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Feature embedding methods have been proposed in literature to represent
sequences as numeric vectors to be used in some bioinformatics investigations,
such as family classification and protein structure prediction.

Recent theoretical results showed that the well-known Lyndon factorization
preserves common factors in overlapping strings [1]. Surprisingly, the finger-
print of a sequencing read, which is the sequence of lengths of consecutive
factors in variants of the Lyndon factorization of the read, is effective in
preserving sequence similarities, suggesting it as basis for the definition of
novels representations of sequencing reads.

We propose a novel feature embedding method for Next-Generation Se-
quencing (NGS) data using the notion of fingerprint. We provide a theoretical
and experimental framework to estimate the behaviour of fingerprints and of
the k-mers extracted from it, called k-fingers, as possible feature embeddings
for sequencing reads. As a case study to assess the effectiveness of such
embeddings, we use fingerprints to represent RNA-Seq reads and to assign
them to the most likely gene from which they were originated as fragments of
transcripts of the gene.

We provide an implementation of the proposed method in the tool lyn2vec,
which produces Lyndon-based feature embeddings of sequencing reads.

1 Introduction

With the massive growth of many types of data in the Big Data era, Data Mining and
Data Analytics are fundamental instruments for discovering interesting patterns in such
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data.
In particular, mining sequence data has attracted a lot of attention for two main

reasons. First, sequential representation for data and events is common for many real-
life applications. Second, a number of applications can benefit from knowing useful
patterns from sequences, such as, for example, web access analysis, event prediction,
pattern discovery, time-aware recommendation, DNA sequence detection [2] and feature
embedding [3]. Feature embedding is a challenging task in sequence mining [4]; its main
goal is to provide a machine-interpretable representation for sequence data that may
improve the performance of learning algorithms.

In the specific context of machine learning applications involving biological sequences,
feature embedding is often based on the assumption that there exists a conceptual
analogy between the languages adopted by humans to communicate and the sophisticated
languages used by biological organisms to convey information within cells. Most of the
approaches proposed in the literature [5, 6], indeed, adopt existing methods in Natural
Language Processing (NLP), such as word2vec [7], with the goal of discovering functions
encoded by biological sequences [8, 9].

Typically, such methods involve fixed-length overlapping n-grams [10, 11] which are
also common in various techniques in Bioinformatics for analyzing sequences. However,
n-grams are not directly used in feature extraction, but for training an embedding model
that is then used for feature extraction. We remark that most of the existing methods
extract only short-term patterns, otherwise they exhibit a significant increase in the
computational time, which is a main limitation in addition to those discussed in Section
2.

1.1 Contributions of this work

In this article, we focus on a novel approach for the feature embedding of sequencing
reads. Differently from the works proposed in the literature which essentially consist
of elaborate applications of NLP techniques, we propose a theoretical investigation of
combinatorial properties that would guarantee compact embedded representations of the
sequences while preserving similarities. In this section, we provide a discussion on the
motivations; then, we give an overall description of the proposed method, and finally we
present our main contributions.

Motivations. The main question addressed in this paper is whether there exists a
“similarity signature” that can be: (i) easily detected while reading the sequence, and
(ii) used to define an effective feature embedding method. We answer to this question
by exploiting one of the most well-known factorizations in combinatorics on words: the
Lyndon factorization [12, 13]. Such a factorization has some main desired properties: (i)
it is unique for a word, (ii) it can be computed in linear time, and more recently, it has
been proved in [1, 14] that, under some conditions, the sequence of Lyndon factors of a
word shares consecutive common factors with the Lyndon factorization of a superstring
of the word itself. The notion of Lyndon word is not novel in the field of Bioinformatics,
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since it was used to locate short motifs [15] and more recently it was explored in the
development of the bijective Burrows-Wheeler Transforms [16].

Surprisingly, we discovered that the sequence of lengths of the factors in Lyndon
factorizations is enough to capture sequence similarity, thus allowing the definition of a
word signature, called fingerprint.

Proposed method. In this paper we propose a novel feature embedding method for
sequences generated by sequencing, called reads, that exploits the fingerprint of such
sequences to produce their embedded representations. To the best of our knowledge, it
represents the first attempt to build a feature representation that is based on theoretical
combinatorial properties proved to capture sequence similarities and also suitable for
machine learning approaches.

Our contributions. The main contributions can be summarized as follows:

1. We have implemented the proposed method in the tool lyn2vec, which produces
Lyndon-based feature embeddings of sequencing reads.

2. Unlike NLP-based embedding methods, lyn2vec does not require any previous
training on a text corpus, but it is based on combinatorial properties that capture
sequence similarities. In Sections 3.1 and 4, we investigate properties of the
embedded representations with respect to some parameters, such as the specific
variant of the Lyndon factorization used to compute the fingerprint and the value
of k used to extract the k-fingers from the fingerprint.

3. The computational complexity of lyn2vec is related to the running time of the
algorithms for computing the Lyndon factorization; as described in Section 3.1,
these algorithms run in linear time in the length of the sequence, hence, the time
complexity of the lyn2vec is linear in the total length of all sequences.

4. We introduce the theoretical notion of collision rate to investigate some limitations
of the use of Lyndon-based representations and we address the problem of how the
collision phenomenon may be affected by the lexicographic ordering of the alphabet.

5. As a proof of concept of the possible uses in machine learning tasks of the proposed
embedding representations, we have evaluated the effectiveness of such representa-
tions in classifying reads to the most likely genes from which they originated: we
obtained satisfactory precision and recall even for the case of chimeric reads, i.e.,
reads originating from two fused genes.

This paper is organized as follows. In Section 2 we discuss the main contributions in
the literature and the differences with our work. In Section 3 we present the properties of
various notions of Lyndon-based factorization, including one inspired by the the double-
stranded nature of the genome. In Section 4, we propose some experiments to evaluate
the effectiveness of the representations produced by lyn2vec. Finally, in Section 5 we
discuss the main results and the future work.
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2 Related work

The past years have seen impressive advances in sequence mining. State-of-the-art
sequence mining methods could be categorized as follows: (i) sequence alignment [17], (ii)
string kernels [18], (iii) time-series classification [19, 20], and (iv) pattern discovery [21, 22].
In the following, we will focus on the feature embedding of sequencing reads.

Recent results in NLP [7] identify terms with a similar linguistic context by exploiting
word embedding. In this approach, known as word2vec, words or phrases are mapped to
vectors of real numbers in a low-dimensional space. By training a neural network over a
large text corpus, words with similar linguistic context correspond to vectors that are
close points in the Euclidean space.

In [5] the word2vec framework is applied to extract features from biological sequences.
The embeddings generated for general biological sequences are named BioVec for genomic
sequence and ProtVec for proteins. The tool seq2vec [6] extends the idea proposed
in [5] by modeling a sequence as a sentence in a text corpus while k-mers derived from
such a sequence are words in the sentence given as input to the embedding algorithm.
In [23], a novel model for fast classification of sequencing reads is proposed, which is
named fastDNA. It is based on FastText [24], which is an extension of word2vec, where
the main difference is that instead of using individual words to train the Neural Network,
words are broken into several n-grams used to train the network.

In [25], another well-known NLP model, the Bidirectional Encoder Representations
from Transformers (BERT), is adapted to model DNA general embeddings. The result is
DNABERT, a novel pre-trained bidirectional representation encoder for DNA-language.

These sequence embedding methods essentially consist of elaborate applications of
NLP techniques, in which an embedding model is first trained on a large text corpus,
and then used to transform biological sequences into numeric vectors to be used by
learning algorithms. Therefore, the computational space and time required to embed a
sequence dataset is a critical issue of these embedding methods. Instead, in our approach
we change perspective: we investigate combinatorial properties that would guarantee
compact embedding representations able to preserve similarities. As a result, we define
novel embedding representations which can be computed, for each sequence, in linear
time with respect to the length of the sequence itself, without requiring any previous
training. Furthermore, the ability to capture sequence similarities can be controlled by
tuning some parameters that are determined by the specific factorization used.

3 Variants of the Lyndon factorization and lyn2vec

In this section, we present the well-known Lyndon factorization and some variants that
have been recently introduced. The Lyndon factorization will be denoted by the acronym
CFL, used for the first time in [26] and built using the initial letters of the surnames of
the authors introducing this factorization [12]. Then, the related notion of fingerprint
and the lyn2vec method will be presented. Observe that lyn2vec is the name we give
to the different Lyndon-based sequence embeddings: it is indeed a tool implementing
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various representations.

3.1 Variants of the Lyndon factorization and overlapping strings

Basics. Let Σ be a finite alphabet and let s = a1 · · · an be a string over Σ, i.e., a
sequence of n characters of Σ; the length n will be denoted by |s|. The character of s at
position i (that is, ai) is denoted by s[i]. The substring (or factor) of s from position i to
position j is denoted by s[i : j]. When i = 1 (resp. j = |s|) the factor is named prefix
(resp. suffix ) of s, also denoted by s[: j] (resp. s[i :]). In addition, if j 6= |s| (resp. i 6= 1),
the prefix (resp. suffix) of s is proper.

In the following, Σ is supposed to be totally ordered with respect to the lexicographic
order, denoted by <. We classically extend this notion on Σ∗, by defining s � v if s is a
prefix of v or s = xay, v = xbz, with a < b and x, y, z ∈ Σ∗. Moreover, s ≺ v if s � v
and s 6= v. Symmetrically, can define v � s (resp. v � s) if s � v (resp. s ≺ v) [27]. For
two nonempty strings s, v, we write s� v if s ≺ v and s is not a proper prefix of v [28].

Finally, due to the particular context considered for assessing the proposed embedding
representations (Section 4), the definition of reverse and complement of a string s over
the DNA alphabet {A,C,G, T} is needed. This is a typical notion in Bioinformatics
originating from the double-stranded nature of reads sequenced from the genome. Pre-
cisely, the reverse of s is obtained by reading s from right to left and the (Watson-Crick)
complement of a DNA symbol is the operation transforming A into T (or vice versa)
and C into a G (or vice versa). Thus, the reverse and complement of s is an application
transforming s in s, where s is obtained by taking the reverse sr of s and by replacing
each symbol in sr with its complement.

