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Abstract

Policy-based signatures (PBS) were proposed by Bellare and Fuchsbauer (PKC 2014) to allow
an authorized member of an organization to sign a message on behalf of the organization.
The user’s authorization is determined by a policy managed by the organization’s trusted
authority, while the signature preserves the privacy of the organization’s policy. Signing keys
in PBS do not include user identity information and thus can be passed to others, violating
the intention of employing PBS to restrict users’ signing capability.

In this paper, we introduce the notion of traceability for PBS by including user identity
in the signing key such that the trusted authority will be able to open a suspicious signature
and recover the signer’s identity should the needs arise. We provide rigorous definitions
and stringent security notions of traceable PBS (TPBS), capturing the properties of PBS
suggested by Bellare-Fuchsbauer and resembling the “full traceability” requirement for group
signatures put forward by Bellare-Micciancio-Warinschi (Eurocrypt 2003). As a proof of
concept, we provide a modular construction of TPBS, based on a signature scheme, an
encryption scheme and a zero-knowledge proof system. Furthermore, to demonstrate the
feasibility of achieving TPBS from concrete, quantum-resistant assumptions, we give an
instantiation based on lattices.

Keywords: Policy-based signatures, privacy, traceability, modular constructions,
lattice-based instantiations, zero-knowledge proofs

1. Introduction

Policy-based signatures (PBS) were introduced by Bellare and Fuchsbauer [6] to allow
authorized users in an organization to sign messages on behalf of the organization, while
keeping the internal authorization policy of the organization private. A signature in PBS
will be verified with respect to the organization’s public key and so does not leak any identity
information, nor it reveals the policy that is applied to the signed message. PBS is an
attractive privacy-preserving primitive in practice as, similar to group signature [21], it allows
members of an organization to sign on behalf of the organization, but enables organization
to enforce fine-grained policies for signing messages without revealing to the outside world.
From a theoretical viewpoint, PBS is also a powerful primitive: it captures and implies a
number of anonymity-oriented authentication systems, serving as an umbrella notion that
unifies many existing notions. In particular, it was shown [6] to imply group signatures [21; 7],
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ring signatures [58], anonymous credential [16], anonymous proxy signatures [29], attribute-
based signatures [50], and certain variants of functional signatures [14; 4].

Bellare and Fuchsbauer [6] initially required two basic security requirements for PBS:
indistinguishability and unforgeability. Indistinguishability captures privacy of the policy
under which a message is signed, and requires the verifier not to be able to distinguish which
of the two candidate keys is used for signing a message m, knowing that the message satisfies
the underlying policies of both keys. Unforgeability demands that it is infeasible to produce
a valid signature on a message without possessing a key for a policy that permits the given
message1. Bellare and Fuchsbauer however argued that a usual indistinguishability notion
is insufficient for some applications and a typical definition of unforgeability can lead to
technical difficulties. They therefore proposed two stringent notions of simulatability and
extractability that are proven to imply indistinguishability and unforgeability. They also
provided generic constructions of PBS satisfying the proposed strong notions of security,
and demonstrated a concrete pairing-based instantiation. In their constructions, a trusted
authority issues a signing key skp for a policy p by certifying p via an ordinary signature
scheme. If a message m complies with policy p, then the holder of skp can create a PBS on
m by generating a zero-knowledge proof of knowledge of a valid certificate on certain hidden
policy p such that the given message m conforms to p.

We observe that signing keys in PBS are associated only with policies and does not
contain any identifying information of users. This pitfall allows the keys to be easily misused
without penalty: key holders can freely pass their keys to anyone they choose to, enabling
them to sign on behalf of the organization. Such a limitation completely opens PBS to
insider adversaries who can share and/or exchange their keys without any repercussion, and
so completely bypass the organization’s security/privacy regulations.

Protection against key sharing. To protect against key sharing one may attach the
user’s identity to the policy. That is to issue signing keys for user id on id‖p for all plausible
policies (a user may be authorized for multiple policies), ensuring that the user’s identity is
part of the key. This, however, achieves privacy of identity in the same way we achieve it
for policy. Therefore, the user can still share (or exchange) their signing keys without any
real penalty as they can always claim it is lost or stolen.

One may consider the “all-or-nothing” non-transferability approach proposed by Ca-
menisch and Lysyanskaya [16], where sharing a single credential would reveal all credentials
of the user and would lead to the user’s loss of its identity. In PBS, one can link all signing
keys of a user to provide such a feature, but still, it does not prevent malicious users from
sharing their keys, although in this case they would have to share all their keys at the same
time.

One can however make use of the approach that has been employed in a related primitive,
group signatures (GS) [21; 7], to provide traceability. In GS, a member of an organization
has an individualized secret key which they can use to sign on behalf the organization while
keeping the signer’s identity hidden. The system, however, allows the presence of an opener
(who could be the same as the secret key issuer or be a separate trusted entity), to open the
signature and reveal the signer’s identity - in cases of disputes. This is achieved by including
an encryption of the user identity, encrypted with the public key of the opener, in the group
signature. This is the approach that we will take in this paper.

Our Results. In this work, we aim to equip PBS with a tracing functionality, and study
how to build such an enhanced scheme in a modular manner based on generic assumptions,

1Note that a message could be authorized under multiple policies.
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as well as, concrete lattice-based assumptions. Our contributions are three-fold.

