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Abstract

The internet is filled with fake face images and videos synthesized by deep generative models. These realistic Deep-
Fakes pose a challenge to determine the authenticity of multimedia content. As countermeasures, artifact-based
detection methods suffer from insufficiently fine-grained features that lead to limited detection performance. DNN-
based detection methods are not efficient enough, given that a DeepFake can be created easily by mobile apps and
DNN-based models require high computational resources. For the first time, we show that DeepFake faces have fewer
feature points than real ones, especially in certain facial regions. Inspired by feature point detector-descriptors to
extract discriminative features at the pixel level, we propose the Fused Facial Region_Feature Descriptor (FFR_FD)
for effective and fast DeepFake detection. FFR_FD is only a vector extracted from the face, and it can be constructed
from any feature point detector-descriptors. We train a random forest classifier with FFR_FD and conduct extensive
experiments on six large-scale DeepFake datasets, whose results demonstrate that our method is superior to most state
of the art DNN-based models.
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1. Introduction these methods have struggled. Hence, it is neces-
sary to capture more fine-grained differences between
real and fake faces, and this is a specialty of deep
neural networks (DNNs), whose impressive classifica-
tion performance has spawned many detection models
[10, 11, 12, 13, 14]. Some models directly take the
original image pixels as input, and detection by DNN's
automatically extracting features still struggles to meet
the challenge of more advanced DeepFakes [15]. In
addition, a trained detector is likely based on the spe-
cific features of one dataset, and cannot extrapolate to
other datasets, i.e., it lacks the ability to generalize. To
more effectively detect DeepFakes, some recent work
has meticulously designed DNNs to combine modules
or features with positive detection capabilities, such as
an attention mechanism [16, 17, 18], texture features
[19, 20], audio and visual modalities [21], and fre-
quency spectrum [22]. Concomitantly, to drive large
and complex DNNs with large-scale datasets requires
significant computing resources (e.g., GPUs) and train-
ing (e.g., parameter adjustment), which decrease effi-
ciency.

Misinformation has become ubiquitous, a conse-
quence of the ability to easily create multimedia con-
tent and share it on social platforms. The remarkable
development of deep generative models has further led
to the synthesis of super-realistic images or videos. For
example, the well-known DeepFake refers to swapping
faces in a video through generative adversarial networks
(GANSs) [1] or autoencoders (AEs) [2]. Some mobile
apps (e.g., Avatarify [3] and Reface [4]) also enable the
manipulation of faces. DeepFakes can be abused mali-
ciously, such as by creating revenge pornography [5, 6]
or striking at politicians [7]. This fake multimedia in-
formation can easily deceive the human senses, raising
concerns of privacy, social risks, and even national se-
curity. The detection of DeepFakes to authenticate mul-
timedia content is a crucial need.

DeepFakes generated by imperfect synthesis algo-
rithms will introduce noticeable visual artifacts, inspir-
ing many artifact-based detection methods [8, 9]. How-
ever, with improved means of generating DeepFakes,
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Figure 1: The left side shows two real images and two fake images
from FaceForensics++_DeepFakes [14]. The white dots in the corre-
sponding images below are the detected FAST [23] feature points. It
can be seen that fake faces have fewer feature points than real faces.
T-SNE [24] of FD, in the entire face, inner_mouth, and left_eyebrow
region is shown on the right. FD, is constructed by a SIFT [25]
detector-descriptor and comes from 2000 real and 2000 fake images
that were randomly selected.

to capture subtle defects of local features. Image lo-
cal feature detection-description algorithms have been
successfully used in various vision applications, such
as multimedia content retrieval, image matching, ob-
ject detection, video data mining, and augmented real-
ity [26, 27, 28, 29, 30]. Algorithms to determine fea-
ture points by specifying the properties of images (e.g.,
edge and corner) are called detectors, and algorithms
that describe detected points by neighboring pixel re-
gions are referred to as descriptors. Motivated by the
advantages of feature point detector-descriptors, such
as fast detection and low-dimensional yet discriminative
descriptions, we explore information about the number,
distribution, and description of feature points in Deep-
Fake faces.

Deep generative models used for face swaps, such as
autoencoders [31], require the reconstruction of faces
from latent features. However, the limited encod-
ing space will cause the replaced face to be slightly
blurred [11], which will affect the feature point de-
tector that makes decisions through pixel-level differ-
ences. Our experiments on self-swapped faces (see
Section 3.1) and the widely used DeepFake datasets
[9, 32, 14, 33, 34, 15] reveal that the number of fea-
ture points in DeepFake faces is generally less than in
real ones, especially in the eyes, nose, mouth, and eye-
brows. Indeed, due to the concentration of details in
these facial regions, the feature points of faces tend to
be distributed in them, as shown on the left of Figure
1. However, descriptors that record fine-grained fea-
tures such as gradient information [25] or intensity dif-
ferences [35, 36] will also be affected by blur. Each
feature point of one face will be described by one de-
scriptor, making it arduous to detect DeepFake through
a mass of messy descriptors. Based on the above find-

ings, we propose the Fused Facial Region_Feature De-
scriptor (FFR_FD), a compact vector representation to
detect fake faces.

FFR_FD can be constructed by various feature point
detector-descriptors, and our experiments include SIFT
[25], SURF [37], FAST&BRIEF [23, 35], ORB [36],
and A-KAZE [38]. We divide feature points into
eight facial regions: entire face, mouth, inner_mouth,
right_eyebrow, left_eyebrow, right eye, left_eye, and
nose. All of the feature point descriptors in each fa-
cial region are used to construct a vector for that re-
gion, FD,, which can be controlled to introduce the
quantity information of feature points by not taking the
average value during the calculation. We connect FD,
for each facial region in series to form FFR_FD, which
is consistent with the computational simplicity of fea-
ture detector-descriptors, and significantly reduces the
dimension of features extracted from each face, from an
N X d matrix to an 8 x d vector, where N is the total
number of feature points in an image and d is the de-
scriptor’s dimension. To subdivide facial regions with
FD, capitalizes on the lack of feature points of Deep-
Fakes in these regions, and is more discriminative than
to directly use all descriptors in the entire face, as shown
on the right of Figure 1.