Definitions. We recall the notion of a factorization and introduce the related notion
of fingerprint. These are the main ingredients we use to capture the overlap between
two reads. A factorization of a string s is a sequence 〈f1, . . . , fn〉 of strings such that
s = f1 · · · fn. We mainly consider factorizations which can be derived by using algorithms.
The notation F (s) = 〈f1, f2, . . . , fn〉 means that the factorization of s is obtained by using
a factorization algorithm F . The fingerprint of s with respect to F (s) is the sequence
L(s) of the lengths of the factors in F (s), that is, L(s) = 〈|f1|, |f2|, . . . , |fn|〉.

Given a fingerprint L(s) = 〈l1, l2, . . . , ln〉 and an integer k (1 ≤ k ≤ n) a k-finger is
any subsequence 〈li, li+1, . . . , li+k−1〉 of k consecutive lengths, that is, a k-mer of L(s).
Let L(s) be a fingerprint of s with respect to F (s) = 〈f1, f2, . . . , fn〉. Given a k-finger
〈l1, . . . , lk〉, a supporting string of it is any subsequence 〈fj , . . . , fj+k−1〉 of k factors of
F (s) such that |fj | = l1, . . . , |fj+k−1| = lk. A k-finger may have more than one supporting
string, as the following Example 3.2 shows. The side effect of this fact will be discussed
in Section 3.2.

Example 3.1. Let us consider the factorization F (s) = 〈GC,ATC ,ACCTCT , CT,
ACAG ,TAT , A〉. Then, the fingerprint is L(s) = 〈2, 3, 6, 2, 4, 3, 1〉 and 〈2, 4, 3〉 is a k-
finger for k = 3, whose supporting string is CTACAGTAT , given by the concatenation
of the fourth, fifth and sixth factors CT , ACAG and TAT .
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Example 3.2. Let us consider the factorization F (s) = 〈b, b, ababb, a, a〉. Then, L(s) =
〈1, 1, 5, 1, 1〉 and 〈1, 1〉 is a k-finger for k = 2. Observe that bb and aa are both supporting
strings for the 2-finger 〈1, 1〉.

Fingerprints used for capturing overlaps, are based on factorizations in Lyndon
Words [29, 30]. A nonempty string s is a Lyndon word if and only if it is strictly
smaller than any of its nonempty proper suffixes. For example, s = aabbab over alphabet
{a, b}, a < b, is a Lyndon word, whereas string s′ = abaabb is not a Lyndon word, since
the suffix aabb is smaller than s′. It is well-known that any nonempty string s has a
unique factorization 〈f1, f2, . . . , fn〉 such that f1 � f2 � . . . � fn and each factor fi
is a Lyndon word. Such a factorization is called the Lyndon factorization and can be
computed in linear time and constant space by the Duval algorithm [26]. As usual, CFL(s)
denotes the Lyndon factorization of s [12, 13].

Example 3.3. The factorization 〈b, b, ababb, a, a〉 (of Example 3.2) is a CFL factorization
and the CFL factorization of string s′ = aaabbbabab is trivially 〈aaabbbabab〉, since s′ is
itself a Lyndon word.

Conservation Property. We now report a crucial property of CFL, provided in [1]. To
this aim, we need to recall the definition of simple factor (or simple substring) given
in [14]. A substring x occurring in a string s is simple with respect to a factorization
F (s) = 〈f1, f2, . . . , fn〉 if, for each occurrence of x in s, there is an index j, 1 ≤ j ≤ n
such that x is a substring of fj . Informally, every occurrence of of a simple substring x
needs to be within some factor fj . We say that x is a simple prefix (resp. simple suffix)
of s if x is a proper prefix (resp. suffix) of f1 (resp. fn).

Let w = xz and w′ = zy be two substrings of a string s = xzy, i.e., w and w′ share a
common overlap z in s let us suppose that z is a non-simple substring with respect to
CFL(s) (as a suffix of w and as a prefix of w′). As a consequence of Lemma 13.2 in [1],
CFL(xz) and CFL(zy) may share common Lyndon factors with CFL(xzy). Moreover, some
of these factors may be in z. More precisely, given w = xz and w′ = zy, let us assume
that CFL(w) = 〈h1, h2, . . . , hn〉 and CFL(w′) = 〈g1, g2, . . . , gm〉. If z is both a non-simple
suffix of w and a non-simple prefix of w′, then there are two indexes i, j, with 1 ≤ i < n,
1 < j ≤ m, such that z = h′′i hi+1 · · ·hn = g1 · · · gj−1g

′
j , where h′′i is a suffix of hi and

g′j is a prefix of gj . Let CFL(h′′i ) = 〈m1, . . . ,mr〉 and CFL(g′j) = 〈v1, . . . , vt〉. Hence,
as a consequence of the above result, we have CFL(z) = 〈m1, . . . ,mr, hi+1, . . . , hn〉 =
〈g1, . . . , gj−1, v1, . . . , vt〉.

Furthermore, let us suppose that CFL(s) = 〈f1, f2, . . . , fn〉. Let z = f ′lfl+1 · · · ftf
′
t+1 be

a non-simple factor with respect to CFL(s), for some indexes l, t with 1 ≤ l < n, 1 < t < n,
and let us assume fl = f ′′l f

′
l , ft+1 = f ′t+1f

′′
t+1. By abuse of notation, in view of the above

discussion on Lemma 13.2, we have that CFL(z) = 〈CFL(f ′′l ), fl+1, . . . ft,CFL(f
′
t+1)〉 (see

Figure 1). The same argument applies if we consider strings xz and zy and their Lyndon
factorizations. Let us assume that z is a non-simple factor with respect to both CFL(xz)
and CFL(zy). Thus, CFL(z) shares factors with CFL(xz) and with CFL(zy). Since CFL(z)
is unique, then there will exist factors that are clearly in common between CFL(xz) and
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Figure 1: Conservation Property: two CFL factorizations are schematically depicted for a
string s, that is, CFL(s) = 〈f1, f2, . . . , f10〉 (above) and a substring z, that is,
CFL(z) = 〈CFL(f ′4), f5, f6, f7,CFL(f

′
8)〉 (below) covering a suffix of factor f4 (of

s), the whole factors f5, f6 and f7 and finally a prefix of f8. The green factors
f5, f6 and f7 in the middle are conserved between the two factorizations.

CFL(zy). It follows that two overlapping strings w and w′ may share consecutive common
Lyndon factors in their Lyndon factorizations. Thus, the fingerprints of w and w′ will
share consecutive integers.

Remark 1. We explicitly point out that the hypothesis that z is not a simple factor with
respect to CFL(s) cannot be dropped. Indeed, consider w = xz = bbaababaa, w′ = zy =
ababaabbbbbb, where z = ababaa. We have CFL(w) = CFL(xz) = 〈b, b, aabab, a, a〉 and
CFL(w′) = CFL(zy) = 〈ab, ab, aabbbbbb〉. Even though z is an overlapping factor, the two
factorizations do not share consecutive factors. Observe that this is not a counterexample,
as CFL(xzy) = 〈b, b, aababaabbbbbb〉, i.e., z is non-simple.

Such an interesting property suggests the possibility of using directly k-fingers as
features. Indeed, as we will see in Section 4, to assess such an intuition, we also propose
an approach in which we use k-fingers for classifying sequencing reads.

Lyndon-based factorizations. As a consequence of the above discussion, two main
properties can be observed: (i) the fingerprint ability of preserving similarities, (ii) the
possibility of tuning the k value to control the number of factors included in overlapping
substrings. The latter property suggests a further investigation on variants of the Lyndon
factorization, we call Lyndon-based factorizations. Specifically, we introduce two types of
Lyndon-based factorization: the single-stranded factorization and the double-stranded
factorization, for dealing with sequencing reads derived from a unique genome strand or
from both strands of a genome, respectively.

At this point, we recall the notion of inverse Lyndon word given in [27]: a nonempty
string s is an inverse Lyndon word if each proper suffix is strictly smaller than s. For
instance, a, b, aaaaa, bbba, baaab, bbaba are inverse Lyndon words over the alphabet {a, b},
such that a < b.

A factorization F (s) = 〈f1, f2, . . . , fn〉 of a string s is an inverse Lyndon factorization
if fj is an inverse Lyndon word for 1 ≤ j ≤ n and f1 � f2 � . . .� fn. In [27], a linear
time algorithm is proposed to produce a special inverse Lyndon factorization which is
unique for the string and is called Canonical inverse Lyndon factorization or inverse CFL,
referred in the following by ICFL. As well as CFL, ICFL guarantees uniqueness and linear
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time computation. In addition, a factor of ICFL cannot be a prefix of the next one by
definition, thus ICFL is less prone to split a string in two different factors. Interestingly,
as proved in [27], ICFL allows to split any Lyndon word, thus allowing to further factorize
long Lyndon factors of Lyndon factorizations (as well as CFL allows to split any inverse
Lyndon word).

Example 3.4. Let us consider s = bbababbaa and s′ = aaabbbabab of Example 3.3. We
have that ICFL(s) = 〈s〉, since s is an inverse Lyndon word, and ICFL(s′) = 〈aaa, bbbabab〉.

For an extended discussion of the theoretical background of these factorizations, we
refer to [27].

Given a threshold T , we call CFL ICFLT the factorization obtained by first computing
the CFL factorization, and next by performing a further factorization of the CFL factors
longer than T by means of the ICFL algorithm. The subscript T will be omitted when
it is clear from the context. In more detail, given CFL(s) = 〈f1, f2, . . . , fn〉, we obtain
CFL ICFL by replacing each fi longer than T with ICFL(fi). A symmetrical definition
can also be obtained by first applying ICFL and next CFL, thus defining the ICFL CFL
factorization. The examples below show the CFL ICFL and ICFL CFL factorizations over
a simple string. Note that CFL ICFL has several advantages over CFL or ICFL alone.
Indeed, the ICFL factorization, applied to long factors of a CFL factorization (or vice
versa), concurs to increase the number of factors.

Example 3.5. Let s = dabadabdabdadac be a string (a < b < c < d). We have CFL(s) =
〈d, abadabdabdadac〉 and ICFL(s) = 〈daba, dabdab, dadac〉. Assuming T = 1, we can fac-
torize the second factor of CFL(s) by applying ICFL, thus obtaining ICFL(abadabdabdadac) =
〈a, ba, dabdab, dadac〉 and CFL ICFL(s) = 〈d, a, ba, dabdab, dadac〉.

Example 3.6. Let s = adbadbadba be a string (a < b < c < d). We have CFL(s) =
〈adb, adb, adb, a〉 and ICFL(s) = 〈a, dbadbadbadba〉. Assuming T equal to 1, we obtain
ICFL CFL(s) = 〈a, d, b, adb, adb, a〉.