Formalization. We propose the primitive of traceable policy-based signatures (TPBS), an
extension of PBS in which the identity of the user who has signed a message can be recov-
ered by an opening algorithm, while privacy of the signing policy is preserved even against
the opening authority. In a nutshell, TPBS enrichs PBS with a reasonable traceability fea-
ture, reminiscent to group signatures. This traceability aspect deters users from sharing or
exchanging their signing keys (and hence bypassing the organization’s regulations), and in
general, keeps users accountable for their potentially inappropriate actions. We formalize the
security notions of simulatability and extractability for TPBS inline with the corresponding
notions in [6], giving additional power to the adversary by modelling their capabilities to
ask for opening of signatures. In particular, in the definition of simulatability, we provide
the adversary with access to an opening oracle, so that to capture the situation when the
adversary sees the results of previous openings. In the definition of extractability, we also
include the requirement that an adversary who has queried signing keys of a set of users,
be unable to output a valid signature that cannot be opened or traced to a member of the
queried group.

Generic construction. As a proof of concept, we provide generic construction of TPBS,
which is akin to a modular design of PBS by Bellare and Fuchsbauer and which requires
essentially the same cryptographic building blocks as the latter. Namely, we assume the
existence of a signature scheme that is existentially unforgeable under chosen message at-
tacks (EU-CMA), a non-interactive zero-knowledge (NIZK) proof that is simulation-sound
extractable (SE), and a public-key encryption scheme that is indistinguishable under chosen
ciphertext attacks (IND-CCA). Let us briefly review how our construction works. The setup
algorithm generates the public parameters and key pairs for the underlying building blocks.
The signing key of a user id will be a set of signatures, one per id‖p, for all policies that the
user is authorized to sign. To sign a message m, a user id first encrypts its identity, and
provides a NIZK proof of knowledge of a signature on id‖p such that p permits the mes-
sage m and id has been correctly encrypted to a given ciphertext. The signature contains
the ciphertext as well as the resulting NIZK proof. On input the decryption key, one can
open a valid signature and determine the signer’s identity. We prove this generic construc-
tion satisfies our proposed security notions and the opening algorithm correctly reveals the
user id.

Lattice-based instantiation. Next, to demonstrate the feasibility of achieving TPBS from
concrete and well-studied computational assumptions, we provide an instantiation of TPBS
based on the hardness of the Short Integer Solution (SIS) problem [1] and the Learning With
Errors (LWE) problem [57]. Our scheme hence can rely on the worst-case hardness of the
Shortest Independent Vector Problem (SIVPγ) over standard lattices with small polynomial
approximation factors γ, and has the potential to be resistant against quantum computers.

To design a lattice-based TPBS following the above blueprint, we need to choose suitable
technical ingredients from lattices and implement some non-trivial refinements, especially
for the associated zero-knowledge proof system, so that to make these ingredients work
smoothly together. First, we seek for techniques to build SE-NIZKs for expressive languages
in the lattice setting. To this end, we employ zero-knowledge techniques for SIS and LWE

statements that operate within Stern’s framework [60], and make use of the Fiat-Shamir (FS)
transform [28] to obtain an SE-NIZK proof in the random oracle model 2. We then need to
choose an appropriate policy language, a secure signature scheme and a secure encryption

2The proof of security of this approach is given in [26].
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scheme, that are reasonably efficient and that are compatible with the zero-knowledge layer.
Regarding policy language, we will use the one suggested by Cheng et al. [22] in their
construction of the first PBS from lattices. The authors argued that their language captures
policies that are used in real-life scenarios: the policy language is defined for an exponential-
size message space and supports a polynomial-size policy space. Moreover, a policy can
permit many messages, and a message can simultaneously satisfy many policies. Concretely,
a policy p ∈ {0, 1}ℓ2 is said to permit a message m ∈ {0, 1}n if there exists a witness
q ∈ {0, 1}d such that G1 ·p+G2 ·q = m mod 2 for given matrices G1,G2 and appropriately
chosen parameters. As for EU-CMA signature scheme, we will employ Boyen’s signature [13]
that features much smaller key sizes than the Bonsai signature [19] used in Cheng et al.’s
PBS scheme. As for the encryption layer, we will start with the identity-based encryption
(IBE) scheme by Gentry, Peikert, and Vaikuntanathan (GPV) [31], and then apply the CHK
transform [18] to get an IND-CCA secure encryption scheme.

Since the chosen ingredients (Cheng et al.’s policy language, Boyen’s signature, GPV-IBE
encryption) are known to be compatible with Stern-like zero-knowledge protocols [22; 43], it
would be possible to obtain a combined zero-knowledge proof that will serve as the backbone
of our lattice-based TPBS. We, however, need to address the following challenge. The
relation that needs to be proved by the user id during the signature generation, must show
that the user (1) possesses a valid Boyen signature on id‖p; (2) has correctly encrypted
id using GPV-IBE; and (3) there exists a vector q such that the above policy relation is
satisfied for (p,m). While (1) and (2) have been addressed in [43] and (3) has been handled
in [22], it is not straightforward to combine them together to establish our desirable zero-
knowledge protocol. Nevertheless, by carefully manipulating the underlying linear equations
and applying proper techniques for proving linear constraints in Stern’s framework, we are
able to prove that (1), (2) and (3) are satisfied simultaneously, namely, the p involved in
(3) was certified together with an id in (1) and the same id was encrypted in (2). In the
process, we adapt an enhanced extension-permutation technique from [44; 45] that allows us
to achieve optimal permutation size equal to bit size of secret input (denoted as |ξ|). This
improves the suboptimal permutation size (O(|ξ| · log |ξ|)) if we follow the same extension-
permutation techniques in [43; 22] and leads to (slightly) shorter signatures. Compared to
Cheng et al.’s scheme [22], our lattice-based TPBS scheme is richer in terms of functionality
(with traceability enabled), relies on security assumption SIVPγ with similar factors γ, while
achieving the same level of asymptotic efficiency (more concretely, our scheme has smaller
key sizes but produces slightly larger signature size due to the inclusion of the encryption
layer).

