFakes, we aim
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Figure 1: The left side shows two real images and two fake images
from FaceForensics++ DeepFakes [14]. The white dots in the corre-
sponding images below are the detected FAST [23] feature points. It
can be seen that fake faces have fewer feature points than real faces.
T-SNE [24] of FDr in the entire face, inner mouth, and left eyebrow
region is shown on the right. FDr is constructed by a SIFT [25]
detector-descriptor and comes from 2000 real and 2000 fake images
that were randomly selected.

to capture subtle defects of local features. Image lo-
cal feature detection-description algorithms have been
successfully used in various vision applications, such
as multimedia content retrieval, image matching, ob-
ject detection, video data mining, and augmented real-
ity [26, 27, 28, 29, 30]. Algorithms to determine fea-
ture points by specifying the properties of images (e.g.,
edge and corner) are called detectors, and algorithms
that describe detected points by neighboring pixel re-
gions are referred to as descriptors. Motivated by the
advantages of feature point detector-descriptors, such
as fast detection and low-dimensional yet discriminative
descriptions, we explore information about the number,
distribution, and description of feature points in Deep-
Fake faces.

Deep generative models used for face swaps, such as
autoencoders [31], require the reconstruction of faces
from latent features. However, the limited encod-
ing space will cause the replaced face to be slightly
blurred [11], which will affect the feature point de-
tector that makes decisions through pixel-level differ-
ences. Our experiments on self-swapped faces (see
Section 3.1) and the widely used DeepFake datasets
[9, 32, 14, 33, 34, 15] reveal that the number of fea-
ture points in DeepFake faces is generally less than in
real ones, especially in the eyes, nose, mouth, and eye-
brows. Indeed, due to the concentration of details in
these facial regions, the feature points of faces tend to
be distributed in them, as shown on the left of Figure
1. However, descriptors that record fine-grained fea-
tures such as gradient information [25] or intensity dif-
ferences [35, 36] will also be affected by blur. Each
feature point of one face will be described by one de-
scriptor, making it arduous to detect DeepFake through
a mass of messy descriptors. Based on the above find-

ings, we propose the Fused Facial Region Feature De-
scriptor (FFR FD), a compact vector representation to
detect fake faces.

FFR FD can be constructed by various feature point
detector-descriptors, and our experiments include SIFT
[25], SURF [37], FAST&BRIEF [23, 35], ORB [36],
and A-KAZE [38]. We divide feature points into
eight facial regions: entire face, mouth, inner mouth,
right eyebrow, left eyebrow, right eye, left eye, and
nose. All of the feature point descriptors in each fa-
cial region are used to construct a vector for that re-
gion, FDr, which can be controlled to introduce the
quantity information of feature points by not taking the
average value during the calculation. We connect FDr

for each facial region in series to form FFR FD, which
is consistent with the computational simplicity of fea-
ture detector-descriptors, and significantly reduces the
dimension of features extracted from each face, from an
N x d matrix to an 8 x d vector, where N is the total
number of feature points in an image and d is the de-
scriptor’s dimension. To subdivide facial regions with
FDr capitalizes on the lack of feature points of Deep-
Fakes in these regions, and is more discriminative than
to directly use all descriptors in the entire face, as shown
on the right of Figure 1.

We used FFR FD as input to train the random forest
classifier. Extensive experiments were conducted on six
DeepFake benchmark datasets. Results demonstrate the
effectiveness of our lightweight model for DeepFake de-
tection. Specifically, the frame-level AUC scores of the
challenging DFD [33], DFDC [34], and CelebDF V2
[15] reached 85.2, 88.3, and 82.2, respectively, outper-
forming other DNN-based state of the art (SOTA) de-
tection methods. In addition, our method has consider-
able generalizability, which is useful given that current
DeepFake faces generally lack feature points. Our main
contributions are as follows:
• Our empirical studies reveal that the use of deep

generative models to swap faces will reduce the detected
feature points. The detection and statistical results of
many large-scale datasets show that current DeepFake
faces have fewer feature points than real faces, espe-
cially in detailed regions. This substantial difference is
evident even on higher-quality datasets.
• We propose FFR FD as an informative vector to

represent the facial feature description, constructed by
the feature point descriptors from the subdivided fa-
cial regions. FFR FD has computational simplicity and
can be combined with various feature point detector-
descriptors.
• Random forest trained with FFR FD can real-

ize state-of-the-art detection. Compared with popular
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DNN-based detection models, our method is more ef-
fective, efficient, and generalizable.

2. Related work

We introduce DeepFake generation and detection
methods, and describe the DeepFake datasets and typi-
cal feature point detector-descriptors used in our exper-
iments.

2.1. DeepFake generation and datasets

DeepFake, as a general term for face swapping, refers
to fake images or videos synthesized by algorithms,
such as GANs [1, 39, 40, 41], auto-encoders [2, 42, 31],
and 3D-models [43, 44]. The rapid progress of these
deep generative models presents significant challenges
to the quick and effective detection of realistic Deep-
Fakes. Many DeepFake video benchmark datasets have
been released to promote the research of DeepFake de-
tection. Current DeepFake datasets basically comprise
two generations [15, 45]. The first includes UADFV [9],
DeepfakeTIMIT [32], and FF++ DeepFakes [14], using
FakeApp [46], Faceswap-Gan [47], and Faceswap [31]
to generate fake videos. The second generation, includ-
ing DFD [33], DFDC [34], and Celeb-DF(V2) [15], im-
proves visual quality through augmented synthesis al-
gorithms. The number of videos has increased, along
with their diversity, such as age, skin color, and light-
ing environment. Therefore, we cannot ignore the cost
and speed of a detection model in addition to its perfor-
mance.