Example 3.5 shows that ICFL provides better results than CFL in terms of factor length
distribution, whereas Example 3.6, shows that CFL is better than ICFL. It is not difficult
to see that the Conservation Property holds even for CFL ICFL. Indeed, if CFL(xz) and
CFL(zy) share a Lyndon factor fh+1 and fh+1 is split by CFL ICFL(xz), then the same
factor fh+1 is split in the same way by CFL ICFL(zy), because in both cases we replace
fh+1 with ICFL(fh+1). On the other hand, we do not know whether a conservation
property holds for ICFL and ICFL CFL, even though experiments reported in the paper
suggest a positive answer.

Figure 2 shows an example of CFL, ICFL and CFL ICFL for two 125-long overlapping
reads.

Double-stranded factorization. We are interested in signatures able to highlight the
common regions between two overlapping reads originating from opposite strands of the
genome. To this aim, given a Lyndon-based factorization F (Section 3.1), we introduce
the definition of double-stranded factorization F d built on on a basic algorithm F , which
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CFL(s1)	
  =	
  CTT CGCTT CCGTCTCG CCCCTTTCCCTGCTG AGAGGCCTCAGGGCCTGGCTGTCCTGGGCATCCT
 
      AATTGAGGTGGGTGAGACT AAGAATATAGCTTATG AACACCTATGACAGCTTGAGTGAGG
	
  
	
  
CFL(s2)	
  =	
  G CTG AGAGGCCTCAGGGCCTGGCTGTCCTGGGCATCCT AATTGAGGTGGGTGAGACT 

      AAGAATATAGCTTATG AACACCTATGACAGCTTGAGTGAGGCTTCGCTTCCGTCTCGCCCCTTTCCCT
	
  
	
  

	
  fingerprint(s1): 	
  3	
  5	
  8	
  15	
  34	
  19	
  16	
  25	
  
	
  fingerprint(s2):	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1	
  3	
  34	
  19	
  16	
  52	
  

ICFL(s1)	
  =	
  C TTCGCTTCCGTCTCGCCCC

       TTTCCCTGCTGAGAGGCCTCAGGGCCTGGCTGTCCTGGGCATCCTAATTGAGGTGGGTGAGACTAAGAATATAGCTTATGAACACCTATGACAGCTTGAGTGAGG
	
  
	
  
ICFL(s2)	
  =	
  GC TGAGAGGCCTCAGGGCC TGGC TGTCCTGGGCATCCTAA TTGAGGTGGGTGAGACTAAGAATATAGCTTATGAACACCTATGACAGC

       TTGAGTGAGGCTTCGCTTCCGTCTCGCCCC  TTTCCCT
	
  

	
  fingerprint(s1): 	
  1	
  19	
  105	
  
	
  fingerprint(s2):	
  	
   	
  2	
  17	
  4	
  17	
  48	
  30	
  7	
  

CFL_ICFL-­‐10(s1)	
  =	
  CTT CGCTT CCGTCTCG CCCC TTTCCCTGCTG A GA GGCC TCAGGGCC TGGC TGTCCTGGGCATCCT AA TTGAGGTGGGTGAGACT 

          AA  GAA  TATAGC  TTATG  AA  CA  CC TA  TGACAGC TTGAGTGAGG
	
  
	
  
CFL_ICFL-­‐10(s2)	
  =	
  G CTG A GA GGCC TCAGGGCC TGGC TGTCCTGGGCATCCT AA TTGAGGTGGGTGAGACT AA GAA TATAGC TTATG AA CA CC TA TGACAGC  

    TTGAGTGAGGCTTCGCTTCCGTCTCGCCCC TTTCCCT
	
  

	
  fingerprint(s1): 	
  3	
  5	
  8	
  4	
  11	
  1	
  2	
  4	
  8	
  4	
  15	
  2	
  17	
  2	
  3	
  6	
  5	
  2	
  2	
  2	
  2	
  7	
  10	
  
	
  fingerprint(s2): 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1	
  3	
  1	
  2	
  4	
  8	
  4	
  15	
  2	
  17	
  2	
  3	
  6	
  5	
  2	
  2	
  2	
  2	
  7	
  30	
  7	
  

s1:	
  	
  
CTTCGCTTCCGTCTCGCCCCTTTCCCTGCTGAGAGGCCTC
AGGGCCTGGCTGTCCTGGGCATCCTAATTGAGGTGGGTGA
GACTAAGAATATAGCTTATGAACACCTATGACAGCTTGAG
TGAGG

s2: 	
  	
  
GCTGAGAGGCCTCAGGGCCTGGCTGTCCTGGGCATCCTAA
TTGAGGTGGGTGAGACTAAGAATATAGCTTATGAACACCT
ATGACAGCTTGAGTGAGGCTTCGCTTCCGTCTCGCCCCTT
TCCCT

Figure 2: The factorizations CFL, ICFL and CFL ICFL10 are depicted for two overlapping
125-long reads s1 and s2 (the overlap is highlighted in blue) together with their
fingerprints. The common factors are underlined. CFL produces the common
3-finger 〈34, 19, 16〉, whereas there are no common factors for ICFL (observe the
long factors at the end of each read). CFL ICFL10, obtained by applying first
CFL and then ICFL to factors longer than 10, yields 17 consecutive common
factors between the reads, and a common 17-finger in the fingerprints.
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has the fundamental property stated by the following Definition 1. Indeed, we seek
for a factorization algorithm F d such that the factorization F d(s) of the reverse and
complement s of a string s is equal to the reversed list of the reverse and complement of
the factors of F (s). We show (Theorem 1) that there exists an algorithm for constructing
such a factorization, by appropriately combining the fingerprints obtained from F (s) and
F (s).

Definition 1. Given a factorization algorithm F , a double-stranded factorization of a
string s is a factorization F d(s) = 〈f1, f2, . . . , fn〉 such that, F d(s) = 〈fn, fn−1, . . . , f1〉,
where s is the reverse and complement of s and f i is the reverse and complement of
factor fi, 1 ≤ i ≤ n.

It follows that, if L(s) = 〈l1, l2, . . . , ln〉 is the fingerprint of s with respect to F d,
then L(s) = 〈ln, ln−1, . . . , l1〉 will be the fingerprint of s with respect to F d. Note that
li = |fi| and L(s) = 〈l′1, l′2, . . . , l′n〉 where l′i = |fn−i+1|. In particular, given a k-finger
〈li, li+1, . . . , li+k−1〉 of L(s), we refer to the k-finger 〈l′n−i−k+2, l

′
n−i−k+3, . . . , l

′
n−i+1〉 of

L(s) as its counterpart, since they are clearly supported by the same string except for
a reverse and complement operation. In addition, note that any k-finger of L(s) is the
reverse of its counterpart in L(s). For this reason, in order to detect the common regions
among a set of reads originating from both strands of the genome, it is necessary to
perform a “normalization” operation on the extracted k-fingers. They are considered as
strings over the alphabet of the positive integers and, for each extracted k-finger, the
smallest (lexicographically) sequence between the k-finger and its reverse is retained. For
example, the “normalization” of 〈4, 3, 7, 8, 5〉 produces 〈4, 3, 7, 8, 5〉 (that is, the k-finger
itself), whereas the “normalization” of 〈5, 10, 7, 8, 5〉 produces its reverse 〈5, 8, 7, 10, 5〉;
indeed, 〈5, 8, 7, 10, 5〉 is smaller than 〈5, 10, 7, 8, 5〉, since the two sequences share the
first element 5 and the second element 8 of the first sequence is smaller than the second
element 10 of the second one.

In the following, we describe the algorithm for constructing the double-stranded
factorization for a string s relying on a basic factorization algorithm F . Hence, we
prove Theorem 1. To this purpose, we firstly introduce the notion of interval-sequence
of a fingerprint L(s) = 〈l1, l2, . . . , ln〉 as the sequence I(s) = 〈i1, i2, . . . , in〉 such that
ij = l1 + · · · + lj is the end position of factor fj on s. Moreover, given a fingerprint
L(s), we call reversed interval-sequence Ir(s) the interval-sequence of the reverse of
L(s). For example, given L(s) = 〈1, 1, 7, 6〉, then I(s) = 〈1, 2, 9, 15〉 is the interval-
sequence and Ir(s) = 〈6, 13, 14, 15〉 is the reversed interval-sequence. More in general, the
interval-sequence can be defined with respect to any sequence 〈l1, l2, . . . , ln〉 of positive
integers.

Moreover, given a sequence s, any strictly increasing sequence 〈i1, i2, . . . , in〉 of positive
integers, such that in = |s|, is associated to a fingerprint 〈l1, l2, . . . , ln〉, where l1 = i1
and lj = ij − ij−1 for 1 < j ≤ n, and induces on s the factorization 〈s[: i1], s[i1 + 1 :
i2], . . . , s[in−1 + 1 :]〉 = 〈s[: l1], s[l1 + 1 : l1 + l2], . . . , s[l1 + · · · + ln−1 + 1 :]〉. At this
point, given a factorization algorithm F , the double-stranded factorization F d introduced
by Definition 1 can be computed as stated by Theorem 1, where merging two interval
sequences simply means merging the two (sorted) lists of their integers, discarding
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repetitions. Indeed, the elements of an interval-sequence have an intrinsic order, since
each integer integer is a position on the string. Thus, the merger of two interval-sequences
must preserve that order.

Theorem 1. Let L(s) and L(s) be the fingerprints for a string s and its reverse and
complement s obtained by applying a basic factorization algorithm F . Let I(s) and Ir(s)
be the interval-sequence associated to L(s) and the reversed interval-sequence associated
to L(s), respectively. Let us consider the increasing sequence I obtained by merging I(s)
and Ir(s), and consider the fingerprint ` such that I is associated to `. The factorization
induced by ` is a double-stranded factorization F d(s) for s.

Example 3.7. Let s = GGATCTCGCAGGCGG be a string and s = CCGCCTGCGAG
ATCC its reverse and complement. By considering CFL as a basic factorization algo-
rithm, we have CFL(s) = 〈G,G,ATCTCGC ,AGGCGG〉 and CFL(s) = 〈CCGCCTGCG ,
AGATCC 〉. The fingerprint and the interval-sequence for s are 〈1, 1, 7, 6〉 and 〈1, 2, 9, 15〉
respectively, whereas the fingerprint and the reversed interval-sequence for s are 〈9, 6〉
and 〈6, 15〉, respectively. The increasing sequence 〈1, 2, 6, 9, 15〉, obtained by merging
〈1, 2, 9, 15〉 and 〈6, 15〉 is associated to the sequence 〈1, 1, 4, 3, 6〉, which induces on s the
double-stranded factorization CFLd(s) = 〈G,G,ATCT,CGC,AGGCGG〉. The double-
stranded fingerprint of s will be 〈1, 1, 4, 3, 6〉.