Related work. The study of authentication systems supporting anonymity and account-
ability/traceability started in the early 1980s and is still one of the major research directions
nowadays. Below, let us briefly review part of the extensive literature relevant to our work.

Group signatures (GS) [21] allow certified members of a group to anonymously sign
messages on behalf of the group, but when needed, any signature can be traced. Our
TPBS can be seen as a GS with fined-grained control on who can sign a message and with
simulation-based security requirements. As the opening authority in a GS can violate users’
anonymity at will, there have been several efforts to restrict its power, such as creating a
tracing trapdoor for each user [36] or for each message [59], or forcing the authority to decide
who to be traced in advance [37]. We may as well consider these enhanced mechanisms in
the context of TPBS.

Ring signatures (RS) [58] enable anonymous authentications within ad-hoc groups and
originally does not support any form of user accountability. While absolute anonymity could
be a desirable feature in certain scenarios, it could be abused by malicious users. Therefore,
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a number of RS variants have been proposed to regulate excessive anonymity, including
linkable RS [47], accountable RS [63] and traceable RS [30]. Similar methods for achieving
accountability/traceability have also been deployed in the context of e-cash [20; 17] and
could also be potentially useful for PBS.

Attribute-based signatures (ABS) [50] allow a user who owns a set of certified attributes
to anonymously issue signatures whenever his attributes satisfy a given predicate. Like
RS, in its original form, ABS does not support user accountability. To remedy this issue,
traceable ABS [25] was then introduced so that anonymity of misbehaving users can be
revoked by a designated authority. Our enhancement here for PBS has similar spirit to that
of [25] for ABS.

Lattice-based cryptography is currently a mainstream field of research and development,
due to a number of advantages over traditional public-key cryptography from factoring
and discrete logarithm, most notably, its conjectured security against quantum computers.
Designing secure lattice-based anonymous authentication systems supporting accountabil-
ity/traceability has been an active subfield in the last decade. In fact, one can name various
lattice-based GS schemes [33; 38; 40; 23; 46; 12], linkable [49; 61; 48] and traceble RS [27]
schemes, as well as compact e-cash systems [41; 64]. Lattice-based constructions of ABS, for
concrete policies [5; 65] and general policies [62; 24], have also been known, but no scheme
supporting traceability, e.g., in the sense of [25], has been proposed.

The first lattice-based PBS was put forward by Cheng et al. [22]. Their construction
relies on Stern-like protocols and Bonsai signature [19] and allows delegation of signing.
As discussed above, our lattice-based instantiation of TPBS employs the same approach to
policy definition and shares the same framework for designing zero-knowledge proofs. We,
however, employ Boyen’s signature [13] that yields much smaller keys: public key size is
reduced by a factor close to 2 and user signing key by a factor of (ℓ1 + ℓ2)/2, with ℓ1, ℓ2

being bit sizes of user identities and policies, respectively). Yet, our model of TPBS has not
offered delegatability, as suggested by Bellare and Fuchsbauer [6] and achieved by Cheng
et al. [22]. Extending TPBS to provide delegatability would be an interesting future work.
On the practical front, similar to [22], our lattice-based instantiation is still not practically
usable, mainly due to large signature size. Nevertheless, it would certainly enrich the field
and be the first step towards more efficient constructions in the near future.

Organization. The rest of the paper is structured as follows. Section 2 introduces and
discusses the notion of TPBS and its security requirements. Section 3 presents our generic
construction and its security proofs. We provide our lattice-based instantiation of TPBS and
its underlying zero-knowledge protocol in Section 4 and Section 5, respectively. In Section 6,
we conclude the paper and mention a few interesting open problems. Some supplementary
materials are deferred to the Appendix.

2. Traceable Policy-Based Signatures

Notations. Let Z+ denote the set of all positive integers. For a, b ∈ Z+, denote [a, b]
as the set {a, a + 1, . . . , b}. In the case where a = 1 we will simply write [b]. All vectors
considered in this work are column vectors, unless otherwise stated. When a ∈ Rn,b ∈ Rm,
for simplicity, we denote [a⊤|b⊤]⊤ as (a‖b) ∈ Rn+m. A policy checker PC [6] is an NP-
relation {0, 1}∗ × {0, 1}∗ with the first input being a pair (p,m) representing a policy p ∈
{0, 1}∗ and a message m ∈ {0, 1}∗, while the second input being a witness w. The associated

policy language is L(PC) = {(p,m) : ∃ w ∈ {0, 1}∗, such that PC
(
(p,m), w

)
= 1}.

Syntax of TPBS. A traceable policy-based signature (TPBS) scheme extends PBS with
an additional feature that the identity of the signer of any signature can be revealed. This is
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achieved by including the user’s identity in relevant algorithms and providing an additional
opening algorithm to uncover the identity of the signer of any signature. A TPBS scheme
consists of the following polynomial-time algorithms.

Setup(1λ): This algorithm takes as input 1λ, where λ is the security parameter, and outputs
public parameter pp, a master secret key msk, and a master decryption key mdk.

KeyGen(msk, id,Pid): On inputs msk, a user identity id ∈ {0, 1}∗, and a set of policies Pid on
which the user is able to sign messages, this algorithm outputs a key uskid for user id

on all polices in Pid.

Sign(uskid, m, w): It takes uskid of user id, a message m ∈ {0, 1}∗, and a witness w ∈ {0, 1}∗

as inputs, and outputs a signature σ or ⊥ if it fails.

Verify(pp, m, σ): This algorithm takes pp, m, and σ as inputs, and outputs 1 or 0, indicating
the validity of the signature σ on message m.

Open(mdk, m, σ): This algorithm takes mdk, m, and σ as inputs, and outputs an identity
id, or it fails and outputs ⊥.