2.2. DeepFake detection

Early work identified physical behavior patterns, such
as inconsistent head poses [8], unnatural eye blinking
[9], and correlations between facial expressions and
head movements [7]. However, these artifacts were
fixed in second-generation DeepFake datasets, resulting
in limited detection performance. Recent work has also
exposed DeepFakes based on biological signals [48].

Detection methods based on deep neural networks
(DNNs) have become mainstream. For example, a
two-stream CNN was used [10], Meso-4 focused on
the mesoscopic properties of images [11], a capsule
structure based on VGG19 [12] was used, ResNet was
used to capture faces warping artifacts [13], and classic
Xception [14, 49] was used to detect fake faces. Be-
cause videos have temporal features, some researchers
have combined CNNs with RNNs for classification
[50, 51]. With their powerful feature extraction capabil-
ities, DNN-based methods have achieved some success,

but they still have limitations against advanced Deep-
Fakes [15]. Learning-based methods have been further
studied bo address this issue. For example, FakeSpotter
[52] monitors neuron behavior [53] to detect fake faces.
More recently, researchers have combined useful mod-
ules or important features. Dang et al. [16] utilized an
attention mechanism to improve detection ability. Sim-
ilarly, a vision transformer was used for detection [54].
Gram-Net [19] and InTeLe [20] explore the texture in-
formation of images to improve robustness. A method
combining an attention mechanism and texture features
was proposed [17]. Instead of designing large, complex
neural networks, we efficiently extract features for ef-
fective DeepFake detection.

To improve generalization ability, Cozzolino et al.
[55] proposed to learn an embedding based on an au-
toencoder. Wang et al. [56] trained ResNet [57] with
a multi-class ProGAN dataset and showed that appro-
priate preprocessing and postprocessing could improve
generalization. Face X-ray [58] observes the blend-
ing boundaries between faces and the background to
detect swapped faces; its framework adopts HRNet
[59, 60]. The usampling strategies of deep genera-
tive models introduce artifacts in the frequency do-
main [61, 62], inspiring many spectrum-based detection
methods [22, 63]. However, detection based only on
the frequency spectrum leads to unsatisfactory perfor-
mance and generalization. Frequency-domain artifacts
can be reduced by training with spectrum regularization
[61], focal frequency loss [64], or a spectrum discrim-
inator [65]. FakePolisher [66] performs shallow recon-
struction and can reduce artifact patterns. This calls for
the discovery of the more fine-grained feature defects of
DeepFakes to provide effective DeepFake detection.

2.3. Feature point detector-descriptors
The detection and description of local features of

images is a fundamental problem in computer vision
[67, 68]. Feature points (also known as interest points or
keypoints) are widely used in image matching, retrieval,
and recognition tasks.
SIFT The scale invariant feature transform (SIFT) is a
well-known feature detection and description algorithm
proposed by Lowe [25]. It has four steps: scale-space
extrema detection, i.e., the use of difference of Gaussian
(DOG) to search for maxima at various scales of the im-
age; keypoint localization, i.e., the location of potential
feature points, where the Hessian matrix is used to re-
move low-contrast points; orientation assignment, i.e.,
the construction of an orientation histogram based on
the gradient information around the feature point, and
its use to assign orientation for the feature point; and
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the keypoint descriptor, i.e., use of the gradient mag-
nitude and orientation to construct a feature vector for
feature points. This method extracts a 16 x 16 neighbor
region in each, and subdivides it into 4 x 4 subblocks
with eight orientation bins, resulting in a descriptor of 4
x 4 x 8 = 128 dimensions.
SURF The feature-detection of speeded up robust fea-
tures (SURF), proposed by Bay et al. [37], is faster
than that of SIFT. Due to the use of integral images, the
boxed filter approximates DOG. SURF uses the deter-
minant of the Hessian matrix to find the interest points
at blob-type structures. 2D Haar wavelet responses are
used for orientation assignment and feature description.
The neighborhood around each feature point is divided
into 4 x 4 subregions, and every wavelet response of a
subregion has four values, so the descriptor of each fea-
ture point is a vector of dimension 4 x 4 x 4=64.
FAST&BRIEF Features from Accelerated Segment
Test (FAST) [23] is a high-speed feature detector devel-
oped for real-time applications. Corner point extraction
is performed by comparing the intensity thresholds be-
tween the point and pixels on a circular ring around it.
A decision tree based on the ID3 algorithm is trained as
the corner detector. Non-maximum suppression is used
to solve the problem of adjacent corner points, which
makes the FAST detector more efficient. FAST is only
a feature point detector and does not involve feature de-
scription. Binary Robust Independent Elementary Fea-
tures (BRIEF) [35] is a feature point descriptor that uses
simple binary strings. It performs Gaussian smoothing
for the patch partition of detected feature points, and
randomly selects pairs of points for intensity difference
tests to obtain descriptors. If the number of pairs of
points is 256, then the dimension of the descriptor is
32 bytes for each feature point, which is much smaller
than that of SIFT or SURF. BRIEF performs similarly
to SIFT in most scenarios, but its low complexity makes
the construction of descriptors faster. Combining the
FAST detector and BRIEF descriptor has the advantages
of fast speed and low computational resource require-
ments.
ORB Introduced by Rublee et al. [36], Oriented FAST
and Rotated BRIEF (ORB) is mainly used to solve the
problem that the FAST detector does not compute orien-
tation and the BRIEF descriptor lacks rotational invari-
ance. ORB applies the Harris corner measure to pick
the Top N points from FAST corners to evaluate corner-
ness and determine the local orientation by the intensity
centroid [36]. ORB extracts the BRIEF descriptor ac-
cording to the main orientation of the feature point. It
adopts a greedy algorithm to find random pairwise pixel
patches with low correlation. In this study, the authors

selected 256 pairwise pixel patches for feature descrip-
tion, so it generates a 32-dimensional descriptor. Note
that we use the feature point information for DeepFake
detection. The extracted faces have been cropped and
aligned, so the improved properties of ORB have little
impact on detection, but we still use it for comparison.
A-KAZE Introduced by Alcantarilla et al. [38], the A-
KAZE feature detector and descriptor effectively con-
structs the nonlinear scale space for feature detection
through FED [69, 70]. The descriptor is based on M-
LDB, which is also efficient at exploring gradient infor-
mation from the nonlinear scale space.