We used FFR_FD as input to train the random forest
classifier. Extensive experiments were conducted on six
DeepFake benchmark datasets. Results demonstrate the
effectiveness of our lightweight model for DeepFake de-
tection. Specifically, the frame-level AUC scores of the
challenging DFD [33], DFDC [34], and CelebDF_V2
[15] reached 85.2, 88.3, and 82.2, respectively, outper-
forming other DNN-based state of the art (SOTA) de-
tection methods. In addition, our method has consider-
able generalizability, which is useful given that current
DeepFake faces generally lack feature points. Our main
contributions are as follows:

e Our empirical studies reveal that the use of deep
generative models to swap faces will reduce the detected
feature points. The detection and statistical results of
many large-scale datasets show that current DeepFake
faces have fewer feature points than real faces, espe-
cially in detailed regions. This substantial difference is
evident even on higher-quality datasets.

e We propose FFR_FD as an informative vector to
represent the facial feature description, constructed by
the feature point descriptors from the subdivided fa-
cial regions. FFR_FD has computational simplicity and
can be combined with various feature point detector-
descriptors.

e Random forest trained with FFR_FD can real-
ize state-of-the-art detection. Compared with popular



DNN-based detection models, our method is more ef-
fective, efficient, and generalizable.

2. Related work

We introduce DeepFake generation and detection
methods, and describe the DeepFake datasets and typi-
cal feature point detector-descriptors used in our exper-
iments.

2.1. DeepFake generation and datasets

DeepFake, as a general term for face swapping, refers
to fake images or videos synthesized by algorithms,
such as GANSs [1, 39, 40, 41], auto-encoders [2, 42, 31],
and 3D-models [43, 44]. The rapid progress of these
deep generative models presents significant challenges
to the quick and effective detection of realistic Deep-
Fakes. Many DeepFake video benchmark datasets have
been released to promote the research of DeepFake de-
tection. Current DeepFake datasets basically comprise
two generations [15, 45]. The first includes UADFV [9],
DeepfakeTIMIT [32], and FF++_DeepFakes [14], using
FakeApp [46], Faceswap-Gan [47], and Faceswap [31]
to generate fake videos. The second generation, includ-
ing DFD [33], DFDC [34], and Celeb-DF(V2) [15], im-
proves visual quality through augmented synthesis al-
gorithms. The number of videos has increased, along
with their diversity, such as age, skin color, and light-
ing environment. Therefore, we cannot ignore the cost
and speed of a detection model in addition to its perfor-
mance.

2.2. DeepFake detection

Early work identified physical behavior patterns, such
as inconsistent head poses [8], unnatural eye blinking
[9], and correlations between facial expressions and
head movements [7]. However, these artifacts were
fixed in second-generation DeepFake datasets, resulting
in limited detection performance. Recent work has also
exposed DeepFakes based on biological signals [48].

Detection methods based on deep neural networks
(DNNs) have become mainstream. For example, a
two-stream CNN was used [10], Meso-4 focused on
the mesoscopic properties of images [11], a capsule
structure based on VGG19 [12] was used, ResNet was
used to capture faces warping artifacts [13], and classic
Xception [14, 49] was used to detect fake faces. Be-
cause videos have temporal features, some researchers
have combined CNNs with RNNs for classification
[50, 51]. With their powerful feature extraction capabil-
ities, DNN-based methods have achieved some success,

but they still have limitations against advanced Deep-
Fakes [15]. Learning-based methods have been further
studied bo address this issue. For example, FakeSpotter
[52] monitors neuron behavior [53] to detect fake faces.
More recently, researchers have combined useful mod-
ules or important features. Dang et al. [16] utilized an
attention mechanism to improve detection ability. Sim-
ilarly, a vision transformer was used for detection [54].
Gram-Net [19] and InTeLe [20] explore the texture in-
formation of images to improve robustness. A method
combining an attention mechanism and texture features
was proposed [17]. Instead of designing large, complex
neural networks, we efficiently extract features for ef-
fective DeepFake detection.

To improve generalization ability, Cozzolino et al.
[55] proposed to learn an embedding based on an au-
toencoder. Wang et al. [56] trained ResNet [57] with
a multi-class ProGAN dataset and showed that appro-
priate preprocessing and postprocessing could improve
generalization. Face X-ray [58] observes the blend-
ing boundaries between faces and the background to
detect swapped faces; its framework adopts HRNet
[59, 60]. The usampling strategies of deep genera-
tive models introduce artifacts in the frequency do-
main [61, 62], inspiring many spectrum-based detection
methods [22, 63]. However, detection based only on
the frequency spectrum leads to unsatisfactory perfor-
mance and generalization. Frequency-domain artifacts
can be reduced by training with spectrum regularization
[61], focal frequency loss [64], or a spectrum discrim-
inator [65]. FakePolisher [66] performs shallow recon-
struction and can reduce artifact patterns. This calls for
the discovery of the more fine-grained feature defects of
DeepFakes to provide effective DeepFake detection.

2.3. Feature point detector-descriptors

The detection and description of local features of
images is a fundamental problem in computer vision
[67, 68]. Feature points (also known as interest points or
keypoints) are widely used in image matching, retrieval,
and recognition tasks.