Correctness of TPBS. The scheme is said to be correct with respect to a policy checker
PC, if for all λ, all (pp,msk,mdk)← Setup(1λ), all id ∈ ID, uskid ← KeyGen(msk, id,Pid), all

(m,w) such that ∃ p ∈ Pid,PC
(
(p,m), w

)
= 1, for all σ ← Sign(uskid, m, w), we have

Verify(pp, m, σ) = 1 and Open(msk, m, σ) = id.

Discussion. TPBS extends PBS to include user identities in the KeyGen, Sign functions,
and adds the Open function to allow tracing of a signature to its signer. Security require-
ments of TPBS are aligned with PBS, ensuring privacy of the policy that is used for signing
the message, and unforgeability of the signature. Bellare and Fuchsbauer [6] argued that the
traditional notions of indistinguishability and unforgeability are not sufficient for PBS for
some applications, and introduced stronger notions of simulatability and extractability in-
stead. Their argument can be extended to TPBS leading to simulatability and extractability
as appropriate security notions.

Privacy of a TPBS scheme demands that a signature should not reveal the identity or the
policy that is associated with the signing key, nor it should leak information about the witness
used. That is the following indistinguishability conditions must hold: (1) for an identity id,
two signatures on a message m generated under two conforming policies p0, p1 with witness
w0, w1, should be indistinguishable; (2) for a policy p, two signatures on a message m with
witness w (that satisfies policy p), generated by two users with identities id0, id1, and both are
authorized to sign m under p, cannot be distinguished. Using an argument similar to PBS we
note that there may exist only one policy p for a message m and so the indistinguishability-
based definition will not be able to hide the policy. Simulatability-based definition however
addresses this problem: it requires no PPT adversary be able to distinguish a simulated
signature from a legitimately signed signature. We will use this notion for TPBS schemes.

Simulatability. This notion requires that one cannot distinguish a signature generated by
a simulator without having access to either the signing key of any identity or witness from
a legitimately signed signature. To define simulatability, we require simulated algorithms
SimSetup, SimKeyGen, and SimSign as in [6]. Algorithm SimSetup outputs (pp,msk,mdk, trtpbs)
such that pp is indistinguishable from the one generated by Setup. Algorithm SimKeyGen

outputs keys indistinguishable from those produced by KeyGen. On inputs trapdoor trtpbs
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Initialize
ExpSIM

TPBS,A(1λ)

b
$←− {0, 1}, QC ← ∅,

j ← 0, Q← ∅
(pp0,msk0,mdk0, trtpbs)← SimSetup(1λ)
(pp1,msk1,mdk1)← Setup(1λ)
Return ppb

Key(id,Pid)

j ← j + 1
usk0,id ← SimKeyGen(trtpbs, id,Pid)
usk1,id ← KeyGen(msk, id,Pid)
Q[j][1] = id, Q[j][2] = {p : p ∈ Pid}
Q[j][3] = usk1,id

Return uskb,id

Signature(i,m, w)

If i /∈ [j], then return ⊥
If ∃ p ∈ Q[i][2] s.t. PC

(
(p,m), w

)
= 1

then σ0 ← SimSign(trtpbs, m)
Else σ0 ← ⊥
σ1 ← Sign(Q[i][3], m, w)
QC = QC ∪ {(m, σb)}
Return σb

Open(mdk, m, σ)

If (m, σ) ∈ QC , return ⊥
Return id′ ← Open(mdk, m, σ)

Finalize(b′)
Return (b′ = b)

Initialize
ExpEXT

TPBS,A(1λ)

(pp,msk,mdk, trtpbs)← SimSetup(1λ)
QK ← ∅;QS ← ∅
Return (pp,mdk)

RevealKey(id,Pid)

uskid ← SimKeyGen(trtpbs, id,Pid)
QK = QK ∪ {(id, p) : p ∈ Pid}
Return uskid

SimSign(m)

σ ← SimSign(trtpbs, m)
QS = QS ∪ {(m, σ)}
Return σ

Finalize(m, σ)

If Verify(pp, m, σ) = 0, then return 0
If (m, σ) ∈ QS, then return 0
(id, p, w)← Extr(trtpbs, m, σ)
id′ ← Open(mdk, m, σ)
If (id, p) /∈ QK or PC((p,m), w) = 0

or id 6= id′ then return 1
Return 0

Figure 1: Games defining simulatability and extractability of TPBS.

and a message, algorithm SimSign outputs a signature indistinguishable from that honestly
produced by Sign. Details of the requirement are modeled in the experiment ExpSIM

TPBS,A(1λ)
in Figure 1. The differences between this experiment and Bellare and Fuchsbauer’s cor-
responding experiment [6, Figure 2] are the following: (1) we include user identity in the
relevant algorithms; (2) we provide an opening oracle Open(mdk, ·, ·) to the adversary and
require that the queried message signature pair to this oracle is not from the challenge oracle
Signature(·, ·, ·). Here (1) is a natural extension of PBS to TPBS, and (2) captures the
possibility of an adversary seeing the results of previous openings. Note that the output of
SimSign does not depend on the user identity (no id related input) while the output of Sign

indeed relies on the user identity. Therefore, leaking mdk to the adversary enables it to run
the algorithm Open and to distinguish a simulated signature from an honestly generated one
trivially.

Define AdvSIM
TPBS,A(1λ) = |Pr[ExpSIM

TPBS,A(1λ) = 1]− 1
2
| as the advantage of an adversary

A against simulatability with ExpSIM
TPBS,A(1λ) defined in Figure 1. A TPBS scheme is said

to be simulatable if AdvSIM
TPBS,A(1λ) is negligible in λ for all PPT adversary A.