The features extracted by the detector have differ-
ent property requirements, depending on the vision
task [29]. We are concerned about the effectiveness and
efficiency of using it for DeepFake detection.

3. Feature points of DeepFakes and real faces

In this section, we show the number and distribution
of feature points between DeepFake faces and real ones
in detail.

3.1. Swapping faces reduces the number of feature
points

Encoder

Encoder

Decoder A

Decoder B

Real Faces A

Real Faces B

Reconstructed 

Face A

Reconstructed 

Face B

Latent 

Features A

Latent 

Features B

Shared

Encoder Decoder B
Reconstructed 

Face B from A

Latent 

Features B
Real Faces A

Training

Swapping

Figure 2: Procedures to create a DeepFake based on an autoencoder-
decoder

Will deep generative models cause a change in the
number of facial feature points? To this end, we uti-
lize the Original Faceswap Model [31] for face swap-
ping. The model is based on the autoencoder-decoder:
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the shared encoder is trained for two different faces, A
and B, to extract the latent feature vectors, from which
the corresponding faces are reconstructed by their re-
spective decoders. The compressed latent vectors can
be understood as general face information such as the
expression and background, and the decoders are used
to restore specific facial features, such as nose details,
from latent vectors. After training, the latent vectors ex-
tracted from A by the shared encoder are transmitted to
the decoder of B, such that A is replaced by B, as shown
in Figure 2.

Because the feature points of diverse facial appear-
ances are naturally different, we use one face as both A
and B, i.e., we swap a face with itself. A real face video
containing 396 frames from FF++ YouTube [14] was
used for experiments. After sufficient training of the
model, we swapped the face with itself and detected the
SIFT, SURF, FAST, ORB, and A-KAZE feature points.
The feature points of the original face and the corre-
sponding fake face are shown in Figure 3. Obviously,
the fake face has fewer feature points than the real face
with the same feature point detector. Examining the dis-
tribution of feature points, this phenomenon is more no-
ticeable in facial regions with detailed information, such
as the nose, mouth, eyes, and eyebrows. It can also be
seen from Figure 3 that while the swapped face is simi-
lar to the original, many refined details for determining
feature points are lost.

Original

 Face A

Swapped 

Face A

From Itself

Face SIFT SURF FAST ORB A-KAZE

Figure 3: Feature points detected in original and swapped faces. SIFT,
SURF, FAST, ORB, and A-KAZE feature-point detectors are used in
experiments. Comparing the corresponding feature point detectors of
original and swapped faces, the DeepFake lacks feature points, espe-
cially in facial regions such as the eyes, nose, and mouth.

To verify the observation results, we counted the
numbers of feature points on the original and swapped
faces. We summed the feature points in the face im-
ages extracted from all of the frames and divided by
the number of faces to obtain the average number of
feature points of each face. Based on the discrepancies
of the feature points distribution, we further used Dlib
[71] to subdivide the face into seven regions: mouth,
inner mouth, right eyebrow, left eyebrow, right eye,
left eye, and nose; then we calculated the average num-
ber of feature points, as shown in Table 1. These re-

sults again show that the Faceswap model will reduce
the feature points of faces, especially in the subdivided
facial regions. Compared to other detectors, the number
of feature points of fake faces is reduced more signif-
icantly on FAST and ORB (based on modified FAST).
Both visualizations and statistical results inspire us to
explore the feature points on detailed facial regions for
detecting forged faces.

Table 1: Average number of feature points for eight facial regions. Re-
sults come from original faces and corresponding self-swapped faces.
Real and fake faces are extracted from the corresponding 369 frames.

FP Detector → SIFT SURF FAST ORB A-KAZE
Region ↓ Face → ori swap ori swap ori swap ori swap ori swap

entire face 126.7 91.6 182.6 141.1 146.1 53.7 237.2 108.6 67.5 50.7
mouth 23.9 10.1 43.3 29.1 46.4 8.7 70.2 17.9 23.8 14.5

inner mouth 23.9 3.6 18.8 13.0 21.8 2.9 32.7 17.9 9.4 3.3
right eyebrow 4.2 3.0 18.8 9.8 3.5 0.4 1.2 0.1 0.6 0.3
left eyebrow 4.2 2.2 13.2 8.0 7.6 2.3 6.1 3.3 1.6 1.1

right eye 10.4 4.4 8.5 6.5 21.1 7.8 37.5 15.4 8.8 7.4
left eye 11.0 6.7 8.8 7.4 20.0 10.4 39.8 21.0 8.7 7.8

nose 11.0 10.4 24.0 18.8 23.1 12.3 55.3 33.7 8.7 11.6

3.2. Average number of feature points on DeepFake
datasets

Does this defect exist in a DeepFake meticulously
crafted with various advanced generation and optimiza-
tion technologies? We further observed the distribution
of feature points on faces from DeepFake datasets, and
similarly divided the facial region to calculate the aver-
age number of feature points of real and fake faces, as
shown in Table 2. The results show that both the first-
and second-generation DeepFake datasets lack suffi-
cient feature points. This motivates us to explore the
use of feature point information for detection.