SIFT The scale invariant feature transform (SIFT) is a
well-known feature detection and description algorithm
proposed by Lowe [25]. It has four steps: scale-space
extrema detection, i.e., the use of difference of Gaussian
(DOG) to search for maxima at various scales of the im-
age; keypoint localization, i.e., the location of potential
feature points, where the Hessian matrix is used to re-
move low-contrast points; orientation assignment, i.e.,
the construction of an orientation histogram based on
the gradient information around the feature point, and
its use to assign orientation for the feature point; and



the keypoint descriptor, i.e., use of the gradient mag-
nitude and orientation to construct a feature vector for
feature points. This method extracts a 16 x 16 neighbor
region in each, and subdivides it into 4 x 4 subblocks
with eight orientation bins, resulting in a descriptor of 4
x 4 x 8 = 128 dimensions.

SUREF The feature-detection of speeded up robust fea-
tures (SURF), proposed by Bay et al. [37], is faster
than that of SIFT. Due to the use of integral images, the
boxed filter approximates DOG. SURF uses the deter-
minant of the Hessian matrix to find the interest points
at blob-type structures. 2D Haar wavelet responses are
used for orientation assignment and feature description.
The neighborhood around each feature point is divided
into 4 x 4 subregions, and every wavelet response of a
subregion has four values, so the descriptor of each fea-
ture point is a vector of dimension 4 x 4 x 4=64.
FAST&BRIEF Features from Accelerated Segment
Test (FAST) [23] is a high-speed feature detector devel-
oped for real-time applications. Corner point extraction
is performed by comparing the intensity thresholds be-
tween the point and pixels on a circular ring around it.
A decision tree based on the ID3 algorithm is trained as
the corner detector. Non-maximum suppression is used
to solve the problem of adjacent corner points, which
makes the FAST detector more efficient. FAST is only
a feature point detector and does not involve feature de-
scription. Binary Robust Independent Elementary Fea-
tures (BRIEF) [35] is a feature point descriptor that uses
simple binary strings. It performs Gaussian smoothing
for the patch partition of detected feature points, and
randomly selects pairs of points for intensity difference
tests to obtain descriptors. If the number of pairs of
points is 256, then the dimension of the descriptor is
32 bytes for each feature point, which is much smaller
than that of SIFT or SURF. BRIEF performs similarly
to SIFT in most scenarios, but its low complexity makes
the construction of descriptors faster. Combining the
FAST detector and BRIEF descriptor has the advantages
of fast speed and low computational resource require-
ments.

ORB Introduced by Rublee et al. [36], Oriented FAST
and Rotated BRIEF (ORB) is mainly used to solve the
problem that the FAST detector does not compute orien-
tation and the BRIEF descriptor lacks rotational invari-
ance. ORB applies the Harris corner measure to pick
the Top N points from FAST corners to evaluate corner-
ness and determine the local orientation by the intensity
centroid [36]. ORB extracts the BRIEF descriptor ac-
cording to the main orientation of the feature point. It
adopts a greedy algorithm to find random pairwise pixel
patches with low correlation. In this study, the authors

selected 256 pairwise pixel patches for feature descrip-
tion, so it generates a 32-dimensional descriptor. Note
that we use the feature point information for DeepFake
detection. The extracted faces have been cropped and
aligned, so the improved properties of ORB have little
impact on detection, but we still use it for comparison.
A-KAZE Introduced by Alcantarilla et al. [38], the A-
KAZE feature detector and descriptor effectively con-
structs the nonlinear scale space for feature detection
through FED [69, 70]. The descriptor is based on M-
LDB, which is also efficient at exploring gradient infor-
mation from the nonlinear scale space.

The features extracted by the detector have differ-
ent property requirements, depending on the vision
task [29]. We are concerned about the effectiveness and
efficiency of using it for DeepFake detection.

3. Feature points of DeepFakes and real faces

In this section, we show the number and distribution
of feature points between DeepFake faces and real ones
in detail.

3.1. Swapping faces reduces the number of feature
points
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Figure 2: Procedures to create a DeepFake based on an autoencoder-
decoder

Will deep generative models cause a change in the
number of facial feature points? To this end, we uti-
lize the Original Faceswap Model [31] for face swap-
ping. The model is based on the autoencoder-decoder:



the shared encoder is trained for two different faces, A
and B, to extract the latent feature vectors, from which
the corresponding faces are reconstructed by their re-
spective decoders. The compressed latent vectors can
be understood as general face information such as the
expression and background, and the decoders are used
to restore specific facial features, such as nose details,
from latent vectors. After training, the latent vectors ex-
tracted from A by the shared encoder are transmitted to
the decoder of B, such that A is replaced by B, as shown
in Figure 2.

Because the feature points of diverse facial appear-
ances are naturally different, we use one face as both A
and B, i.e., we swap a face with itself. A real face video
containing 396 frames from FF++_YouTube [14] was
used for experiments. After sufficient training of the
model, we swapped the face with itself and detected the
SIFT, SURF, FAST, ORB, and A-KAZE feature points.
The feature points of the original face and the corre-
sponding fake face are shown in Figure 3. Obviously,
the fake face has fewer feature points than the real face
with the same feature point detector. Examining the dis-
tribution of feature points, this phenomenon is more no-
ticeable in facial regions with detailed information, such
as the nose, mouth, eyes, and eyebrows. It can also be
seen from Figure 3 that while the swapped face is simi-
lar to the original, many refined details for determining
feature points are lost.

Face SIFT SURF FAST ORB A-KAZE

o
Original
Face A
e
Swapped
Face A
From Itself

Figure 3: Feature points detected in original and swapped faces. SIFT,
SUREF, FAST, ORB, and A-KAZE feature-point detectors are used in
experiments. Comparing the corresponding feature point detectors of
original and swapped faces, the DeepFake lacks feature points, espe-
cially in facial regions such as the eyes, nose, and mouth.