Discussion. Using a typical unforgeability notion for TPBS would yield the same difficulty
that was noted in the case of PBS. More specifically, the experiment that defines unforge-
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ability will need the checking of (p,m) ∈ L(PC) to determine if the adversary has won the
game. A problem that may arise is when the proof uses game hopping, and between two
games a distinguisher must efficiently determine whether an adversary has won the game.
Using the stronger notion of extractability remedies this problem.

Extractability. This is defined by requiring that whenever a PPT adversary A outputs
a valid message signature pair (m, σ) that is not obtained from an oracle, there exists an
extractor Extr that uses trapdoor trtpbs to extract a tuple (id, p, w) such that A must have

queried the key for (id, p), PC
(
(p,m), w

)
= 1, and Open(mdk, m, σ) = id. These require-

ments are modeled in ExpEXT
TPBS,A(1λ) in Figure 1, where A receives (pp,mdk) generated by

the algorithm SimSetup. In addition, A can obtain a simulated user signing key by query-
ing RevealKey on input (id,Pid), and a simulated signature on a message m by querying
SimSign. Note that compared to the corresponding experiment in [6, Figure 2], we include
the user identity in the relevant algorithms and specify a new case Open(mdk, m, σ) 6= id

in the Finalize step that captures the inability of a PPT adversary A, who has queried
signing keys for a set of users, to output a valid signature that cannot be opened or traced
to a member of the queried user group. Algorithm Open serves as a mechanism to prevent
misuse of signing ability and enforces user accountability.

Define AdvEXT
TPBS,A(1λ) = Pr[ExpEXT

TPBS,A(1λ) = 1] as the advantage of an adversary A
against extractability with the experiment ExpEXT

TPBS,A(1λ) defined in Figure 1. A TPBS

scheme is said to be extractable if AdvEXT
TPBS,A(1λ) is negligible in λ for all PPT adversary A.

3. Generic Construction of Traceable Policy-Based Signatures

We present a generic construction of TPBS for any NP-relation PC in Section 3.1
and show its simulatability and extractability in Section 3.2. Our construction relies on
an EU-CMA secure signature scheme, an IND-CCA secure public-key encryption scheme
and an SE-NIZK proof system. The standard definitions of these primitives are recalled
in Appendix B.1.

3.1. Generic Construction

To construct a traceable policy-based signature that satisfies simulatability and ex-
tractability, our starting point is the generic construction of PBS using SE-NIZK proof [6,
Figure 4]. In this construction, the issuer first uses Setup algorithm to generate a signature
key pair (mvk,msk) and a common reference string crs for an SE-NIZK proof system Π, and
makes (mvk, crs) public. It then runs KeyGen to generate a signing key for a policy p by
generating a signature on p using msk. A user that holds a key for the policy p can sign
a message m by providing a zero-knowledge proof π that shows possession of a policy p
satisfying (p,m) ∈ L(PC) and a signature on p which is verifiable under mvk. The actual
signature is π.

In TPBS, users have identities and will receive keys that are signatures on id‖p for all
policies that they are authorized to sign. The signing algorithm uses id as an input, and
must ensure that the signature can be “opened”. To this end, we require that algorithm
Setup generates an encryption key pair (mek,mdk), and that user first encrypts its identity
using mek when signing a message m and then proves in zero-knowledge that its encrypted
identity is the same as the one for which a valid signing key is known (i.e. a signature on
id‖p is known) such that (p,m) ∈ L(PC). The algorithm Open on input mdk and a message
signature pair outputs an identity, specifying the originator of the signature.

To define simulatability and extractability, we require four additional algorithms SimSetup,
SimKeyGen, SimSign, and Extr. Algorithm SimSetup is the same as Setup except that it runs
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simulated setup algorithm SimSetupnizk of the proof system Π, obtaining a simulated crs and
tr. Algorithm SimKeyGen is the same as KeyGen. For algorithm SimSign, we first encrypt
a dummy identity 0 and then employ the trapdoor tr to run SimProve of the proof system
Π. For algorithm Extr, we run Extrnizk of the proof system Π by utilizing tr as well. In the
following we formalize the above approach. For a policy checker PC, define an NP-relation
ρtpbs as follows:

(
(mek,mvk, m, ct), (id, p, certid‖p, w, r)

)
∈ ρtpbs

⇐⇒ ct = Enc(mek, id; r) ∧ Verifysig(mvk, id‖p, certid‖p) = 1 ∧ PC
(
(p,m), w

)
= 1

Let SIG = (KeyGensig, Signsig,Verifysig) be a signature scheme that is EU-CMA secure, let
PKE = (KeyGenpke,Enc,Dec) be a public-key encryption scheme that satisfies IND-CCA
security, and let Π = (Setupnizk,Prove,Verifynizk, SimSetupnizk, SimProve,Extrnizk) be an SE-
NIZK proof for relation ρtpbs. Our construction of TPBS scheme is depicted in Figure 2.

Correctness. Correctness of our generic construction directly follows from completeness of
the underlying proof system, signature scheme, and encryption scheme.