4. Proposed FFR FD for DeepFake detection

It is infeasible to directly judge authenticity by the
number of feature points because this fluctuates accord-
ing to factors such as facial appearance or video quality
(compare FF++ DF (RAW) and FF++ DF (LQ) in Ta-
ble 2). Hence, it is necessary to explore the combina-
tion of feature point descriptors for detection, which is
nontrivial if there are many feature points. If N feature
points are detected in a face image, and the descriptor
of each feature point is d-dimensional (depending on
the descriptor, as shown in Table 3), then one-shot will
produce (N x d)-dimensional features. In current large-
scale DeepFake datasets, to directly train the classifier
with descriptors or BOWs [72] (constructed from de-
scriptors by k-means) consumes much time and is prone
to overfitting. Here, we propose FFR FD for fast, effec-
tive DeepFake detection.
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Table 2: Average number of feature points for faces from DeepFake datasets. All images from the training set are used for statistics. Based on
five feature detector-descriptors, current DeepFakes struggle with providing enough feature points across facial regions. DT (HQ) and DT (LQ)
denote the HQ and LQ versions, respectively, of DeepfakeTIMIT [32]. FF++ DF (RAW) and FF++ DF (LQ) denote the uncompressed and c40
high-compressed versions, respectively, of FF++ DeepFakes [14].

Detector → SIFT SURF FAST ORB A-KAZE Detector → SIFT SURF FAST ORB A-KAZE
Dataset ↓

Region ↓ real fake real fake real fake real fake real fake Dataset ↓
Region ↓ real fake real fake real fake real fake real fake

DT(HQ)

entire Face 77.9 68.9 173.9 159.7 99.2 65.7 107.1 88.1 33.9 34.3

FF++ DF
(LQ)

entire Face 94.6 81.1 181.7 169.3 123.7 91.6 161.5 98.8 48.4 37.5
mouth 8.0 5.2 22.5 19.5 13.6 6.6 15.8 9.9 5.7 5.0 mouth 9.0 4.9 19.3 14.8 20.3 8.6 31.3 13.0 8.9 5.3

inner mouth 4.4 2.8 7.8 6.6 8.5 4.0 11.4 7.2 3.6 3.0 inner mouth 9.0 2.7 7.2 5.2 12.7 5.3 22.6 9.2 5.8 3.4
right eyebrow 1.4 1.3 5.9 5.2 2.5 1.5 1.0 0.7 0.9 0.9 right eyebrow 2.9 2.4 7.8 6.9 6.6 5.4 5.9 4.3 3.0 2.5
left eyebrow 1.5 1.4 6.3 5.7 3.0 2.1 1.0 1.1 0.8 1.2 left eyebrow 2.9 2.4 7.9 6.7 6.4 5.2 5.5 4.4 2.9 2.4

right eye 4.1 3.2 5.5 4.9 9.9 6.4 19.6 14.5 0.8 3.8 right eye 5.5 2.9 5.2 4.2 11.0 6.1 24.6 13.0 5.4 3.9
left eye 4.4 3.2 5.3 5.0 10.5 6.6 21.1 16.0 4.2 4.2 left eye 5.4 2.9 5.3 4.3 10.9 6.0 25.0 13.2 5.5 4.0

nose 8.0 7.7 15.8 15.6 13.4 9.6 28.7 29.8 11.4 12.4 nose 7.6 5.6 14.8 12.3 10.5 5.5 26.8 15.7 9.3 7.2

DT(LQ)

entire Face 77.9 57.9 173.9 130.2 99.2 38.6 107.1 45.2 33.9 21.1

DFD

entire Face 118.7 100.2 195.9 183.5 193.8 131.4 208.2 160.0 52.7 50.0
mouth 8.0 3.5 22.5 15.2 13.6 2.1 15.8 3.4 5.7 2.3 mouth 15.1 7.8 26.3 23.0 32.1 13.4 46.9 25.4 11.6 9.7

inner mouth 4.4 1.9 7.8 4.6 8.5 1.6 11.4 2.8 3.6 1.6 inner mouth 9.9 4.4 10.7 9.5 20.7 13.4 35.9 17.7 7.9 6.3
right eyebrow 1.4 0.8 5.9 3.0 2.5 0.2 1.0 0.1 0.9 0.1 right eyebrow 2.6 1.9 6.8 6.0 7.7 4.5 4.7 3.5 1.7 1.5
left eyebrow 1.5 0.8 6.3 3.6 3.0 0.3 1.0 0.2 0.8 0.3 left eyebrow 2.5 2.0 7.6 6.3 8.3 4.7 4.5 3.2 1.5 1.3

right eye 4.1 2.2 5.5 4.5 9.9 3.1 19.6 7.2 0.8 2.4 right eye 6.1 4.3 5.4 5.0 13.7 8.4 24.2 18.0 4.6 4.6
left eye 4.4 2.2 5.3 4.6 10.5 3.5 21.1 8.2 4.2 2.6 left eye 6.1 4.5 5.6 5.2 14.3 8.9 25.0 19.3 4.7 4.9

nose 8.0 5.9 15.8 11.7 13.4 3.4 28.7 15.1 11.4 9.1 nose 10.8 9.1 19.6 17.0 14.3 15.1 46.5 38.7 14.0 13.6