Vice versa, the fingerprint and the interval-sequence for s are 〈9, 6〉 and 〈9, 15〉, while
the fingerprint and the reversed interval-sequence for s are 〈1, 1, 7, 6〉 and 〈6, 13, 14, 15〉.
The increasing sequence 〈6, 9, 13, 14, 15〉, obtained by merging 〈9, 15〉 and 〈6, 13, 14, 15〉 is
associated to the sequence 〈6, 3, 4, 1, 1〉, which induces on s the double-stranded factoriza-
tion CFLd(s) = 〈CCGCCT,GCG, AGAT,C,C〉. The double-stranded fingerprint of s
will be 〈6, 3, 4, 1, 1〉.

In the previous example, both factorizations CFLd(s) and CFLd(s) have five factors and
the i-th factor of CFLd(s) is the reverse and complement of the (5− i + 1)-th factor of
CFLd(s). For example, the fourth factor CGC of CFLd(s) is the reverse and complement
of the ”symmetrical” second factor GCG of CFLd(s). As a consequence, fingerprint
〈1, 1, 4, 3, 6〉 of s is the reverse of fingerprint 〈6, 3, 4, 1, 1〉 of s. The 2-finger 〈1, 4〉 of s,
supported by string GATCT , has its counterpart in the 2-finger 〈4, 1〉 of s, which is
supported by string AGATC: they are manifestly in a reverse and complement relation.

In order to prove that Theorem 1 allows to compute a double-stranded factorization
as given by Definition 1, we need to introduce two technical lemmas.

Lemma 2. Let L1 = 〈l1, l2, . . . , ln〉 and L2 = 〈l′1, l′2, . . . , l′n〉, be two sequences with
the same number n of elements (positive integers). Let I1 = 〈i1, i2, . . . , in〉 and I2 =
〈i′1, i

′
2, . . . , i

′
n〉 be the respective interval-sequences. Then, L1 is equal to the reverse of L2

iff ij = i′n − i′n−j, for 1 ≤ j ≤ n− 1.

Proof. The j-th element in L1 is lj = ij − ij−1, by definition. By supposing that
ij = i′n − i′n−j , for each 1 ≤ j ≤ n− 1, then, ij−1 = i′n − i′n−j+1. Therefore,

lj = ij − ij−1 = i′n − i′n−j − i′n + i′n−j+1 = i′n−j+1 − i′n−j

which is equal to the (n− j + 1)-th element of L2, by definition.
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Furthermore, we denote by L1 ⊕ L2 the increasing sequence obtained by merging the
interval-sequences of L1 and L2, and discarding repetitions. It is not difficult to use
Lemma 2 and prove that L1 ⊕ L2 is equal to the reverse of the sequence induced by
merging the interval-sequences of the reverse of L1 and L2. Then, denoting by Lr1 and
Lr2 the reverse of L1 and L2, respectively, the following Lemma can be stated.

Lemma 3. Given two sequences L1 and L2 with the same number n of elements, then
L1 ⊕ L2 is equal to the reverse of Lr1 ⊕ Lr2.

Now, Theorem 1 can be proved as a consequence of Lemmas 2 and 3. By definition, the
double-stranded factorization F d(s) is induced by the fingerprint L(s) ⊕ L(s)r where
L(s) and L(s) are the fingerprints of s and s (respectively), obtained by applying the
basic factorization algorithm F . Similarly, L(s)⊕L(s)r is the fingerprint inducing F d(s).
By Lemma 3, we have that L(s) ⊕ L(s)r (fingerprint of s) is equal to the reverse of
L(s)r ⊕ (L(s)r)r. Since (L(s)r)r is L(s), then L(s)⊕L(s)r is the reverse of L(s)r ⊕L(s)
(that is, the fingerprint of s) and Theorem 1 is proved.

Computational complexity of Lyndon-based factorization algorithms. The computa-
tional complexity of the algorithms to compute the Lyndon-based factorizations plays
a crucial role in the realization of lyn2vec. As explained above, CFL and ICFL can be
computed in linear time and constant space. Regarding the computation of the CFL ICFL
factorization of a string s, our idea is to use a main process for computing CFL(s), and as
soon as a CFL factor is computed, a new (parallel) process computes its ICFL factorization.
In conclusion, a CFL ICFL factorization can also be computed in linear time.

Factor length distribution in Lyndon-based factorizations and conservation property.
The Conservation Property allows to capture the similarity between two strings. However,
in the extreme case of factorizations consisting of just one factor, the Conservation
Property does not apply. Moreover, the property has been proved for CFL and its
extensions to CFL ICFL and CFL ICFLd is a trivial consequence of the fact that CFL
factors shared by two strings are factorized in the same way by the ICFL algorithm.
Currently, we cannot prove that the Conservation Property also holds for the ICFL
algorithm, nevertheless, the high accuracy of the experimental results suggests the
validity of this conjecture.

An experimental analysis was also performed in order to investigate the distribution
of the number of factors of Lyndon-based factorizations computed on a simulated error-
free dataset. Undoubtedly, a high number of factors in the factorizations fosters the
possibility of detecting common regions between strings. The dataset was simulated
by using dwgsim [31] and includes 21 million 150-long genomic reads extracted from
the region 960,000-80,960,000 of the human Chromosome 1, for a total of 80 million
bases. Figure 3 shows, for each considered factorization algorithm, the distribution of the
number of factors per read. Note that CFL ICFLd produces about twice as much factors
than any other algorithm, whereas CFL, ICFL, and ICFLd produce a small number of
factors with a low distribution variance.
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Figure 3: Distribution of the number of factors. The factorization algorithms are listed
in the legend by decreasing peak.

It is worth observing that the question on how many factors are present in a Lyndon
factorization has been recently faced in [32].

3.2 Uniqueness of the fingerprint and k-fingers: the collision phenomenon

We recall that our main goal is to use k-fingers for capturing the similarity of two
sequences but unfortunately, completely distinct strings may share the same k-fingers or
even the same fingerprint as shown in the following example.

Example 3.8. Let x = CCGGTT and y = AACCGG be two strings whose ICFL
factorizations are ICFL(x) = 〈CC,GG, TT 〉 and ICFL(y) = 〈AA,CC,GG〉, respectively.
Hence, L(x) = 〈2, 2, 2〉 and L(y) = 〈2, 2, 2〉.

At this point, we can introduce the definition of collision of a k-finger.

Definition 2 (k-finger collision). Let x, y ∈ Σ∗ be two strings and let F be a Lyndon-
based factorization algorithm. Let L(x) and L(y) be the fingerprints for x and y with
respect to F . Let Kx be a k-finger of L(x) and Ky be a k-finger of L(y). Let sKx and
sKy be the two substrings of x and y supporting Kx and Ky, respectively. If Kx = Ky and
sKx 6= sKy , then we say that there exists a collision for the k-finger Kx = Ky.
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Observe that, since a fingerprint can be viewed as a string over the alphabet of the
positive integers, k-fingers can be considered as k-mers of fingerprints and collisions can
be studied by exploiting the results already obtained in the literature when assigning
numbers to canonical k-mers [33].

Collision measure. At this point, given a collection S of strings (or reads), a Lyndon-
based factorization algorithm and a value of k, the question is: “How can we measure
k-finger collisions in the obtained fingerprints?”. A näıve approach could be the following.
For each k-finger K, the set SK of its supporting strings in the collection S is considered.
Let us define count(sK) the number of occurrences of the string sK ∈ SK as supporting
sequence of K. The effective number of possible collisions with respect to K (collision
level related to S) is given by the number of all the different pairs of such supporting
strings, i.e.,

∑
w1,w2∈SK

count(w1) × count(w2). Clearly, the overall collision level of the

fingerprints of S can be simply computed as the sum of the collision levels of all the
obtained k-fingers.

An example of collision level for a k-finger is illustrated in the following.

Example 3.9. Let S be a set composed of just one string s = abbbcaddabcaabddabcbbbcadd
abcaa. Let F (s) = 〈a, bb, bca, dd, abc, aa, b, dd, abc, bb, bca, dd, abc, aa〉 be the factorization
of s; hence, L(s) = 〈1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 2〉. The 3-finger K = 〈2, 3, 2〉 occurs 5
times in the fingerprint and the set of its supporting strings is SK = {bbbcadd, ddabcaa,
ddabcbb}. In particular, count(bbbcadd) = 2, count(ddabcaa) = 2 and count(ddabcbb) =
1. So, the collision level of K is

cK =
∑

w1,w2∈SK

count(w1)× count(w2) = 2× 2 + 2× 1 + 2× 1 = 8.

Unfortunately, such measure has some drawback when used on large collections of
strings (or reads), since it may be computationally expensive and may not give any
statistical information to be usefully exploited.

Therefore, we propose a novel metric to measure the collision level for a set of k-fingers,
named Collision Rate.

Definition 3 (Collision Rate). Let S and F be a set of strings and a factorization
algorithm. Given the set Lk of k-fingers extracted from the fingerprints of S and the set
Sk of their supporting strings, then, the Collision Rate is c = |Sk|

|Lk| .

Example 3.10. Let Lk = {〈2, 2, 2〉} be the set of distinct k-fingers extracted, and let Sk =
{AACCGG,AACCTT,CCGGTT} be the set of distinct subsequences corresponding to

k-fingers in Lk. Then, the collision rate is c = |Sk|
|Lk| = 3

1 = 3.

Note that the Collision Rate is a simple overall metric representing the average number
of (distinct) strings supporting k-fingers. When |Lk| = |Sk|, then each k-finger has a
unique supporting string (that is, there is absence of collisions) and c = 1. A high value
of c means a high collision level.
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In the next section, we list some theoretical properties explaining the reasons for
collisions, including how the lexicographic ordering of the characters of the alphabet
may intervene. It is worthy of note that the problem of finding the particular order of
the alphabet symbols for obtaining an optimal Lyndon factorization (e.g., such that the
number of factors is at most, or at least, a given threshold) is in general hard [32].