To verify the observation results, we counted the
numbers of feature points on the original and swapped
faces. We summed the feature points in the face im-
ages extracted from all of the frames and divided by
the number of faces to obtain the average number of
feature points of each face. Based on the discrepancies
of the feature points distribution, we further used Dlib
[71] to subdivide the face into seven regions: mouth,
inner_mouth, right_eyebrow, left_eyebrow, right eye,
left_eye, and nose; then we calculated the average num-
ber of feature points, as shown in Table 1. These re-

sults again show that the Faceswap model will reduce
the feature points of faces, especially in the subdivided
facial regions. Compared to other detectors, the number
of feature points of fake faces is reduced more signif-
icantly on FAST and ORB (based on modified FAST).
Both visualizations and statistical results inspire us to
explore the feature points on detailed facial regions for
detecting forged faces.

Table 1: Average number of feature points for eight facial regions. Re-
sults come from original faces and corresponding self-swapped faces.
Real and fake faces are extracted from the corresponding 369 frames.

FP Detector — SIFT SURF FAST ORB A-KAZE
Region | Face — | ori  swap | ori swap ori  swap | ori swap | ori  swap
entire face 126.7 91.6 | 182.6 141.1 | 146.1 53.7 | 237.2 108.6 | 67.5 50.7
mouth 239 10.1 | 433 29.1 46.4 8.7 70.2 17.9 | 23.8 145
inner_mouth 239 3.6 18.8 13.0 21.8 29 32.7 17.9 9.4 33
right_eyebrow 42 3.0 18.8 9.8 3.5 0.4 1.2 0.1 0.6 0.3

left_eyebrow 42 22 132 8.0 7.6 2.3 6.1 33 1.6 1.1
right_eye 10.4 4.4 8.5 6.5 21.1 7.8 37.5 15.4 8.8 74
left_eye 11.0 6.7 8.8 74 200 104 | 398 21.0 8.7 7.8
nose 11.0 104 | 240 18.8 23.1 123 | 553 33.7 87 11.6

3.2. Average number of feature points on DeepFake
datasets

Does this defect exist in a DeepFake meticulously
crafted with various advanced generation and optimiza-
tion technologies? We further observed the distribution
of feature points on faces from DeepFake datasets, and
similarly divided the facial region to calculate the aver-
age number of feature points of real and fake faces, as
shown in Table 2. The results show that both the first-
and second-generation DeepFake datasets lack suffi-
cient feature points. This motivates us to explore the
use of feature point information for detection.

4. Proposed FFR_FD for DeepFake detection

It is infeasible to directly judge authenticity by the
number of feature points because this fluctuates accord-
ing to factors such as facial appearance or video quality
(compare FF++_DF (RAW) and FF++_DF (LQ) in Ta-
ble 2). Hence, it is necessary to explore the combina-
tion of feature point descriptors for detection, which is
nontrivial if there are many feature points. If N feature
points are detected in a face image, and the descriptor
of each feature point is d-dimensional (depending on
the descriptor, as shown in Table 3), then one-shot will
produce (N x d)-dimensional features. In current large-
scale DeepFake datasets, to directly train the classifier
with descriptors or BOWs [72] (constructed from de-
scriptors by k-means) consumes much time and is prone
to overfitting. Here, we propose FFR_FD for fast, effec-
tive DeepFake detection.



Table 2: Average number of feature points for faces from DeepFake datasets. All images from the training set are used for statistics. Based on
five feature detector-descriptors, current DeepFakes struggle with providing enough feature points across facial regions. DT (HQ) and DT (LQ)
denote the HQ and LQ versions, respectively, of DeepfakeTIMIT [32]. FF++_DF (RAW) and FF++_DF (LQ) denote the uncompressed and ¢40