UADFV

entire Face 96.4 74.8 186.1 160.6 108.2 116.7 148.3 71.9 40.8 22.3

DFDC

entire Face 83.0 70.0 152.8 131.7 99.4 78.8 134.1 94.9 41.5 28.2
mouth 9.3 3.0 20.0 11.8 16.2 14.1 27.2 9.3 8.1 2.5 mouth 9.0 7.0 18.7 16.5 16.1 12.4 25.8 18.8 7.7 5.2

inner mouth 5.6 2.1 7.1 4.6 9.7 8.4 18.8 6.4 5.3 1.8 inner mouth 6.1 4.8 8.6 7.7 11.6 9.4 20.8 15.7 5.4 3.9
right eyebrow 2.4 2.7 8.6 4.6 4.4 9.8 3.4 1.7 2.0 1.5 right eyebrow 2.1 1.7 7.1 6.4 3.3 2.9 3.2 2.3 1.4 0.9
left eyebrow 2.3 2.4 7.9 8.2 4.7 9.9 3.8 2.3 2.0 1.4 left eyebrow 2.2 1.6 8.3 6.4 4.2 2.4 3.3 1.5 2.1 0.6

right eye 6.1 3.3 4.8 4.4 11.4 10.5 23.8 10.9 4.7 2.9 right eye 4.9 4.2 5.4 5.0 6.8 6.1 13.4 11.7 3.4 2.7
left eye 5.8 3.0 4.8 4.6 11.2 10.3 24.4 11.9 4.6 2.7 left eye 4.9 4.1 5.9 5.3 7.2 6.0 14.9 11.7 3.4 2.6

nose 10.1 6.0 19.5 18.9 14.8 15.5 36.4 14.9 11.8 6.0 nose 9.5 7.8 17.8 16.7 14.0 12.3 34.6 27.3 10.7 9.0

FF++ DF
(RAW)

entire Face 122.4 100.3 209.4 190.5 158.8 98.2 215.1 128.8 57.5 44.5

CelebDF V2

entire Face 58.0 46.2 140.1 121.3 54.8 31.7 87.2 46.8 34.3 22.7
mouth 12.7 5.3 22.6 16.6 26.2 6.4 42.6 15.1 10.9 6.3 mouth 7.2 3.6 18.8 14.9 10.3 4.0 18.3 6.9 6.8 3.4

inner mouth 8.0 3.0 8.3 5.9 16.4 4.4 31.7 11.0 7.3 4.1 inner mouth 7.2 1.9 7.5 5.1 7.2 2.6 14.1 4.8 6.8 2.4
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Feature-point 

descriptors

Figure 4: Construction of FFR FD. The hollow rectangle represents a feature point descriptor. Note that colors correspond to facial regions.

4.1. FFR FD

We divide the face into eight regions–entire face,
mouth, inner mouth, right eyebrow, left eyebrow,
right eye, left eye, and nose–where the lack of feature
points is further magnified, and the descriptors of fea-
ture points from the same region have certain similar-
ities. We detect feature points in these eight regions
for a face image, and obtain corresponding descriptors.
Assuming that Nr feature points are detected in region
r, and the descriptor of each feature point des is d-
dimensional, we add the descriptors of the Nr feature
points according to the dimensions to obtain the feature
descriptor of the local facial region r, i.e.,

FDr[i] = ΣNr des[i], i = 0, 1, . . . , d − 1. (1)

FDr is a vector that reduces the dimensionality of the
feature from Nr x d to 1 x d. Note that if we do not
average FDr (i.e., we do not divide by Nr), informa-
tion about the number of feature points is introduced.
FDr accumulates the gradient information (for SIFT
and A-KAZE), intensity difference (for FAST&BRIEF
and ORB), or wavelet response (for SURF) of all of the
feature point descriptors in the specified facial region.
If no feature points are detected in a region, then FDr

of that region is populated with a d-dimensional vector
of 0.

We concatenate FDr of the eight regions in sequence
to obtain an (8 x d)-dimensional vector called a fused
facial region-feature descriptor (FFR FD), as shown in
Figure 4 and Algorithm 4 . FFR FD has the following
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Figure 5: Differences of FFR FD between real and fake faces. Results are differences between statistical indicators of real and fake images in
each dimension of FFR FD, including the mean and variance, and the difference value is used as the ordinate. The feature point algorithm used to
construct FFR FD is marked above each graph. Images are from the UADFV (above) and CelebDF V2 (below) training sets.

Algorithm 4 The constrcution of FFR FD
Input: Input face image I
Output: FFR FD (or FFR FD ave)

Set DET to the specified fetaure-point detecor
Set DES to the specified feature-point descriptor
Set ROI with [mouth, inner-mouth, right-eyebrow,
left-eyebrow, right-eye, left-eye, nose]
KP = DET (I)
for r in ROI do

FR[r] = f acial landmarks(r)
for r in FR do

N[r] = 0
FD[r] = 0
for p ∈ KP do

if p ∈ r then
FD[r] = FD[r]+Des(p)
N[r] = N[r] + 1

else
continue

FD[r] ave = FD[r]/N[r]
for r ∈ FR do

FFR FD = concatenate(FD[r]),
FFR FD ave = concatenate(FD[r] ave)

return FFR FD (or FFR FD ave)

characteristics: 1) It integrates the feature descriptions
of all subdivided facial regions; 2) Its calculations are
efficient. FFR FD can be constructed by combining any
feature point detector and descriptor, so its distinguisha-
bility and speed benefit from the feature point algo-
rithm; 3) It can control whether it is affected by the num-
ber of feature points; and 4) Only a low-dimensional

vector is used to describe the facial feature information,
which significantly reduces the dimension compared to
the original face image (256 x 256) or feature descrip-
tors (N x d), as shown in Table 3.