Setup(1λ)

crs← Setupnizk(1
λ)

(mek,mdk)← KeyGenpke(1
λ)

(mvk,msk)← KeyGensig(1λ)
Return pp← (crs,mek,mvk),msk,mdk

KeyGen(msk, id,Pid)

∀ p ∈ Pid, compute
certid‖p ← Signsig(msk, id‖p)

Set uskid ← (id, {(p, certid‖p) : p ∈ Pid})
Return uskid

Sign(uskid, m, w)

Parse uskid = (id, {(p, certid‖p) : p ∈ Pid})
If ∃ p ∈ Pid, s.t. PC

(
(p,m), w

)
= 1

r← {0, 1}poly(λ), ct← Enc(mek, id; r)

π ← Prove
(
crs, (mek,mvk, m, ct),

(id, p, certid‖p, w, r)
)

Return σ ← (ct, π)
Else return ⊥

Verify(pp, m, σ)

Parse pp = (crs,mek,mvk), σ = (ct, π)
Return Verifynizk(crs, (mek,mvk, m, ct), π)

Open(mdk, m, σ)

If Verify(pp, m, σ) = 0, return ⊥
Parse σ = (ct, π)
Else return Dec(mdk, ct)

SimSetup(1λ)

(crs, tr)← SimSetupnizk(1
λ)

(mek,mdk)← KeyGenpke(1
λ)

(mvk,msk)← KeyGensig(1λ)
Return pp←(crs,mek,mvk)

msk,mdk

trtpbs ← (msk,mdk, tr)
SimKeyGen(trtpbs, id,Pid)

Parse trtpbs = (msk,mdk, tr)
∀ p ∈ Pid, compute
certid‖p ← Signsig(msk, id‖p)

Set uskid ← (id, {(p, certid‖p) : p ∈ Pid})
Return uskid

SimSign(trtpbs, m)

Parse trtpbs = (msk,mdk, tr)
r← {0, 1}poly(λ), ct← Enc(mek, 0; r)

π ← SimProve
(
crs, tr, (mek,mvk, m, ct)

)

Return σ ← (ct, π)
Extr(trtpbs, m, σ)

Parse trtpbs = (msk,mdk, tr), σ = (ct, π)
(id, p, certid‖p, w, r)←

Extrnizk(tr, (mek,mvk, m, ct), π)
Return (id, p, w)

Figure 2: Generic construction of TPBS based on SE-NIZK.

3.2. Security Analysis
We prove extractability and simulatability of our scheme in Theorem 1 and Theorem 2,

respectively.
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Theorem 1. Our construction of traceable policy-based signature scheme depicted in Fig-
ure 2 satisfies extractability as modeled in ExpEXT

TPBS,A(1λ) in Figure 1, if the underlying
signature scheme SIG is EU-CMA secure, and the proof Π is simulation-sound extractable.

Proof. We reduce extractability to the unforgeability of the underlying signature scheme
SIG and simulation-sound extractability of the proof system Π. Note that in the Fi-

nalize step of experiment ExpEXT
TPBS,A(1λ), algorithm Extr(trtpbs, m, (ct, π)) actually runs

Extrnizk(tr, m, (ct, π)); denoting the output by (id, p, certid‖p, w, r). We distinguish two types
of adversary.

Type1 Verifysig(mvk, id‖p, certid‖p) = 1 and (id, p) /∈ QK .

Type2 Verifysig(mvk, id‖p, certid‖p) = 0 or PC
(
(p,m), w

)
= 0 or Dec(mdk, ct) 6= id.

Note that a winning adversary A is either Type 1 or Type 2. We now show that a Type 1
adversary can be used to break the unforgeability of SIG and a Type 2 adversary can be
utilized to breach simulation-sound extractability of Π.

Let A be of Type 1. We construct Bs, which utilizes A as a subroutine, against EU-CMA
of SIG as follows. The experiment is denoted by ExpEU−CMA

SIG,Bs[A] (1
λ). To begin with, Bs receives

mvk from its own environment, computes (crs, tr) ← SimSetupnizk(1
λ) and (mek,mdk) ←

KeyGenpke(1
λ), sets QK ← ∅, QS ← ∅, trtpbs ← (·,mdk, tr), and invokes A by sending

pp ← (crs,mek,mvk), mdk. A query of SimSign on message m is dealt faithfully since Bs

knows the trapdoor tr to run SimProve, which produces a signature σ. Bs also adds (m, σ)
to QS. All RevealKey queries on (id,Pid) made by A can be answered by querying Bs’s
signing oracle Signsig(msk, ·) on (id‖p) for all p ∈ Pid. Meanwhile, Bs adds {(id, p) : p ∈ Pid}
to QK .

When A outputs
(
m, (ct, π)

)
and wins ExpEXT

TPBS,A(1λ), we obtain the valid message

signature pair
(
m, (ct, π)

)
which is not in QS. Then Bs computes (id, p, certid‖p, w, r) ←

Extrnizk(tr, m, (ct, π)). If A is of Type 1, then we have Verifysig(mvk, id‖p, certid‖p) = 1 and

(id, p) /∈ QK . Therefore, Bs wins experiment ExpEU−CMA
SIG,Bs[A] (1

λ) by outputting (id‖p, certid‖p).
Hence we have

AdvEU−CMA
SIG,Bs[A] (1

λ) ≥ AdvEXT
TPBS,A(λ). (1)

Let A be of Type 2. We now construct Bπ against simulation-sound extractability of
proof Π. The experiment is denoted as ExpSE

Π,Bπ[A](1
λ). First, Bπ receives crs from its own

environment, computes (mek,mdk) ← KeyGenpke(1
λ) and (mvk,msk) ← KeyGenpke(1

λ), sets
QK ← ∅, QS ← ∅, trtpbs ← (msk,mdk, ·), and invokes A by sending pp ← (crs,mek,mvk),
mdk. Then Bπ answers all queries to ReveaKey faitfully by employing key msk and also
maintains the list QK as in Type 1. When A queries SimSign on message m, Bπ first
samples r ← {0, 1}poly(λ), next computes ct ← Enc(mek, 0, r), and then queries its own
oracle SimProve on (mek,mvk, m, ct) and receives back π, and finally forwards (ct, π) to A
and adds

(
m, (ct, π)

)
to QS.