high-compressed versions, respectively, of FF++_DeepFakes [14].
Dataser | | Petector = SIFT SURF FAST ORB ARAZE | o | Detecior = SIFT SURF FAST ORB A-KAZE
Region | real fake real fake real fake real fake real  fake Region | real fake real fake real fake real fake real fake
entire Face | 779 689 | 1739 159.7 | 99.2  65.7 | 107.1 88.1 | 339 343 entire Face | 946 811 | I81.7 1693 | 123.7 916 | 1615 988 | 484 375
mouth 80 52 | 225 195 | 136 66 | 158 99 |57 50 mouth 90 49 | 193 148 | 203 86 | 313 130 | 89 53
innermouth | 44 28 | 78 66 | 85 40 | 114 72 | 36 30 innermouth | 90 27 | 72 52 | 127 53 | 226 92 | 58 34
DpriHg) | ehtevebrow | 1413 | 5952 [ 25 1S | 10 07 | 09 09 | FF4+DF | righieyebrow | 29 24 | 78 69 | 66 54 | 59 43 |30 25
lefieyebrow | 15 14 | 63 57 | 30 21 | 1.0 L1 |08 12 (LQ) lefieyebrow | 29 24 | 79 67 | 64 52 | 55 44 |29 24
right_eye 41 32 | 55 49 | 99 64 | 196 145 | 08 38 right_eye 55 29 | 52 42 | 110 61 | 246 130 | 54 39
left_eye 44 32 | 53 50 | 105 66 | 211 160 | 42 42 left_eye 54 29 | 53 43 | 109 60 | 250 132 |55 40
nose 80 77 | 158 156 | 134 96 | 287 298 | 114 124 nose 76 56 | 148 123 | 105 55 | 268 157 | 93 72
entire Face | 77.9 579 | 1739 1302 | 99.2 386 | 107.1 452 | 339 2L.1 entire Face | 118.7 1002 | 1959 1835 | 193.8 1314 | 2082 160.0 | 527 50.0
mouth 80 35 | 225 152 | 136 21 | 158 34 |57 23 mouth 151 78 | 263 230 | 321 134 | 469 254 | 116 97
innermouth | 44 19 | 78 46 | 85 16 | 114 28 |36 16 innermouth | 99 44 | 107 95 | 207 134 | 359 177 | 79 63
DI(LQ) right_eyebrow 1.4 0.8 59 3.0 25 0.2 1.0 0.1 09 0.1 DFD right_eyebrow | 2.6 1.9 6.8 6.0 7.7 45 4.7 35 1.7 1.5
left_eyebrow 1.5 0.8 6.3 3.6 3.0 0.3 1.0 0.2 08 03 left_eyebrow 25 2.0 7.6 6.3 83 4.7 4.5 32 1.5 1.3
right eye 41 22 | 55 45 | 99 31 | 196 72 | 08 24 right eye 61 43 | 54 50 | 137 84 | 242 180 | 46 46
left_eye 44 22 | 53 46 | 105 35 | 211 82 | 42 26 left_eye 61 45 | 56 52 | 143 89 | 250 193 | 47 49
nose 80 59 | 158 117 | 134 34 | 287 151 | 114 9.1 nose 108 91 | 196 170 | 143 151 | 465 387 | 140 136
cntire Face | 964 748 | 186.1 160.6 | 1082 116.7 | 1483 719 | 408 223 entire Face | 83.0 700 | 1528 1317 | 994 788 | 1341 949 | 415 282
mouth 93 30 | 200 118 | 162 141 | 272 93 |81 25 mouth 90 70 | 187 165 | 161 124 | 258 188 | 77 52
innermouth | 5.6 21 | 71 46 | 97 84 | 188 64 | 53 18 inner-mouth | 61 48 | 86 77 | 116 94 | 208 157 | 54 39
righteyebrow | 24 27 | 86 46 | 44 98 | 34 17 |20 15 righteyebrow | 201 17 | 7.0 64 | 33 29 | 32 23 | 14 09
UADEV |\ fieyebrow | 23 24 | 79 82 | 47 99 | 38 23 |20 14| PFPC | liieyebrow | 22 16 | 83 64 | 42 24 | 33 15 | 21 06
right_eye 61 33 | 48 44 | 114 105 | 238 109 | 47 29 right_eye 49 42 | 54 50 | 68 61 | 134 117 | 34 27
lefteye 58 30 | 48 46 | 112 103 | 244 119 | 46 27 lefteye 49 41 | 59 53 | 72 60 | 149 117 | 34 26
nose 1.1 60 | 195 189 | 148 155 | 364 149 | 118 60 nose 95 78 | 178 167 | 140 123 | 346 273 | 107 9.0
entire Face | 1224 1003 | 2004 1905 | 1588 982 | 2151 1288 | 57.5 445 cntire Face | 580 462 | 140.1 1213 | 548 317 | 872 468 | 343 227
mouth 127 53 | 226 166 | 262 64 | 426 151 | 109 63 mouth 72 36 | 188 149 | 103 40 | 183 69 | 68 34
innermouth | 80 30 | 83 59 | 164 44 | 317 110 | 73 41 innermouth | 72 19 | 75 51 | 72 26 | 141 48 | 68 24
FF++DF | righteycbrow | 3.1 24 | 87 73 | 78 46 | 68 4l |34 26 | (.. | righteycbrow | 15 09 | 56 39 | 20 06 | 18 04 | 14 07
(RAW) | lefteyebrow | 3.1 24 | 90 72 | 77 45 | 64 41 |33 25 | U lefieyebrow | 15 09 | 58 39 | 20 06 | 17 04 | 14 06
right_eye 82 49 | 63 56 | 150 80 | 347 209 | 68 54 right_eye 33 22 | 44 39 | 58 34 | 122 66 |36 26
left_eye 81 48 | 65 56 | 149 78 | 351 212 |70 55 lefteye 33 23 | 45 41 | 57 35 | 126 72 |37 28
nose 107 75 [ 189 153 | 166 7.1 | 398 240 | 113 9.1 nose 70 59 | 166 146 | 79 46 | 230 145 96 16
Region(r) Entire Face Mouth Inner_mouth Right_eyebrow Left_eyebrow Right_eye Left_eye Nose
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Figure 4: Construction of FFR_FD. The hollow rectangle represents a feature point descriptor. Note that colors correspond to facial regions.

4.1. FFR_FD

We divide the face into eight regions—entire face,
mouth, inner_mouth, right_eyebrow, left_eyebrow,
right_eye, left_eye, and nose—where the lack of feature
points is further magnified, and the descriptors of fea-
ture points from the same region have certain similar-
ities. We detect feature points in these eight regions
for a face image, and obtain corresponding descriptors.
Assuming that N, feature points are detected in region
r, and the descriptor of each feature point des is d-
dimensional, we add the descriptors of the N, feature
points according to the dimensions to obtain the feature
descriptor of the local facial region r, i.e.,
i=0,1,...,d-1.

FD,[i] = Zy,des]i], (1)

FD, is a vector that reduces the dimensionality of the
feature from N, x d to 1 x d. Note that if we do not
average FD, (i.e., we do not divide by N,), informa-
tion about the number of feature points is introduced.
FD, accumulates the gradient information (for SIFT
and A-KAZE), intensity difference (for FAST&BRIEF
and ORB), or wavelet response (for SURF) of all of the
feature point descriptors in the specified facial region.
If no feature points are detected in a region, then FD,
of that region is populated with a d-dimensional vector
of 0.

We concatenate F D, of the eight regions in sequence
to obtain an (8 x d)-dimensional vector called a fused
facial region-feature descriptor (FFR_FD), as shown in
Figure 4 and Algorithm 4 . FFR_FD has the following
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Figure 5: Differences of FFR_FD between real and fake faces. Results are differences between statistical indicators of real and fake images in
each dimension of FFR_FD, including the mean and variance, and the difference value is used as the ordinate. The feature point algorithm used to
construct FFR_FD is marked above each graph. Images are from the UADFV (above) and CelebDF_V2 (below) training sets.