Collision-free perspectives: the superfingerprint. Given a string s, alph(s) will denote
the set of symbols which are present in s, also referred as internal alphabet. Let Σ be
a finite alphabet and (Σ, <) = (a1, . . . , an) be the alphabet Σ which has been totally
ordered, such that ai < ai+1 for i = 1, . . . , n − 1. We denote by ΠΣ the set of all the
totally ordered alphabets which can be obtained by considering all the possible orderings
of the symbols in Σ. For each p ∈ ΠΣ, we denote by <p the lexicographic order induced
by p. In the following, Fp will be used to refer to the (Lyndon-based) factorization
algorithm F relying on the particular ordering <p and p denotes the inverse of p (e.g.,
p = (T,G,C,A)) for p = (A,C,G, T )).

Example 3.11. Given p = (A,C,G, T ) and p′ = (C,A,G, T ), then, ACG <p CAG and
CAG <p′ ACG.

Example 3.12. Given p = (A,C,G, T ), p′ = (C,A,G, T ) and x = CAACAC, then,
ICFLp(x) = 〈CAA,CAC〉 and ICFLp′(x) = 〈C,AACAC〉.

Note that the considered ordering of the alphabet symbols may have a significant
impact on the Lyndon-based factorization. Under some conditions, it is enough to alter
the relative order of just two symbols in the alphabet to induce a relevant change in the
factorization (see Proposition 1). Indeed, two words, having the same length greater
than 1 and distinct internal alphabets, will have distinct Lyndon-based factorizations
under different orderings of the symbols of the alphabet.

Proposition 1. Let Σ be a finite alphabet. Let x, y ∈ Σ∗ be such that alph(x) 6= alph(y)
and |x| = |y| > 1. For any p ∈ ΠΣ there will exist p′ ∈ ΠΣ such that only one of the
orderings of alph(x) and of alph(y) is changed in p′. Moreover, if x and y are both
Lyndon (resp. inverse Lyndon) words with respect to <p, then only one of x and y is a
Lyndon (resp. inverse Lyndon) word with respect to <p′.

Proof. Let x, y ∈ Σ∗ be such that alph(x) 6= alph(y) and |x| = |y| > 1. Set

x = a1 · · · an, y = a′1 · · · a′n

Since alph(x) 6= alph(y), one of the following two cases can occur (the other cases are
symmetric)

(1) a′1 6∈ alph(x).

(2) a′1 ∈ alph(x) and there exists i, 1 < i ≤ n, such that a′i 6∈ alph(x).
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Assume that case (1) holds. For any p ∈ ΠΣ, let p′ ∈ ΠΣ be such that a <p′ a
′
1, for any

a ∈ Σ \ {a′1}, whereas the order on the other symbols remains unchanged. In particular,
the ordering of alph(x) is not changed in p′. Assume that x and y are both Lyndon
words with respect to <p. Since y is a Lyndon word and |y| > 1, there exits a′j ∈ alph(y)
with a′j 6= a′1. Thus, y = a′1 · · · a′n >p′ a

′
j · · · a′n and y is not a Lyndon word with respect

to <p′ . On the contrary, since the ordering of alph(x) is not changed in p′, x is still a
Lyndon word with respect to <p′ .

Assume that case (2) holds. For any p ∈ ΠΣ, let p′ ∈ ΠΣ be such that a′i < a, for any
a ∈ Σ \ {a′i}, whereas the order on the other symbols remains unchanged. In particular,
the ordering of alph(x) is not changed in p′. Assume that x and y are both Lyndon
words with respect to <p. Thus, y = a′1 · · · a′n >p′ a

′
i · · · a′n and y is not a Lyndon word

with respect to <p′ . On the contrary, the ordering of alph(x) is not changed in p′, hence
x is still a Lyndon word with respect to <p′ .

Example 3.13. Words x = ACG and y = ACT are Lyndon words with respect to
p = (A,C,G, T ). Note that x is also a Lyndon word with respect to p′ = (T,A,C,G),
since <p′ maintains the same reciprocal order of the symbols of its internal alphabet
{A,C,G}. On the contrary, word y = ACT is not a Lyndon word with respect to <p′,
since the reciprocal order of the symbols of its internal alphabet {A,C, T} changes from
<p to <p′ and y � T .

The choice of a specific ordering of the alphabet symbols can have a significant impact
on the collision level of the set of extracted k-fingers. However, understanding whether
there exists a specific order minimizing the collision level, as well as how to compute
it, remains an open problem, and, as explained in Section 5, it is worthy of further
investigation.

At this point, we introduce the notion of superfingerprint extending the notion of
fingerprint. The superfingerprint combines the ”regular” ordering p = (A,C,G, T ) with
the inverse ordering p = (T,G,C,A) and is defined as the concatenation of the fingerprint
obtained with respect to p with the fingerprint obtained with respect to p.

Definition 4 (Superfingerprint). Given the ordered alphabets p = (A,C,G, T ) and
p = (T,G,C,A), a string s and a factorization algorithm F , then, the superfingerprint
of s is the concatenation 〈Lp(s), $, Lp(s)〉, where Lp(s) is the fingerprint obtained from
Fp(s), Lp(s) is the fingerprint obtained from Fp(s) and the symbol $ is used to mark the
separation between the two fingerprints.

We carried out some experiments in order to test the impact of the combined use of
different orderings. As we will see in Section 4, the results suggest that, from a practical
point of view, this approach reduces the impact of collisions.

3.3 lyn2vec: a tool for Lyndon-based sequence embedding

We have implemented lyn2vec, a novel tool for providing sequencing read embeddings
relying on Lyndon-based factorizations. lyn2vec takes as input a file of sequencing reads
in FASTA or FASTQ format and executes a factorization algorithm (specified as input) over
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each input read in order to compute its representation. Specifically, lyn2vec produces
the following types of representations:

• the fingerprint

• the sequence of the k-fingers extracted from the fingerprint of of the read (given a
value of k specified as input parameter)

• the sequence of the k-fingers extracted from the superfingerprint (Definition 4),
after discarding the k-fingers containing the separator $.

As an example, let us consider s = GCATCACCGCTCTACAG. By using the
CFL ICFL algorithm with a threshold T = 30, the factorization and the fingerprint of
s (with respect to the ”regular” ordering (A,C,G, T )) will be CFL ICFL(s) = 〈 G, C,
ATC, ACCGCTCT , ACAG 〉 and L(s) = 〈1, 1, 3, 8, 4〉, respectively.

Observe that 〈G,CA, TCACCGC, TCTACAG〉 is the factorization with respect to
the inverse ordering (T,G,C,A) and the related fingerprint is 〈1, 2, 7, 7〉. Then, the
superfingerprint will be given by S(s) = 〈1, 1, 3, 8, 4, $, 1, 2, 7, 7〉, that is, by the concatena-
tion of the two fingerprints by interposing the separator $. By assuming k = 3, lyn2vec
will output one of the following three representations:

• the fingerprint L(s) = 〈1, 1, 3, 8, 4〉 obtained from CFL ICFL(s)

• the sequence 〈〈1, 1, 3〉, 〈1, 3, 8〉, 〈3, 8, 4〉〉 of the k-fingers extracted from L(s)

• the sequence 〈〈1, 1, 3〉, 〈1, 3, 8〉, 〈3, 8, 4〉, 〈1, 2, 7〉, 〈2, 7, 7〉〉 of the k-fingers extracted
from S(s)

lyn2vec has been implemented in Python by using the Scikit-learn library1. The
source code and all the files produced in the evaluation tests are available online2.

4 Experiments

In this section, we provide the details of the experiments carried out to assess the
effectiveness of lyn2vec, i.e., its capability to provide numeric representations of biological
sequences that can be effectively learned by machine learning models.

The experiments are organized in two parts. The first part (Section 4.1) focuses on the
read-gene classification problem [34] in order to perform a series of benchmark experiments.
The second part (Section 4.2) is devoted to extend the rule-based classifier, designed in
the first part (for the read-gene classification problem), in order to tackle a more complex
problem, namely the detection of chimeric reads in a sample of transcriptomic (RNA-Seq)
reads, which is the preliminary step for finding gene fusions [35, 36].

1https://scikit-learn.org/stable/
2https://github.com/rzaccagnino/lyn2vec
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The read-gene classification problem asks for the classification of each read of a given
set of RNA-Seq reads to its putative origin gene. Instead, the chimeric reads detection
problem can be seen as a generalization of read-gene classification since it requires to
assign a chimeric read to two fused genes (instead of a single gene).

From a computational point of view, an RNA-Seq read is a substring of a transcript
(messenger RNA or mRNA) expressed from a genomic region (locus) called a gene. Hence,
the origin gene of a RNA-Seq read is the gene expressing the transcript which the read
has been sequenced from. We remark that read-gene classification can be efficiently solved
by using aligners [37, 38] or pseudo-aligners [39, 40]. However, our goal is to test, in a
machine learning (ML) context, the capability of the embedding representations produced
by lyn2vec to highlight the common regions between reads. Observe that any ML model
performing a read-gene classification would not be able to produce accurate results if the
representation (or embedding) of the sequences were not able to adequately represent
their content. On the contrary, if the ML model is able to perform a sufficiently good
classification, we can conclude that the embedding adequately represents the sequence
content. In the first experimental part, we investigate the feasibility of our proposed
representations in a simplified scenario. We want to avoid a more complex application
where aspects, such as the fine tuning of the ML model, the completeness of the data
and the comprehension of the underlying biological process are crucial to achieve the
utmost accuracy.

The second experimental part is focused on detecting chimeric reads in a set of RNA-Seq
reads. A chimeric read is a read sequenced from a transcript expressed by a fusion gene,
that is, a hybrid gene composed of two (or more) genes joined together by a structural
variation event; fusion genes are involved in many types of human neoplasia [35]. We show
how the rule-based classifier (Section 4.1.2), designed in the first part for the read-gene
classification, has been extended in order to detect chimeric reads in a RNA-Seq set.

In the following sections, we assume that the reader is familiar with the basic notions
of Machine Learning. However, we refer to [41] for further details.

4.1 Read-gene classification

We remark that, as described in Section 3.3, lyn2vec provides three types of read
representation. As a consequence, we faced the read-gene classification problem in three
different frameworks, each one considering a representation provided by lyn2vec. We
organized our experiments in three groups, we call tasks, answering the following three
questions:

T1. “How effective is the fingerprint produced by lyn2vec as read representation in the
read-gene classification problem?”

T2. “How effective is the sequence of the k-fingers extracted from the fingerprints
produced by lyn2vec as read representation in the read-gene classification problem?”