When A outputs
(
m, (ct, π)

)
and wins ExpEXT

TPBS,A(1λ), we have that
(
m, (ct, π)

)
is a

valid message-signature pair and is not in list QS. More specifically, it implies the algorithm
Verifynizk

(
crs, (mek,mvk, m, ct), π

)
outputs 1 and

(
mek,mvk, m, ct), π

)
is not in the list for

SimProve calls maintained by Experiment ExpSE
Π,Bπ[A](1

λ). Compute (id, p, certid‖p, w, r)←
Extrnizk(tr, (mek,mvk, m, ct), π)). If A is of Type 2, either Verifysig(mvk, id‖p, certid‖p) = 0 or

PC
(
(p,m), w

)
= 0 or Dec(mdk, ct) 6= id, implying

(
(mek,mvk, m, ct), (id, p, certid‖p, w, r)

)
/∈
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ρtpbs. Therefore, Bπ wins experiment ExpSE
Π,Bπ[A](1

λ) by outputting
(
(mek,mvk, m, ct), π

)
and

we have

AdvSE
Π,Bπ[A](1

λ) ≥ AdvEXT
TPBS,A(λ). (2)

Combining (1) and (2), we obtain

AdvEU−CMA
SIG,Bs[A] (1

λ) + AdvSE
Π,Bπ[A](1

λ) ≥ AdvEXT
TPBS,A(λ).

By assumption, AdvEXT
TPBS,A(λ) ≤ negl(λ), which concludes the proof.

Theorem 2. Our construction of traceable policy-based signature scheme depicted in Fig-
ure 2 is simulatable (where simulatability is modeled in experiment ExpSIM

TPBS,A in Figure 1),
if the underlying signature scheme SIG is EU-CMA secure, the encryption scheme PKE is
IND-CCA secure, and the proof Π is zero-knowledge and simulation-sound extractable.

Proof. We show that two runs of ExpSIM
TPBS,A(1λ), one with b set to 1, and one with b set

to 0, are indistinguishable. We proceed by a sequence of indistinguishable games, in which
the first game is ExpSIM−1

TPBS,A(1λ) and the last one ExpSIM−0
TPBS,A(1λ).

Let Ei be the event that adversary A outputs 1 in Game i.

Game 1 This game is ExpSIM−1
TPBS,A(1λ). Therefore, Pr[ExpSIM−1

TPBS,A(1λ) = 1] = Pr[E1].

Game 2 This game modifies Game 1 by replacing algorithms Setupnizk and Prove to algo-
rithms SimSetupnizk and SimProve, respectively. Then by the zero-knowledge property
of the proof system Π, Game 2 is indistinguishable from Game 1. In other words, we
have |Pr[E1]− Pr[E2]| ≤ AdvZK

Π (1λ).

Game 3 This game is the same as Game 2 except that when A queries Signature on
inputs (i,m, w), ct is an encryption of a dummy identity 0 instead of Q[i][1]. Note
that this game is exactly ExpSIM−0

TPBS,A(1λ). Hence Pr[E3] = Pr[ExpSIM−0
TPBS,A(1λ) = 1]. We

show that Game 2 and Game 3 are indistinguishable to A by proving the following

|Pr[E2]− Pr[E3]| ≤ AdvIND−CCA
PKE (1λ) + AdvEXT

TPBS(1λ). (3)

Combing the above equations, we then have

| Pr[E1]− Pr[E3] |≤ AdvZK
Π (1λ) + AdvIND−CCA

PKE (1λ) + AdvEXT
TPBS(1λ).

In Theorem 1, we showed that

AdvEXT
TPBS(1λ) ≤ AdvEU−CMA

SIG (1λ) + AdvSE
Π (1λ).

By assumption, our scheme is then simulatable. We now prove equation (3) holds.
Let B, which utilizes A that distinguishes Game 2 and Game 3, be an adversary against

IND-CCA of the underlying encryption scheme PKE. Denote ExpIND−CCA
PKE,B[A] (1λ) to be the

experiment. We model B in Figure 3, in which it receives mek from its environment, queries
two messages to the challenge oracle LR(·, ·) and receives back a challenge ciphertext. Mean-
while, B is also given access to a decryption oracle Dec(·) where it is allowed to query any
ciphertext except the one obtained from the challenge oracle. Before we analyze the behavior
of B in ExpIND−CCA

PKE,B[A] (1λ), let us define event Qi for i ∈ {2, 3} first: Qi is the event that A
makes a valid Open query

(
m, (ct, π)

)
such that (ct = ct∗)∧(π 6= π∗) in Game i. Let us now

11



consider the experiment ExpIND−CCA−1
PKE,B[A] (1λ), where oracle LR(·, ·) returns ciphertext of the

second input. Note that B in this experiment perfectly simulates the view of A in Game 2.
Therefore

Pr[ExpIND−CCA−1
PKE,B[A] (1λ) = 1] = Pr[E2 ∧ ¬Q2] + Pr[Q2] ≥ Pr[E2].

On the other hand, B in the experiment ExpIND−CCA−0
PKE,B[A] (1λ), where oracle LR(·, ·) returns

ciphertext of the first input, perfectly simulates the view of A in Game 3. Therefore

Pr[ExpIND−CCA−0
PKE,B[A] (1λ) = 1] = Pr[E3 ∧ ¬Q3] + Pr[Q3] ≤ Pr[E3] + Pr[Q3].