Algorithm 4 The constrcution of FFR_FD
Input: Input face image /
Output: FFR_FD (or FFR_FD_ave)
Set DET to the specified fetaure-point detecor
Set DES to the specified feature-point descriptor
Set ROI with [mouth, inner-mouth, right-eyebrow,
left-eyebrow, right-eye, left-eye, nose]
KP =DET(I)
for r in RO! do
FR[r] = facial_landmarks(r)
for rin FR do
N[r]=0
FD[r]=0
for p € KP do
if p € r then
FD[r] = FD[r]+Des(p)
N[r]=N[r]+1

else
continue
FD[r]_ave = FD[r]/N[r]
for r € FRdo

FFR_FD = concatenate(F D[r]),
FFR_FD_ave = concatenate(F D[r]_ave)

return FFR_FD (or FFR_FD _ave)

characteristics: 1) It integrates the feature descriptions
of all subdivided facial regions; 2) Its calculations are
efficient. FFR_FD can be constructed by combining any
feature point detector and descriptor, so its distinguisha-
bility and speed benefit from the feature point algo-
rithm; 3) It can control whether it is affected by the num-
ber of feature points; and 4) Only a low-dimensional

vector is used to describe the facial feature information,
which significantly reduces the dimension compared to
the original face image (256 x 256) or feature descrip-
tors (N x d), as shown in Table 3.

Table 3: Dimensions of feature point descriptors and FFR_FD.

Algorithm | Descriptor Dimensions | FFR_FD Dimensions

SIFT 128 1024 (8 x 128)
SURF 64 512 (8 x 64)
FAST&BRIEF 32 256 (8 X 32)
ORB 2 256 (8 x 32)
A-KAZE 61 133 (8 x 61)

4.2. Differences in FFR_FD between real and fake
faces

If the number of real images in a training set is
Ng, then Ng FFR _FDs are generated. We calculate the
means and variances of Ny FFR_FDs on the 8 x d di-
mensions, and similarly for fake images. In a given di-
mension, we subtract the statistical results of the fake
images from those of real ones to obtain the statis-
tical differences between the real and fake FFR_FDs
in each dimension, as shown in Figure 5 (without av-
eraging FD,). In the UADFV, the mean values of
FFR_FDs constructed by the SIFT detector-descriptor
for real faces are larger than those of fake faces in all
dimensions, especially in the entire face and mouth re-
gions, as shown in Figure 5(a). Note that SIFT descrip-
tors are based on gradients; hence the gradients around
the real faces’ feature points are stronger than those of
the fake faces. Figure 5(b) shows that the real FFR_FDs
have a greater variance in the entire face, i.e., the gra-
dients’ fluctuation is more significant. Feature points



detected by FAST are described by BRIEF. In Figure
5(c), in the mouth, Inner_mouth, right_eye, and left_eye
regions, the mean values of the real faces are larger, i.e.,
the intensity differences used to construct the BRIEF
descriptor are greater, and the opposite is true in the
right_eyebrow, left_eyebrow, and nose regions. Figure
5(d) illustrates that the real faces have greater inten-
sity difference fluctuations, especially in the mouth and
Inner_mouth. We similarly analyze the other datasets,
such as CelebDF_V2, as shown at the bottom of Figure
5. We conclude that real face images and DeepFakes are
fairly different in FFR_FD, and the specific distribution
is affected by the feature point detector-descriptor.

4.3. Use of only FFR_FD to detect DeepFakes
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FF++_DeepFake (RAW and LQ) [14], and the second-
generation are DFD [33], DFDC [34], and CelebDF_V2
[15]. All were used in our experiments. Each dataset
was split into 80% of the videos as the training set and
the rest as the test set. For CelebDF_V2, we followed
the officially specified label to divide the test set. All
videos were then extracted into frames, with the ex-
traction rate set proportionally to balance the number
of real and fake frames. Then we extracted faces from
frames? and obtained facial datasets for our experiment,
as shown in Table 4. DeepFakeTIMIT and UADFV pro-
vide fewer frames, so all frames were used. In all other
data sets, we only used a small part of the dataset. The
scale was reduced to take advantage of the efficiency of
FFR_FD and evaluate whether our method required as
much data as deep CNN.

Table 4: Details of datasets for experiments.

Released frames ‘ Train set Test Set
Real | Fake | Real | Fake | Real | Fake
Deepfake TIMIT(HQ) 34.0k 34.0k 27139 | 27520 | 6870 6503
Deepfake TIMIT(LQ) 34.0k 34.0k 27139 | 27520 | 6870 6503

Dataset | Num— }

(256*256) Train
or
Test

RandomForestClassifier

UADFV 17.3k 17.3k 8139 | 8138 | 9145 | 8812
FF++_DeepFakes(raw) | 509.9k | 509.9k | 29094 | 29093 | 9556 | 9554

N/

Extracted Fake Faces 8*d
(256*256)

Figure 6: Simple detection pipeline.

As shown in Figure 6, we use FFR_FD as the fea-
tures extracted from original images to train the ran-
dom forest classifier. We also tried LR, SVM, ELM
and MLP, and found that the performance of random
forest is the best in our experiments, given that it does
not easily overfit. Random forest works well with high-
dimensional features, has a strong adaptability to fea-
tures and a fast training speed, which is compatible with
the characteristics of FFR_FD. Besides, random forest
can measure the importance of features, which has some
reference significance.

5. Experiments and results

We describe our experimental datasets and process.
Extensive experiments demonstrate the effectiveness of
our method.