T3. “How effective is the sequence of the k-fingers extracted from the superfinger-
print produced by lyn2vec as read representation in the read-gene classification
problem?”
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Each task is composed of sub-tasks (or experiments), each one devoted to (find and)
assess a classifier using a specific representation.

In task T1, the fingerprints of the reads are directly used as feature vectors (each
fingerprint will correspond to one feature vector) on which the Machine Learning model
will be trained. We remark that, in a classification problem, the feature vector represents
the list of features of an object considered relevant for training a model to classify the
object itself. In tasks T2 and T3, the k-fingers (extracted from the fingerprints or
superfingerprints) are used as feature vectors. Then, (i) the model is first trained in order
to assign each k-finger to a gene and next, (ii) a special classifier (Section 4.1.2) exploits
the obtained result in order to assign each read to a class (or gene).

As shown below, the fingerprint representation can work well in case of error-free data,
while we observe a decrease in the performance when sequencing errors are present. On
the other hand, the k-finger-based representation turns out more robust when errors are
present.

Finally, we have empirically proved that the k-finger-based representation allows to
reduce the collisions and improve performances (Section 4.1.3). However, we remark that
the problem of choosing the best ordering of the alphabet to reduce collisions is still
open.

Data Setting. We used the annotation (havana and ensembl havana) of the 6040
human genes of chromosomes 1, 17 and 21, containing a total amount of 17, 314 transcripts;
we randomly selected 100 genes out of them in order to obtain a small set of genes for
assessing the effectiveness of our embedding representation. For each one of the 100
genes, 4 transcripts were randomly selected (for a total number of 400 transcripts). Then,
from each one of such 400 transcripts, we extracted all the 100-mers, thus obtaining a
total of 797, 407 100-long substrings. We used these substrings as error-free reads from
which to extract the feature vectors used in the following experiments and to carry out
the analysis presented in Section 4.1.4. Each read clearly belongs to one of the considered
100 classes (one class for each gene).

Feature Extraction. The datasets of feature vectors are extracted from the collection of
797,407 100-long input reads of our data set. We recall that each fingerprint corresponds
to a feature vector in task T1 and each k-finger extracted from a fingerprint (resp.
superfingerprint) corresponds to a feature vector in task T2 (resp. T3). Fingerprints
and k-fingers will be also referred as samples. In more detail, a total of 10 factorization
algorithms were considered: the four algorithms CFL, ICFL, CFLd and ICFLd plus the
two algorithms CFL ICFL and CFL ICFLd applied for the three values {10, 20, 30} of the
parameter T . For each algorithm, we have computed (by using lyn2vec) the fingerprint
and the superfingerprint of each input read, thus obtaining 10 datasets of fingerprints (10
experiments of task T1) and 10 datasets of superfingerprints (10 experiments of task T3
where the feature vectors are the k-fingers extracted from the superfingerprints). Next,
the k-fingers for k from 3 to 8 (a total of six values) are extracted from the 10 datasets of
fingerprints, thus obtaining a total of 60 datasets of k-fingers (60 experiments of task T2)
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and 60 datasets of k-fingers extracted from superfingerprints (60 experiments of task T3).
Since the length of a feature vector must be constant and the number of elements (integer
values) composing our feature vectors (fingerprints or k-fingers) is clearly variable, then,
we need to perform a padding with trailing −1s in order to achieve a constant size over
all the feature vectors. Observe that a k-finger may even be padded, when the read
fingerprint is shorter than k.

Basic Methodology. For each one of our experiments, the following steps are performed
in order to produce a classifier:

1. Labeling. Each feature vector (fingerprint or k-finger), in the dataset, is labeled in
order to create a link with its class (that is, with its origin gene).

2. Learning. The following ML models are considered: Random Forest (RF), Logistic
Regression (LR), and Multinomial Naive Bayes (MNB). Each model is trained by
using the labeled samples.

Next, the k-fold cross-validation technique (i.e., finding the optimal hyperparameter
values yielding a satisfying generalization performance) is used in combination with
the GridSeachCV method in order to select the best model and obtain a classifier.
The dataset is first split in two subsets using stratification3: a training set (80% of
the samples) and a testing set (20% of the samples). Stratification guarantees that
all the considered 100 classes (genes) are represented in both sets, while maintaining
the same proportions of the original dataset. Moreover, to minimize data leakage,
we have used a common ML practice consisting in applying normalization within
the cross-validation folds, separately. Specifically, we have normalized the data by
using the MinMaxScaler technique. The normalization is used to map the values of
the features (integer values in our case) to a fixed range (usually [0, 1]), providing
better results with respect to the case of features having values in different ranges.
We remark that stratification and normalization are two well-known ML techniques.
Next, the k-fold cross validation is performed on the training set (we tried several
values of k and 5 gives good results), and, at each one of the k steps (at each step,
k−1 folds are used for training the models, and one fold, named test fold, is used for
performance evaluation), we apply an exhaustive search with specified parameters
(GridSeachCV method), and for each combination of such values, we compute the
average performance of the considered classifier reached on the current independent
test fold. Finally, after discovering satisfactory hyperparameter values, we perform
a retraining of the best model (the model showing the best performance) on the
training set, thus producing a classifier.

3. Evaluation. The generalization capability of the obtained classifier, i.e., the capa-
bility to reach high performance on unseen samples, is assessed by applying it for
classifying the elements of the Testing Set using the best parameters found in the
previous step.

3The stratification has been performed by using the method train test split of Scikit-learn Python
library.
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Testing on simulated RNA-Seq reads. We also performed a test over a simulated RNA-
Seq dataset. We simulated a total of 10 million 100-long reads from the 17, 314 transcripts
of our data setting by running Flux Simulator [42] for different expression levels. Default
parameters and the default Illumina error model were used; the generation of Poly-A
tails was disabled. Then, only the 285, 628 reads related to our panel of 100 genes
were retained and used for evaluating the effectiveness of lyn2vec in classifying RNA-
Seq reads from fingerprints (Section 4.1.1 and from k-fingers (Section 4.1.2)). Observe
that this set is unbalanced: 142, 266 reads were simulated from gene ENSG00000132517

(the most expressed in the dataset), whereas only 2 reads were simulated from gene
ENSG00000116205 (the least expressed in the dataset). We point out that, since a
fingerprint represents an entire read, then the class of a read is trivially the class of
its fingerprint and a classifier of fingerprints is a classifier of reads. On the contrary,
when the reads are represented by their k-fingers, then a classifier of k-fingers must be
accompanied by a rule-based read classifier (Section 4.1.2) for inferring the class of a
read from the classes of its k-fingers.

Performance scores. For each experiment, the results obtained in the Evaluation step
are evaluated by using a set of metrics (usually) defined for binary classification problems
(that is, only two classes are taken into account). Precisely, accuracy = TP+TN

TP+TN+FP+FN ,

precision = TP
TP+FP , recall = TP

TP+FN and F-score = 2 · precision·recall
precision+recall . In short, the

accuracy measures the portion of correctly classified samples, the precision indicates how
many samples assigned to a class actually belong to such a class, and the recall gives the
amount of samples of a given class which are correctly assigned to that class. Finally,
the F-score is a useful summary metric defined as the harmonic mean of precision and
recall. These metrics are also applied to evaluate the classification results (Sections 4.1.1
and 4.1.2) obtained from the classification of the set of the simulated RNA-Seq reads.

In a multi-class framework, the global performance of a classifier can be obtained
by first averaging the metrics computed for each single class, and then considering the
arithmetic or the weighted mean. In this work, since we also performed a testing over a
dataset of RNA-Seq reads, which is unbalanced, we used the averaged values of these
metrics weighted for the number of actual samples belonging to each class. Sections 4.1.1,
4.1.2 and 4.1.3 report the performance results (both for the Evaluation step and the
testing over the simulated dataset of RNA-Seq reads) by grouping the experiments by
task. Section 4.1.4 presents the results of a study about the behavior of the classification
errors obtained in the best-performing experiment.

4.1.1 Effectiveness of the fingerprint representation (task T1)

Task T1 is composed of 10 experiments, each one related to a dataset of fingerprints
computed with a specific factorization algorithm (see paragraph Feature Extraction of
Section 4.1); the read fingerprints are the samples training the considered ML models
(Training step). As a result, we have observed that the RF model always outperforms the
other models and we only report its results on the testing set (see Table 1). As the table
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shows, algorithm CFL ICFLd gives in general the best results, and the best classifier is for
the parameter T = 20.

Experiment Accuracy Precision Recall F-score

CFL 0.43 0.45 0.43 0.43

ICFL 0.40 0.45 0.40 0.41

CFL ICFL
T=10 0.90 0.90 0.90 0.90
T=20 0.90 0.90 0.90 0.90
T=30 0.89 0.89 0.89 0.88

CFLd 0.72 0.72 0.72 0.72

ICFLd 0.85 0.85 0.85 0.85

CFL ICFLd
T=10 0.92 0.93 0.92 0.93
T=20 0.93 0.94 0.93 0.94
T=30 0.92 0.93 0.92 0.92

Table 1: Performance results of the RF model in the 10 experiments of task T1 (Evaluation step)

To assess the effectiveness of lyn2vec we compared its results with those obtained
by using the embedding techniques BioVec, fastDNA and DNABERT. We compared the
results obtained from such embedding representations, in the specific context of the
read-gene classification problem, with the results obtained with the representations
provided by lyn2vec. BioVec and fastDNA were both re-trained on the training set used
in task T1. Instead, in the case of DNABERT [25], the representations obtained using the
proposed pre-trained models provide general comprehension of the DNA language and
can be used to solve generic sequence-related tasks. Thus, they can also be used to face
the read-gene classification problem. Moreover, they stressed that the pre-training of the
DNABERT model is resource intensive, and so the pre-trained models are presented as one
of the major contributions of the paper. According to these premises, we directly used
such general pre-trained models to generate the representations used in our comparison.
In particular, we have performed a further experiment on the same data set obtained
with CFL ICFLd, T = 20. Afterwards, we once again performed the classification task
by feeding the new embedded features to the RF model which was the one providing
best results. Furthermore, Table 2 shows that the performance, obtained with the other
representations, is systematically lower than that obtained by using lyn2vec.

Embedding Accuracy Precision Recall F-score

lyn2vec 0.93 0.94 0.93 0.94

BioVec 0.83 0.85 0.83 0.83

fastDNA 0.67 0.65 0.67 0.67

DNABERT 0.37 0.36 0.35 0.36

Table 2: Performance results of the RF model with the embeddings by lyn2vec (CFL ICFLd and T = 20),
BioVec, fastDNA and DNABERT. The first row is the copy of the corresponding row of Table 1
for CFL ICFLd and T = 20.