Table 3: Dimensions of feature point descriptors and FFR FD.
Algorithm Descriptor Dimensions FFR FD Dimensions

SIFT 128 1024 (8 x 128)
SURF 64 512 (8 x 64)

FAST&BRIEF 32 256 (8 x 32)
ORB 32 256 (8 x 32)

A-KAZE 61 488 (8 x 61)

4.2. Differences in FFR FD between real and fake
faces

If the number of real images in a training set is
NR, then NR FFR FDs are generated. We calculate the
means and variances of NR FFR FDs on the 8 x d di-
mensions, and similarly for fake images. In a given di-
mension, we subtract the statistical results of the fake
images from those of real ones to obtain the statis-
tical differences between the real and fake FFR FDs
in each dimension, as shown in Figure 5 (without av-
eraging FDr). In the UADFV, the mean values of
FFR FDs constructed by the SIFT detector-descriptor
for real faces are larger than those of fake faces in all
dimensions, especially in the entire face and mouth re-
gions, as shown in Figure 5(a). Note that SIFT descrip-
tors are based on gradients; hence the gradients around
the real faces’ feature points are stronger than those of
the fake faces. Figure 5(b) shows that the real FFR FDs
have a greater variance in the entire face, i.e., the gra-
dients’ fluctuation is more significant. Feature points
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detected by FAST are described by BRIEF. In Figure
5(c), in the mouth, Inner mouth, right eye, and left eye
regions, the mean values of the real faces are larger, i.e.,
the intensity differences used to construct the BRIEF
descriptor are greater, and the opposite is true in the
right eyebrow, left eyebrow, and nose regions. Figure
5(d) illustrates that the real faces have greater inten-
sity difference fluctuations, especially in the mouth and
Inner mouth. We similarly analyze the other datasets,
such as CelebDF V2, as shown at the bottom of Figure
5. We conclude that real face images and DeepFakes are
fairly different in FFR FD, and the specific distribution
is affected by the feature point detector-descriptor.

4.3. Use of only FFR FD to detect DeepFakes

Nr

Nf

Calculate 

FFR_FD

Calculate 

FFR_FD

RandomForestClassifier

Nf

8*d

Extracted Real Faces 

（256*256）

Extracted Fake Faces 

（256*256）

Train 

or 

Test

Nr

8*d

Figure 6: Simple detection pipeline.

As shown in Figure 6, we use FFR FD as the fea-
tures extracted from original images to train the ran-
dom forest classifier. We also tried LR, SVM, ELM
and MLP, and found that the performance of random
forest is the best in our experiments, given that it does
not easily overfit. Random forest works well with high-
dimensional features, has a strong adaptability to fea-
tures and a fast training speed, which is compatible with
the characteristics of FFR FD. Besides, random forest
can measure the importance of features, which has some
reference significance.

5. Experiments and results

We describe our experimental datasets and process.
Extensive experiments demonstrate the effectiveness of
our method.

5.1. Experimental setup
Datasets The first-generation DeepFake datasets are

DeepfakeTIMIT (HQ and LQ) [32], UADFV [9], and

FF++ DeepFake (RAW and LQ) [14], and the second-
generation are DFD [33], DFDC [34], and CelebDF V2
[15]. All were used in our experiments. Each dataset
was split into 80% of the videos as the training set and
the rest as the test set. For CelebDF V2, we followed
the officially specified label to divide the test set. All
videos were then extracted into frames, with the ex-
traction rate set proportionally to balance the number
of real and fake frames. Then we extracted faces from
frames2 and obtained facial datasets for our experiment,
as shown in Table 4. DeepFakeTIMIT and UADFV pro-
vide fewer frames, so all frames were used. In all other
data sets, we only used a small part of the dataset. The
scale was reduced to take advantage of the efficiency of
FFR FD and evaluate whether our method required as
much data as deep CNN.

Table 4: Details of datasets for experiments.

Dataset ↓ Num→
Released frames Train set Test Set
Real Fake Real Fake Real Fake

DeepfakeTIMIT(HQ) 34.0k 34.0k 27139 27520 6870 6503
DeepfakeTIMIT(LQ) 34.0k 34.0k 27139 27520 6870 6503

UADFV 17.3k 17.3k 8139 8138 9145 8812
FF++ DeepFakes(raw) 509.9k 509.9k 29094 29093 9556 9554
FF++ DeepFakes(c40) 509.9k 509.9k 13381 13376 3120 3118

DFD 315.4k 2,242.7k 31324 30018 10441 10800
DFDC 488.4k 1,783.3k 18588 19413 4500 4797

CelebDF V2 225.4k 2,116.8k 38330 37144 9968 9681

Implementation Details We used the feature detector-
descriptors of SIFT, SURF, FAST&BRIEF, ORB, and
A-KAZE to construct FFR FD for comparison. To in-
vestigate the influence of quantity information of feature
points for detection, we compared the detection results
of FFR FD obtained both by averaging and not aver-
aging FDr. The GINI index was used as the criterion
of random forest. We tried 200, 500, and 800 deci-
sion trees, and 500 was the best compromise of detec-
tion performance and efficiency. Other parameters fol-
lowed Scikit-learn’s default [73]. Our code is available
at github here.

An Nvidia GeForce RTX 2080 Ti GPU was used to
extract the faces, and other experiments were performed
on a consumer-level Intel Core i7-9700K CPU with 32
GB RAM.

5.2. Results and analysis
Using the frame-level ROC-AUC score as the metric,

Table 5 reports the test results of random forest with 500
subtrees and provides some baselines for comparison.
Among five detector-descriptors, the overall detection
performance of FFR FD extracted by the FAST detector

2We used S3Fd Detector and Fan Aligner [31].
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Table 5: AUC (%) scores of our method and other detection methods on DeepFake datasets. The best results among all methods and between
FFR FD are highlighted with bold and red, respectively.