5.1. Experimental setup

Datasets The first-generation DeepFake datasets are
Deepfake TIMIT (HQ and LQ) [32], UADFV [9], and

FF++ _DeepFakes(c40) | 509.9k | 509.9k | 13381 | 13376 | 3120 | 3118

DFD 3154k | 2,242.7k | 31324 | 30018 | 10441 | 10800
DFDC 488.4k | 1,783.3k | 18588 | 19413 | 4500 | 4797
CelebDF_V2 2254k | 2,116.8k | 38330 | 37144 | 9968 | 9681

Implementation Details We used the feature detector-
descriptors of SIFT, SURF, FAST&BRIEF, ORB, and
A-KAZE to construct FFR_FD for comparison. To in-
vestigate the influence of quantity information of feature
points for detection, we compared the detection results
of FFR_FD obtained both by averaging and not aver-
aging FD,. The GINI index was used as the criterion
of random forest. We tried 200, 500, and 800 deci-
sion trees, and 500 was the best compromise of detec-
tion performance and efficiency. Other parameters fol-
lowed Scikit-learn’s default [73]. Our code is available
at github here.

An Nvidia GeForce RTX 2080 Ti GPU was used to
extract the faces, and other experiments were performed
on a consumer-level Intel Core 17-9700K CPU with 32
GB RAM.

5.2. Results and analysis

Using the frame-level ROC-AUC score as the metric,
Table 5 reports the test results of random forest with 500
subtrees and provides some baselines for comparison.
Among five detector-descriptors, the overall detection
performance of FFR_FD extracted by the FAST detector

2We used S3Fd Detector and Fan Aligner [31].


https://github.com/wolo-wolo/FFR_FD-Effective-and-Fast-Detection-of-DeepFakes-Based-on-Feature-Point-Defects.git

Table 5: AUC (%) scores of our method and other detection methods on DeepFake datasets. The best results among all methods and between

FFR_FD are highlighted with bold and red, respectively.

AUC (%) Datasets — FF++ _DF

o P e DT (HQ) | DT (LQ) | UADFV |- os a0 DFD | DFDC | CelebDF_V2

SIFT ave 60.8 973 969 | 844 | 792 | 812 | 815 816

noave | 60.5 97.1 924 | 844 | 793 | 843 | 805 81.7

SURF ave 449 86.1 971 | 789 | 749 | 60.4 1883 82.2

noave | 63.0 84.8 928 | 795 | 752 | 66.0 | 84.6 81.5

ave 84.0 996 965 | 89.6 | 8.1 | 773 | 80.0 805

Ours | FAST&BRIEF | | e ISSH 99.9 932 [19237 816852 69.9 78.0

ORB ave 50.7 98.6 905 | 81.5 | 775 | 69.8 | 786 76.1

no.ave | 65.4 98.1 874 | 849 | 776 | 763 | 67.8 74.1

ave 4138 781 97800 811 | 775 | 563 | 820 799

ARAZE o ave | 482 86.7 963 | 792 | 740 | 622 | 766 795

Two-stream NN [10] 735 835 851 | 701 | - | 528 | 6l4 338

Meso-4 [11] 68.4 8§78 843 | 847 | - | 760 | 753 548

Mesolnception-4 62.7 80.4 82.1 83.0 - 75.9 73.2 53.6

HeadPose [8] 532 551 89.0 | 473 | - | 561 | 559 546

FWA [13] 932 99.9 974 | 80.1 T [ 743 | 127 539

VA_mLP [74] 62.1 61.4 702 | 664 | - | 69.1 | 619 35.0

VA-LogReg 773 77.0 540 | 780 | - | 772 | 662 55.1

Xception-raw [14] 54.0 56.7 804 | 997 [ 539 | 499 182

Xeeption-c40 70.5 75.8 836 | 956 | - | 658 | 69.7 65.5

Multi-task [75] 658 622 553 | 763 | - | 541 | 336 543

Capsule [12] 744 784 613 | 966 | - | 640 | 333 575

DSP-FWA [76] 997 99.9 977 | 930 | - | 8L1| 755 64.6

Table 6: AUC (%) scores on other datasets for classifier only trained with DeepFake TIMIT (HQ)

. Test
Methods Train - —5+79) [ UADFV | FF++ DF(RAW) | FF++ DF(LQ) | DFD | DFDC | CelebDF_V2
ave 258 67.7 50.0 186 523 | 446 39.9
FAST&BRIEY | 985 67.7 80.0 73.1 678 | 528 688
ResNet50 DT (HQ) [ 100.0 i85 494 532 532 | 534 513
Xception 100.0 503 50.0 50.0 564 | 516 50.2
EfficientNetBO 100.0 50.0 50.0 50.0 541 | 541 532

combined with the BRIEF descriptor was more effective
and stable. As described in Section 3, the number of fea-
ture points of fake faces detected by FAST was reduced
significantly. However, ORB with the same significant
reduction in the number of feature points did not have
ideal performance. ORB is based on FAST&BRIEF
to improve scale- and rotation-invariance, but all faces
were cropped and aligned in the DeepFake detection
task. Scale- and rotation-invariance are not required,
but will weaken the discriminability of FFR_FD. Except
for FAST&BRIEF, descriptor-detectors were designed
with these two properties in mind. As shown in Table
5, the introduction of feature point quantity information
did not improve AUC in all of the cases, indicating that
the feature point descriptors themselves are sufficiently
distinguishable. Comparing the detection results of the
RAW and c40 (LQ) versions of FF++_DF, our method
was affected slightly by strong compression, but was
still acceptable. On the DT (LQ), UADFYV, and the ex-

tremely challenging DFDC and CelebDF_V2 datasets,
our detection performance was ahead of all methods and
was competitive on other datasets.