22



As depicted in Table 2, lyn2vec outperforms the other embeddings. In addition,
lyn2vec produces a dataset of fingerprints much smaller than the ones produced by the
other tools, whose embedding vectors have a fixed size.

Finally, we carried out a classification test over the set of the simulated RNA-Seq reads
by using the best classifier obtained in task T1, that is, the RF model trained with the
fingerprints from CFL ICFLd and T = 20, obtaining a precision of 0.85, a recall of 0.42
and an F-score of 0.55. The presence of sequencing errors in the simulated reads leads to
fingerprints, which differ from those used during the training of the classifier.

4.1.2 Effectiveness of the k-finger-based representation (task T2)

Task T2 involves 60 experiments, each one related to a dataset of k-fingers extracted
from the 10 datasets of fingerprints (task T1) for k = 3, 4, 5, 6, 7, 8; the k-fingers are (in
task T2) the samples training the ML models we considered (Training step). The goal
of this task is to assess the effectiveness of k-fingers as feature vectors improving the
classification performance when sequencing errors are present in the reads.

As for task T1, we only report the results for the RF model, since it outperforms the
other models. Figure 4 provides an overall picture of the F-score for the total of the 60
experiments of task T2: experiments conducted with k = 3, 4, 5 show that the classifiers
obtained from algorithm CFL ICFLd (evaluated in the Evaluation step) are the least
accurate in classifying k-fingers.

Table 3 and 4 report the accuracy results for the experiments with the basic factorization
algorithms and with their double-stranded version, respectively. Only values of k in
{3, 6, 8} are shown, since we observed that the classification performance tends to increase
with increasing k. The best results (see the bold rows in the two tables) have been
obtained by using k = 8, the factorization algorithm CFL ICFL with T = 20 and its
double-stranded version CFL ICFLd with T = 30.

Experiment k Accuracy Precision Recall F-score

CFL
3 0.53 0.61 0.43 0.49
6 0.73 0.75 0.66 0.69
8 0.79 0.81 0.78 0.80

ICFL
3 0.57 0.60 0.46 0.51
6 0.71 0.77 0.47 0.53
8 0.81 0.80 0.42 0.48

CFL ICFL

T=10
3 0.47 0.58 0.31 0.37
6 0.91 0.91 0.87 0.89
8 0.93 0.94 0.93 0.93

T=20
3 0.50 0.57 0.36 0.42
6 0.92 0.92 0.89 0.90
8 0.95 0.95 0.93 0.94

T=30
3 0.55 0.62 0.41 0.47
6 0.91 0.92 0.88 0.90
8 0.92 0.93 0.91 0.92

Table 3: Performance results of the experiments of task T2 (Evaluation step) with the
basic factorization algorithms and k = 3, 6, 8 (RF model).
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Experiment k Accuracy Precision Recall F-score

CFLd
3 0.56 0.63 0.45 0.51
6 0.90 0.91 0.86 0.89
8 0.90 0.93 0.86 0.89

ICFLd
3 0.65 0.68 0.57 0.61
6 0.92 0.92 0.87 0.90
8 0.87 0.91 0.78 0.84

CFL ICFLd

T=10
3 0.38 0.55 0.21 0.25
6 0.89 0.89 0.86 0.87
8 0.93 0.93 0.92 0.93

T=20
3 0.40 0.55 0.23 0.25
6 0.91 0.91 0.88 0.89
8 0.94 0.94 0.92 0.93

T=30
3 0.42 0.51 0.24 0.28
6 0.91 0.91 0.88 0.89
8 0.94 0.94 0.93 0.94

Table 4: Performance results of the experiments of task T2 (Evaluation step) with the
double-stranded factorization algorithms and k = 3, 6, 8 (RF model).

As for task T1, we carried out a classification test over the set of the simulated RNA-Seq
reads, by classifying the k-fingers extracted from the fingerprints of such reads. To this
purpose, we have designed a rule-based classifier in order to infer the class of a read
from the classes of its k-fingers, that is composed of the following two cascade criteria
(selected after some preliminary tests):

• Majority. Given a read, then a gene G reaches the majority for that read, if at
least half of its k-fingers are assigned to G; therefore, the read is assigned to G.

• Threshold. Given a read, for each of its k-fingers, the classification margin is
computed; the read is assigned to the gene for which the highest value of the
margin is achieved. The classification margin is obtained by subtracting the lowest
probability, whereby a k-finger was correctly classified during the training step, to
the probability by which it was currently classified.

If Majority (applied first) does not achieve a result, then, Threshold will be applied.
We achieved the best classification results by using the RF model, trained with the

k-fingers produced by ICFLd and k = 5; recall that the best classifier of k-fingers has been
proved to be the RF model with CFL ICFLd, T = 30 and a value of k = 8 (high value).
This behavior could be explained by the fact that a lower value of k produces a higher
number of k-fingers (for a given read), thus, a lower percentage of the extracted k-fingers
are likely to be affected by sequencing errors.

We obtained a precision of 0.91, a recall of 0.77, and a F-score of 0.82, instead of
precision of 0.85, a recall of 0.42, and a F-score of 0.55 obtained in task T1, by directly
using the entire fingerprint as feature vector. Such a huge different in the performance
can be explaining again by the fact that, in presence of errors, k-fingers are able to
extract the parts of the fingerprint which are not corrupted, while in the case of the
direct classification of the fingerprint, the classifier must infer the read class relying only
on a (probably) single corrupted feature vector.
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Figure 4: F-score of the 60 experiments of task T2 (RF model).

4.1.3 Superfingerprints to overcome the impact of k-finger collisions on the read
classification (task T3)

We repeated the 60 experiments carried out in task T2 by using the k-fingers extracted
from superfingerprints (Definition 4) in place of the k-fingers extracted from finger-
prints, achieving a significant improvement both in the Evaluation step (of the k-finger
classification) and in the testing on the simulated RNA-Seq reads.

Specifically, the RF model trained on k-fingers extracted from superfingerprints, com-
puted with CFL ICFLd and T = 30 and considering k = 8, achieves an accuracy of 0.97,
a precision of 0.96, a recall of 0.95, and an F-score of 0.95 (Evaluation step). Recall
that the counterpart values of task T2 (which are the values obtained with the best-
performing classifier trained with k-fingers from fingerprints) are 0.94, 0.93, 0.94 and 0.94,
respectively. Moreover, the test over the simulated RNA-Seq reads has been performed
by exploiting the RF model trained on the k-fingers extracted from superfingerprints
computed with ICFLd and T = 30 and considering k = 5; we obtained a precision of 0.95,
a recall of 0.83, and an F-score of 0.88, against 0.91, 0.77 and 0.82 obtained in task T2.

Since the superfingerprints cannot certainly reduce the rate of collisions, the per-
formance improvement with respect to task T2 can only be ascribed to the fact that
superfingerprints are able to reduce the impact of collisions on the classification. This
can be explained by noting that, even though additional collisions may even occur in the
case when using k-fingers, extracted from the fingerprints built on the inverse alphabet,
nevertheless the concatenation of the two fingerprints reduces the overall probability
of collision, since the probability that both fingerprints are affected by a collision is
lower than the probability of collision of the two separated fingerprints. In terms of
how the rule-based classifier works, this means that, even if the absolute number of
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k-fingers, producing collisions, may increase, their incidence on the total number of
obtained k-fingers will be lower, leading to a higher number of correct classifications.
Still, the theoretical demonstration of the capability of superfingeprints to reduce the
impact of collisions remains open. Task T3 is a first attempt for empirically assessing
their effectiveness.

4.1.4 Error analysis

We carried out an analysis to investigate the errors in the k-finger-based classification
of a set of reads by using the error-free reads of our Data Setting (Section 4.1), thus
discarding the noise due to possible sequencing errors. Assigning a read to the wrong
gene (misclassification error) is due to one of the following three reasons: (i) the read
shares substrings with transcripts coming from the wrong gene, (ii) some k-fingers of
the read collide (Section 3.2) with k-fingers of reads coming from the wrong gene and
(iii) some k-fingers of the read are similar to k-fingers from transcripts of the wrong
gene (e.g, 〈2, 5, 8, 7, 20〉 is similar to 〈2, 5, 7, 7, 19〉) and the trained model produces wrong
k-finger classifications. We considered the results obtained in task T2 for the RF model
trained on the 6 datasets of k-fingers produced with CFL ICFLd, T = 30 and k from 3
to 8 (Section 4.1.2); in particular, recall that k = 8 achieved the best result in task T2.
The 6 datasets of k-fingers (training set plus testing set, in order to consider also the
errors produced by the model in the training set) were given as input to the rule-based
classifier (Section 4.1.2) in order to infer the class of the (error-free) reads from which
the k-fingers were obtained.

For each one of the 6 classification results, we carried out the following analysis. Given
the set G of the 100 genes of our data setting, we considered all the pairs (GT , GA) of
the Cartesian product G2, such that GT 6= GA (obtaining a total of 9900 pairs). GT and
GA will be referred as target gene and assignment gene, respectively. For each (GT , GA)
we computed the number of reads originated from GT but assigned to GA, referred in
the following as misclassification number.

Overall, we observed a high number of pairs having a misclassification number below
30 (on average, 9832 over the 6 datasets).

The most interesting results have been obtained for k = 5 and k = 8.

k=5 Only 29 pairs (involving 27 distinct genes) have a misclassification number over 30.
The number of exchanges ranged from 0 to 158. On average, 20 distinct k-fingers per pair
are misclassified. In general, about 65% of the misclassified k-fingers are shared between
the two genes, and only the 15% of them actually correspond to common substrings,
whereas the other ones were misclassifed due to reason (ii) (k-finger collisions). Not
surprisingly, this result suggests that for higher values of k, the collision rate is lower.

k=8 Only 229 pairs (involving 34 distinct genes) have a misclassification number over
30. The number of exchanges ranged from 0 to 113. On average, we have found that
36 distinct k-fingers per pair are misclassified due to reason (iii) (i.e., numerically close
k-fingers). These results suggest that lyn2vec provides good string representations.
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This analysis highlights how different values of the parameter k lead to a different
behavior of the k-fingers and, consequently, to different results. k = 8 seems to be the
best choice, achieving a precision and recall of 0.94 and 0.93, respectively. Limitations
of the choice of higher k are related to the fact that the method can misclassify similar
k-fingers. Clearly, the length of the reads could be also another parameter to take into
account to allow higher values of k.