AUC (%) Datasets → DT (HQ) DT (LQ) UADFV FF++ DF DFD DFDC CelebDF V2
Methods ↓ FFR FD types ↓ (raw) (c40)

Ours

SIFT ave 60.8 97.3 96.9 84.4 79.2 81.2 81.5 81.6
no ave 60.5 97.1 92.4 84.4 79.3 84.3 80.5 81.7

SURF ave 44.9 86.1 97.1 78.9 74.9 60.4 88.3 82.2
no ave 63.0 84.8 92.8 79.5 75.2 66.0 84.6 81.5

FAST&BRIEF ave 84.0 99.6 96.5 89.6 81.1 77.3 80.0 80.5
no ave 85.1 99.9 93.2 92.3 81.6 85.2 69.9 78.0

ORB ave 50.7 98.6 90.5 81.5 77.5 69.8 78.6 76.1
no ave 65.4 98.1 87.4 84.9 77.6 76.3 67.8 74.1

A-KAZE ave 41.8 78.1 97.8 81.1 77.5 56.3 82.0 79.9
no ave 48.2 86.7 96.3 79.2 74.0 62.2 76.6 79.5

Two-stream NN [10] 73.5 83.5 85.1 70.1 - 52.8 61.4 53.8
Meso-4 [11] 68.4 87.8 84.3 84.7 - 76.0 75.3 54.8

MesoInception-4 62.7 80.4 82.1 83.0 - 75.9 73.2 53.6
HeadPose [8] 53.2 55.1 89.0 47.3 - 56.1 55.9 54.6

FWA [13] 93.2 99.9 97.4 80.1 - 74.3 72.7 53.9
VA mLP [74] 62.1 61.4 70.2 66.4 - 69.1 61.9 55.0
VA-LogReg 77.3 77.0 54.0 78.0 - 77.2 66.2 55.1

Xception-raw [14] 54.0 56.7 80.4 99.7 - 53.9 49.9 48.2
Xception-c40 70.5 75.8 83.6 95.6 - 65.8 69.7 65.5

Multi-task [75] 65.8 62.2 55.3 76.3 - 54.1 53.6 54.3
Capsule [12] 74.4 78.4 61.3 96.6 - 64.0 53.3 57.5

DSP-FWA [76] 99.7 99.9 97.7 93.0 - 81.1 75.5 64.6

Table 6: AUC (%) scores on other datasets for classifier only trained with DeepFakeTIMIT (HQ)

Methods Train
Test

DT (LQ) UADFV FF++ DF(RAW) FF++ DF(LQ) DFD DFDC CelebDF V2

FAST&BRIEF ave

DT (HQ)

25.8 67.7 50.0 48.6 52.3 44.6 39.9
no ave 98.5 67.7 80.0 73.1 67.8 52.8 68.8

ResNet50 100.0 48.5 49.4 53.2 53.2 53.4 51.3
Xception 100.0 50.3 50.0 50.0 56.4 51.6 50.2

EfficientNetB0 100.0 50.0 50.0 50.0 54.1 54.1 53.2

combined with the BRIEF descriptor was more effective
and stable. As described in Section 3, the number of fea-
ture points of fake faces detected by FAST was reduced
significantly. However, ORB with the same significant
reduction in the number of feature points did not have
ideal performance. ORB is based on FAST&BRIEF
to improve scale- and rotation-invariance, but all faces
were cropped and aligned in the DeepFake detection
task. Scale- and rotation-invariance are not required,
but will weaken the discriminability of FFR FD. Except
for FAST&BRIEF, descriptor-detectors were designed
with these two properties in mind. As shown in Table
5, the introduction of feature point quantity information
did not improve AUC in all of the cases, indicating that
the feature point descriptors themselves are sufficiently
distinguishable. Comparing the detection results of the
RAW and c40 (LQ) versions of FF++ DF, our method
was affected slightly by strong compression, but was
still acceptable. On the DT (LQ), UADFV, and the ex-

tremely challenging DFDC and CelebDF V2 datasets,
our detection performance was ahead of all methods and
was competitive on other datasets.

It is worth mentioning the following: 1) FFR FD is
just a vector of length 8 x d (shown in Table 3), and the
length is only 256 for one face if constructed based on
FAST&BRIEF; 2) Driven by large-scale training data
or features, models such as Two-stream (a two-stream
CNN), FWA/DSP-FWA (ResNet-50), Xception, Multi-
task (CNN-based), Capsule (VGG19-based), or current
methods require expensive GPU resources to train large
and complex CNNs. We only used a consumer-level
CPU to train the random forest, with comparable or
even better results; 3) Methods that also use simple
machine learning models to capture specific features,
such as HeadPose (SVM) and VA (multilayer percep-
tron or logistic regression), are far from satisfactory be-
cause captured superficial visual artifacts are not re-
fined enough, resulting in limited detection capabili-
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ties and easy repair. However, deep generative mod-
els are challenged to generate DeepFakes with enough
feature points, i.e., DeepFakes lack fine-grained infor-
mation (e.g., gradient, intense differences) for feature
point detection. This makes our approach SOTA; and 4)
FFR FD benefits from feature point detector-descriptors
such as speed and reliability, and FAST&BRIEF are the
first choices. In summary, our method has advantages in
speed, performance, storage, and computational costs.

5.3. Generalization test and results

We only used the random forest with 200 subtrees
trained by DeepfakeTIMIT (HQ) as the classifier, and
all of the other datasets were used as test sets for gener-
alization evaluation. It is an arduous task because Deep-
fakeTIMIT (HQ) is a first-generation DeepFake dataset,
with few frames available. Subsequent datasets com-
prehensively improved both the quantity and quality of
DeepFake videos. We believe we are the first to test gen-
eralization in this challenging setting. ResNet50 [57],
Xception [77], and EfficientNet-B0 [78] are state-of-
the-art DeepFake detection methods, so we chose them
as baselines. We directly used baseline models provided
by Keras [79], and only modified the fully-connected
layers for binary classification. The results of baselines
and FFR FD (constructed by FAST&BRIEF) are shown
in Table 6. Comparing ave and no ave, the introduction
of feature point quantity information can improve gen-
eralizability, benefiting from the lack of feature points in
most DeepFake datasets. Results show that our method
has considerable generalization ability, while baseline
methods are limited to the training set and suffer from
overfitting. FFR FD constructed only from Deepfake-
TIMIT (HQ) was also effective to detect other datasets,
except DFDC. DFDC involves multiple synthesis algo-
rithms, and FFR FD constructed from DFDC has little
similarity with DeepFakeTIMIT.