It is worth mentioning the following: 1) FFR_FD is
just a vector of length 8 x d (shown in Table 3), and the
length is only 256 for one face if constructed based on
FAST&BRIEF; 2) Driven by large-scale training data
or features, models such as Two-stream (a two-stream
CNN), FWA/DSP-FWA (ResNet-50), Xception, Multi-
task (CNN-based), Capsule (VGG19-based), or current
methods require expensive GPU resources to train large
and complex CNNs. We only used a consumer-level
CPU to train the random forest, with comparable or
even better results; 3) Methods that also use simple
machine learning models to capture specific features,
such as HeadPose (SVM) and VA (multilayer percep-
tron or logistic regression), are far from satisfactory be-
cause captured superficial visual artifacts are not re-
fined enough, resulting in limited detection capabili-



ties and easy repair. However, deep generative mod-
els are challenged to generate DeepFakes with enough
feature points, i.e., DeepFakes lack fine-grained infor-
mation (e.g., gradient, intense differences) for feature
point detection. This makes our approach SOTA; and 4)
FFR_FD benefits from feature point detector-descriptors
such as speed and reliability, and FAST&BRIEF are the
first choices. In summary, our method has advantages in
speed, performance, storage, and computational costs.

5.3. Generalization test and results

We only used the random forest with 200 subtrees
trained by DeepfakeTIMIT (HQ) as the classifier, and
all of the other datasets were used as test sets for gener-
alization evaluation. It is an arduous task because Deep-
fakeTIMIT (HQ) is a first-generation DeepFake dataset,
with few frames available. Subsequent datasets com-
prehensively improved both the quantity and quality of
DeepFake videos. We believe we are the first to test gen-
eralization in this challenging setting. ResNet50 [57],
Xception [77], and EfficientNet-BO [78] are state-of-
the-art DeepFake detection methods, so we chose them
as baselines. We directly used baseline models provided
by Keras [79], and only modified the fully-connected
layers for binary classification. The results of baselines
and FFR_FD (constructed by FAST&BRIEF) are shown
in Table 6. Comparing ave and no_ave, the introduction
of feature point quantity information can improve gen-
eralizability, benefiting from the lack of feature points in
most DeepFake datasets. Results show that our method
has considerable generalization ability, while baseline
methods are limited to the training set and suffer from
overfitting. FFR_FD constructed only from Deepfake-
TIMIT (HQ) was also effective to detect other datasets,
except DFDC. DFDC involves multiple synthesis algo-
rithms, and FFR_FD constructed from DFDC has little
similarity with DeepFake TIMIT.

5.4. Comparison with other
CelebDF_V2

CelebDF_V2 dataset improves the forgery quality and
significantly reduces visible artifacts compared to the
FF++ benchmark. Following convention [15, 17], we
train the model on FF++ while test it on CelebDF_V2
(i.e., no_ave FFR_FD construct from FF++ are used
to train the model), for evaluating the transferabil-
ity of our method. The frame-level average AUC
score is shown in Figure 7. Even compared with
the recently proposed MADD[17], F3-Net[80], and
SMIL[81], FFR_FD further improves the metrics by
3.12%, 6.27%, and 14.26%, respectively. The results

state-of-the-arts on
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Figure 7: The AUC(%) score of Cross-dataset evaluation on
CelebDF_V2.

demonstrate our method achieves state-of-the-art gen-
eralizability. As shown in Table 2, in the extremely
challenging CelebDF_V2, the facial regions of forged
faces equally lack sufficient feature points, though the
synthesis algorithms are improved. Moreover, the fea-
ture importances of FFR_FD focused by random forest
actually show a nearly same distribution on FF++ and
CelebDF_V2, as shown in Figure 8 (d) and (h). These
provide new insights into the success of performance
gains.

5.5. Feature importances

We divide the face into eight regions, entire
face, mouth, inner_mouth, right_eyebrow, left_eyebrow,
right_eye, left_eye and nose to construct FFR_FD. Are
these facial regions both informative for DeepFake de-
tection? To answer this question, we output the fea-
ture importance (also known as the Gini importance)
of random forest. Feature importance is computed as
the normalized total reduction of the criterion brought
by that feature. Figure 8 shows the feature impor-
tance of FFR_FD constructed by FAST&BRIEF on dif-
ferent datasets. On DeepfakeTIMIT, FF++_DeepFakes,
DFD, and CelebDF_V2, the mouth region is the crucial
feature for identification. As shown in Figure 9, the
forged faces in these datasets have artifact defects on
the mouth, which causes the feature point descriptors of
mouth to struggle with real ones. Except for the mouth,
Figure 8 shows that most facial regions contribute to the
random forest classification with FFR_FD. Considering
that when detecting DeepFake in the wild, we should
not use prior knowledge of defects in some regions of a
specific dataset.
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descriptor. The dataset is marked above each subgraph.
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Figure 9: Real and corresponding DeepFake faces.

6. The efficiency of FFR_FD

We conduct FFR _FD construction and random forest
training on a consumer-level Intel Core i7-9700K CPU
with 32 GB RAM. Figure 10 shows the average calcula-
tion time of constructing an FFR_FD from a face image.
The quantitative comparison shows that the computa-
tional efficiency of feature detection-descriptor for com-
puting FFR_FD is: FAST&BRIEF > ORB > A-KAZE >
SURF > SIFT. As we expected, it depends on the calcu-
lation speed of the feature point algorithm.

We randomly use 10K FFR_FD (i.e., extracted from
10K images) to train a random forest classifier with 500
subtrees and compare the average training time in Fig-
ure 11. It can be seen that the training time is posi-
tively related to the dimension of FFR_FD. In our ex-
perimental environment, if 100K face images are used
and FFR_FD is constructed from FAST&BRIEEF, it only
takes about 45 minutes to complete the construction and
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Figure 10: The average construction time of an FFR_FD.

training process. Even with the help of an advanced
GPU, driving 100K face images to train deep neural net-
works is more time-consuming than our approach.

7. Limitation and conclusion

We presented FFR_FD, a vector representation for
DeepFake detection, which can be constructed from dif-
ferent facial regions in combina