These results suggest that different parameters and models applied in combination
with the lyn2vec representation could lead to different uses whose investigation can be
carried out in future works.

4.2 Chimeric reads detection

In Section 4.1 we have proved the soundness of the lyn2vec representation in a ML-based
methodology to solve the read-gene classification problem. This suggests the possibility of
exploring lyn2vec in a more complex framework such as the gene fusion, where chimeric
reads, originating from fused genes, are present in a set of RNA-Seq reads. Gene fusion
is the chromosome rearrangement mechanism by which two (or more) genes are joined
together into a single gene (fusion gene) and is often associated to cancer. A chimeric
transcript originating from a fusion gene will be given by the concatenation of many
parts, each one originated from one of the genes joined together. We only consider gene
fusions involving two genes g1 and g2 and a chimeric read will be a read w sequenced
from a chimeric transcript and will be composed of two parts w1 and w2, such that
w = w1w2 and w1 and w2 are originated from g1 and g2 respectively.

Computational tools for gene fusion detection using RNA-Seq reads have been proposed
in the literature [43, 36]. These tools are based on a preliminary step that consists
in aligning short RNA-Seq reads [44, 45, 46, 47] to an annotated reference genome (or
transcriptome) in order to detect chimeric reads and next infer the fused genes from
these reads. Unfortunately, short reads capture relatively small pieces of the full-length
gene transcripts and alignment-based approaches may not perform well, thus introducing
bias in the detection of chimeric reads. On the contrary, RNA-Seq long reads are more
informative to detect gene fusions, since they are composed of tens of thousands of
bases and can even cover an entire transcript. However, the exploration of methods
for detecting gene fusions from a set of long reads is in its infancy. In this regard, we
conjecture that a Machine Learning approach, learning gene features, could help in this
direction and we have adapted the ML-based approach, developed for the read-gene
classification, to implement an (alignment-free) method to detect chimeric reads in a set
of long reads. More precisely, given a set of candidate genes that may be involved in
gene fusion events, our goal is to detect the reads which are chimeric; in other words,
this problem is a rewording of the read-gene classification problem, where a chimeric
read will be assigned to two genes instead of one. To this aim, we have adopted a similar
strategy by first classifying the read k-fingers and then, inferring the two fused genes by
means of a variant of the rule-based classifier, which has been adapted to this problem.
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4.2.1 Method

Our method for detecting chimeric reads consists of the following three steps:

1. given the set of the genes of interest, the k-fingers are extracted from their annotated
transcripts in order to train the ML model. At the same time, a set F of target
strings is obtained and used in the second step as a ”guidance” to factorize the
long reads,

2. for each input read, a factorization based on the set F is computed (referred as
adaptive factorization),

3. from each adaptive factorization, the k-fingers are extracted and classified by the
trained model; next, a rule-based classifier decides whether the read is chimeric and
(in such case) determines the two involved genes.

The following three paragraphs provide the details of the three steps.

Training the model. For each annotated transcript (of the the genes of interest), all the
substrings of a given length W (input parameter) are extracted and for each substring, the
factorization with algorithm CFL ICFLd with T = 30 was computed. Next, the k-fingers
for k = 8 were extracted and exploited for training the ML model (by following the same
methodology described for the read-gene classification problem). This step also computes
a set F of L-long substrings (L is a parameter), referred as target strings, to use in the
next step as markers to guide the factorization of the input reads. The target strings
are extracted from each one of the factorizations of the considered W -long transcript
substrings. Let Ft(s) = 〈f1, f2, . . . , fn〉 be one of such factorizations for substring s of
transcript t and 〈p1, p2 . . . , pn〉 be such that pi is the starting position on t of factor fi.
Given a parameter D, we call target-list the maximum subsequence 〈p′1, p′2, . . . , p′q〉 of
〈p1, p2 . . . , pn〉 such that p′1 = p1 and p′i+1 − p′i ≥ D (2 ≤ i < q). Each one of positions p′i
on t originates the target string t[p′i : p′i + L− 1].

Adaptive factorization of the long reads. The factorization of each input read r is
computed in an adaptive manner, meaning that it is guided by the set F of the target
strings computed by the first step. The read r is partitioned into n segments w1, w2, . . . , wn

such that r = w1w2 . . . wn and, for each wi, there exists a target string which is prefix of
wi. Then, the factorization of each wi is computed, obtaining n fingerprints. Intuitively,
the target strings aim at marking starting factor positions in the training factorizations
and are used to obtain read segments that produce factorizations ”aligned” with the
training factorizations. In addition, the read segmentation concurs to reduce the factor
length with respect to the factorization obtained by processing the whole read.

Classification of the long reads into chimeric and non-chimeric. For each long read
r and for each segment wi, the k-fingers are extracted from the fingerprint of the segment
and an ordered list 〈K1,K2, . . . ,Kq〉 of k-fingers is produced, such that the k-fingers of
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Figure 5: Two examples of a list ListG(w) depicted as sequences of letters. Gene A has
repetitiveness 10 in the upper list and 8 in the lower list, while gene B has
repetitiveness 9 in the upper list and 9 in the lower list. Gene A has a coverage
of 0.42 and 0.58 in the upper and lower example (respectively), while gene B
has a coverage of 0.55 and 0.71 in the upper and lower example. The lower
list presents an overlap between the two gene coverages and a percentage of
common elements (with respect to the size of ListG(w)) equal to 0.29. The
fusion scores are 0.7 and 1 for the upper and lower example, respectively.

wi come before the k-fingers of wj if i < j; moreover, the k-fingers of a given segment are
listed from left to right in the segment. At this point, the classifier assigns each k-finger
to a gene, thus obtaining a list ListG(w) = 〈g1, g2, . . . , gq〉 such that gi is the gene to
which k-finger Ki has been assigned.

On chimeric reads merging two genes, we expect that ListG(w) contains a sublist for
each gene where the gene is highly repeated. To this aim, we measure the repetitiveness
of a given gene g in ListG(w) through the number of times two consecutive elements are
equal to g and, for each gene g, we compute the maximum sublist 〈gi, gi+1, . . . , gj〉, we
call g-coverage, such that gi = gj = g and g is the gene with the highest repetitiveness.

For all pairs of genes g1 and g2, we compute a measure of how likely such genes
are to be fused in the read. Let P1 (P2, respectively) be the size of the g1-coverage
(g2-coverage, resp.). Let P∩ be the number of the common elements between the
g1-coverage and the g2-coverage. Then, we define the fusion score for g1 and g2 as
scorew(g1, g2) = (P1 + P2 − P∩)/|ListG(w)|. Observe that, scorew(g1, g2) ranges from 0
to 1: 1 means perfect coverage of ListG(w), while 0 means that the two genes do not
cover ListG(w) at all. Figure 5 (where the genes are represented by letters) shows two
examples of how the g-coverage of two fused genes may appear.

Hence, for each input long read r and for each pair of genes g1 and g2, we compute
the g1-coverage and the g2-coverage. If the g1-coverage is not enclosed in the g2-coverage
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(or vice versa), then the fusion score scorew(g1, g2) is obtained. Among all the pairs of
considered genes, we select the pair giving the highest score and we label r as chimeric if
that score is at least a given threshold.

4.2.2 Experimental results

We tested our method on the PacBio reads used in [48] (identity level of 95%), and
randomly selected 100 genes from the set of considered genes.

The training was performed on the set of their 433 protein-coding annotated transcripts
from the GENCODE annotation (version 22). The testing was performed on a balanced
set composed of 2372 chimeric reads and 2372 non-chimeric reads.

We performed the classification of the long reads by using the following parameters:
W = 300 (length of the trasncript substrings in the training step), D ∈ {50, 100, 150, 200,
250, 300} and L ∈ {8, 16} (for building the set F of the target strings).

We used a minimum score threshold in {0.005, 0.01, . . . , 0.5}. The best results were
obtained for L = 8, D = 150 and a minimum score 0.87, achieving an accuracy of 0.87, a
precision of 0.81, a recall of 0.82 and an F-score of 0.81.

4.3 Discussion and perspectives

The obtained results suggest that lyn2vec is effective in providing representations of
sequencing reads to use in a Machine Learning framework.

The representation based on the basic notion of fingerprint (see Section 4.1.1) already
provided results (precision 0.94 and recall 0.93) overcoming those obtained using other
well-known representation methods, i.e., BioVec, fastDNA and DNABERT.

Later, in Section 4.1.2, we further assessed our method by applying it on RNA-Seq
reads simulated with Flux Simulator with different gene-expression levels and errors,
showing that using a hybrid approach in which k-fingers were used in combination with
a rule-based classifier, significantly increases performance, by reaching high precision 0.91
and recall 0.77, despite of a precision of 0.85 and a recall of 0.42 reached by directly
classifying the whole fingerprints of such data.

Moreover, the use of superfingerprints (Section 4.1.3) reduces the impact of collisions on
the classification results and allows precision and recall to reach 0.95 and 0.83, respectively.

The k-finger representation produced by lyn2vec has been also tested in the gene
fusion framework in order to detect chimeric reads, achieving a satisfactory performance:
0.87 in accuracy, 0.81 in precision, 0.82 in recall and an F-score of 0.81.

5 Conclusion

In this paper we propose lyn2vec, a novel feature embedding method exploiting the
notion of fingerprint to represent sequencing reads. Differently from NLP-based feature
embedding, our method relies on a theoretical investigation of combinatorial properties
which guarantee to capture similarities among sequences. The computational complexity
of lyn2vec is linear in the number of represented sequences, lyn2vec does not require
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a training step and the size of the produced datasets is smaller with respect to those
obtained with NLP-based sequence embedding methods.

We opted for testing the representations produced by lyn2vec in two frameworks: read-
gene classification and chimeric read detection for inferring gene fusions. In particular,
the chimeric read detection captures similarities when the strings (or reads) share only
small portions (i.e., a prefix or a suffix) with the two origin trasncripts; hence, it is an
ideal context where assessing the soundness of lyn2vec.

We also performed an analysis to investigate the misclassification errors in the read-gene
classification framework, pointing out that the performance of the classification by using
k-fingers can be greatly improved by high values of k, which are possible when using long
reads in place of short reads.

Undoubtedly, it is worth evaluating lyn2vec in other Machine Learning applications
carrying out sequence analysis, such as clustering, structure prediction or even pattern
discovery in order to develop practical applications on real data.
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