5.4. Comparison with other state-of-the-arts on
CelebDF V2

CelebDF V2 dataset improves the forgery quality and
significantly reduces visible artifacts compared to the
FF++ benchmark. Following convention [15, 17], we
train the model on FF++ while test it on CelebDF V2
(i.e., no ave FFR FD construct from FF++ are used
to train the model), for evaluating the transferabil-
ity of our method. The frame-level average AUC
score is shown in Figure 7. Even compared with
the recently proposed MADD[17], F3-Net[80], and
SMIL[81], FFR FD further improves the metrics by
3.12%, 6.27%, and 14.26%, respectively. The results
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Figure 7: The AUC(%) score of Cross-dataset evaluation on
CelebDF V2.

demonstrate our method achieves state-of-the-art gen-
eralizability. As shown in Table 2, in the extremely
challenging CelebDF V2, the facial regions of forged
faces equally lack sufficient feature points, though the
synthesis algorithms are improved. Moreover, the fea-
ture importances of FFR FD focused by random forest
actually show a nearly same distribution on FF++ and
CelebDF V2, as shown in Figure 8 (d) and (h). These
provide new insights into the success of performance
gains.

5.5. Feature importances

We divide the face into eight regions, entire
face, mouth, inner mouth, right eyebrow, left eyebrow,
right eye, left eye and nose to construct FFR FD. Are
these facial regions both informative for DeepFake de-
tection? To answer this question, we output the fea-
ture importance (also known as the Gini importance)
of random forest. Feature importance is computed as
the normalized total reduction of the criterion brought
by that feature. Figure 8 shows the feature impor-
tance of FFR FD constructed by FAST&BRIEF on dif-
ferent datasets. On DeepfakeTIMIT, FF++ DeepFakes,
DFD, and CelebDF V2, the mouth region is the crucial
feature for identification. As shown in Figure 9, the
forged faces in these datasets have artifact defects on
the mouth, which causes the feature point descriptors of
mouth to struggle with real ones. Except for the mouth,
Figure 8 shows that most facial regions contribute to the
random forest classification with FFR FD. Considering
that when detecting DeepFake in the wild, we should
not use prior knowledge of defects in some regions of a
specific dataset.
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Figure 8: Feature importance of FFR FD for random forest classification. Results come from FFR FD constructed by FAST detector and BRIEF
descriptor. The dataset is marked above each subgraph.
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Figure 9: Real and corresponding DeepFake faces.

6. The efficiency of FFR FD

We conduct FFR FD construction and random forest
training on a consumer-level Intel Core i7-9700K CPU
with 32 GB RAM. Figure 10 shows the average calcula-
tion time of constructing an FFR FD from a face image.
The quantitative comparison shows that the computa-
tional efficiency of feature detection-descriptor for com-
puting FFR FD is: FAST&BRIEF > ORB > A-KAZE >
SURF > SIFT. As we expected, it depends on the calcu-
lation speed of the feature point algorithm.

We randomly use 10K FFR FD (i.e., extracted from
10K images) to train a random forest classifier with 500
subtrees and compare the average training time in Fig-
ure 11. It can be seen that the training time is posi-
tively related to the dimension of FFR FD. In our ex-
perimental environment, if 100K face images are used
and FFR FD is constructed from FAST&BRIEF, it only
takes about 45 minutes to complete the construction and

0.00 10.00 20.00 30.00 40.00

29.61 

28.02 

26.96 

31.78 

33.60 

MS (millisecond)

The construction time of an FFR_FD

SIFT
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FAST&BRIEF

ORB

A-KAZE

Figure 10: The average construction time of an FFR FD.

training process. Even with the help of an advanced
GPU, driving 100K face images to train deep neural net-
works is more time-consuming than our approach.

7. Limitation and conclusion

We presented FFR FD, a vector representation for
DeepFake detection, which can be constructed from dif-
ferent facial regions in combination with various fea-
ture descriptors. Inspired by local feature detection-
description algorithms to extract fine-grained features,
we explored the feature points in DeepFakes. Through
using five feature point detector-descriptors, SIFT,
SURF, FAST&BRIEF, ORB, and A-KAZE, the exper-
imental results indicate current DeepFake faces lack a
sufficient number of feature points. Without the need
for powerful GPUs, we trained the random forest classi-
fier with FFR FD. Experimental results showed that our
approach can achieve state-of-the-art detection perfor-
mance while considering efficiency and generalization.
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Figure 11: The average training time of random forest classifier with
FFR FD.

FFR FD relies heavily on feature point detector-
descriptors, but current algorithms are not specifically
designed for DeepFake detection tasks, given that they
must compromise between distinguishability and invari-
ance. In future work, we would like to design a discrim-
inative feature descriptor for face forensics.
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Appendix A. Normalization of FFR FD

In our experiments, FFR FD does not need to be nor-
malized, given that feature point descriptors have been
normalized. SIFT, BRIEF, ORB, and A-KAZE are all
normalized at [0, 255], and SURF descriptor based on
the sum of the Haar wavelet response is at [-1, 1]. We
construct FDr by accumulating the same type descrip-
tors in the facial region r, and the resulting FFR FDs
have dimensional unification. On the other hand, com-
pare with LR (logistic regression), SVM (support vector
machine), and MLP (multilayer perceptron), the ran-
dom forest is the best classifier according to our test
results. It does not need to standardize the features
given the decision tree does not involve distance mea-
surement.
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