Together this yields

Pr[E2]− Pr[E3] ≤ AdvIND−CCA
PKE,B[A] (1λ) + Pr[Q3]. (4)

Now to lower bound the terms on the left-hand side of equation (4), we define adversary B̄
that behaves as B with two modifications: (1) it queries (Q[i][1], 0) to its challenge oracle

LR(·, ·); (2) when A makes a valid query
(
m, (ct, π)

)
such that (ct = ct∗) ∧ (π 6= π∗), B̄

halts and returns 0. Following the above analysis, we get

Pr[ExpIND−CCA−0
PKE,B̄[A]

(1λ) = 1] = Pr[E2 ∧ ¬Q2] ≤ Pr[E2];

Pr[ExpIND−CCA−1
PKE,B̄[A]

(1λ) = 1] = Pr[E3 ∧ ¬Q3] ≥ Pr[E3]− Pr[Q3].

Together this yields

Pr[E3]− Pr[E2] ≤ AdvIND−CCA
PKE,B̄[A]

(1λ) + Pr[Q3]. (5)

Combining (4) and (5), we have

|Pr[E2]− Pr[E3]| ≤ AdvIND−CCA
PKE (1λ) + Pr[Q3]. (6)

To show (3) holds, we are left to show

Pr[Q3] ≤ AdvEXT
TPBS(1λ). (7)

Towards this goal, we construct BE that breaks EXT of our construction whenever event
Q3 occurs. Denote the experiment as ExpEXT

TPBS,BE [A](1
λ). We model BE in Figure 3, in which

it receives pp, mdk from its own environment, and is given access to oracles RevealKey(·, ·)
and SimSign(·). Note that BE defined in this way perfectly simulates the view of A in
Game 3.

We claim that BE wins ExpEXT
TPBS,BE [A](1

λ) by returning
(
m, (ct∗, π)

)
when Q3 occurs.

In fact, Q3 implies that (1) Verify(pp, m, (ct∗, π)) = 1; (2)
(
m, (ct∗, π)

)
is not in the list for

SimSign calls. Compute

(id, p, certid‖p, w, r)← Extrnizk(tr, (mek,mvk, m, ct∗), π).

Either (id, p) was not in the list for RevealKey calls or (id, p) was indeed in the list for
RevealKey calls. The former case immediately implies that BE wins ExpEXT

TPBS,BE [A](1
λ).

In case the latter occurs, there exists i such that Q[i][1] = id. Specifically, it implies id 6= 0.
Recall that ct∗ is indeed encryption of 0. Therefore, correctness of the underlying encryption
scheme PKE implies Dec(mdk, ct∗) 6= id, indicating BE wins the experiment as well. To
summarize, we get AdvEXT

TPBS,BE [A](1
λ) ≥ Pr[Q3]. This concludes the proof.

4. Lattice-Based Instantiation of TPBS

This section presents a realization of our generic construction of TPBS under concrete
lattice-based assumptions. Let us first briefly review several lattice-based techniques that
will be used in the construction.
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B(mek : LR(·, ·),Dec(·))
QC ← ∅, j ← 0
(crs, tr)← SimSetupnizk(1λ)
(mvk,msk)← KeyGensig(1λ)
Set pp←(crs,mek,mvk),
trtpbs ← (msk, ·, tr)
b′ ← A

(
pp : KeyB(·, ·),

SignatureB(·, ·, ·),OpenB(·, ·)
)

Return b′

KeyB(id,Pid)

j ← j + 1
uskid ← SimKeyGen(trtpbs, id,Pid)
Q[j][1] = id, Q[j][2] = {p : p ∈ Pid}
Q[j][3] = uskid

Return uskid

SignatureB(i,m, w)

If i /∈ [j], then return ⊥
If ∃ p ∈ Q[i][2] s.t. PC

(
(p,m), w

)
= 1

ct∗ ← LR(0, Q[i][1])

π∗ ← SimProve
(
crs, tr, (mek,mvk, m, ct∗)

)

QC = QC ∪ {
(
m, (ct∗, π∗)

)
}

Return σ∗ ← (ct∗, π∗)
Else return ⊥

OpenB

(
m, (ct, π)

)

If
(
m, (ct, π)

)
∈ QC , return ⊥

If Verify(pp, m, (ct, π)) = 0, return ⊥
If (ct = ct∗) ∧ (π 6= π∗)
B halts and return 1

Else return Dec(ct)

BE(pp,mdk : RevealKey(·, ·),SimSign(·))
QC ← ∅, j ← 0
b′ ← A

(
pp : KeyBE

(·, ·),
SignatureBE

(·, ·, ·),OpenBE
(·, ·)

)

KeyBE
(id,Pid)

j ← j + 1
uskid ← RevealKey(id,Pid)
Q[j][1] = id, Q[j][2] = {p : p ∈ Pid}
Q[j][3] = uskid

Return uskid

SignatureBE
(i,m, w)

If i /∈ [j], then return ⊥
If ∃ p ∈ Q[i][2] s.t. PC

(
(p,m), w

)
= 1

(ct∗, π∗)← SimSign(m)

QC = QC ∪ {
(
m, (ct∗, π∗)

)
}

Return σ∗ ← (ct∗, π∗)
Else return ⊥

OpenBE

(
m, (ct, π)

)

If
(
m, (ct, π)

)
∈ QC , return ⊥

If Verify(pp, m, (ct, π)) = 0, return ⊥
If (ct = ct∗) ∧ (π 6= π∗)

BE halts and return
(
m, (ct∗, π)

)

Else return Dec(mdk, ct)

Figure 3: Adversary B against IND-CCA of PKE and adversary BE against EXT of our
TPBS.
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4.1. Preliminaries on Lattices

We first recall q-ary lattices and then review the Gaussian distribution over these lattices.
Let q ≥ 2 and n,m be positive integers. For A ∈ Zn×m

q , we define the full-rank q-ary lattice
with dimension m as follows:

Λ⊥(A) = {x ∈ Zm : A · x = 0 mod q}.
For any non-zero vector u ∈ Zn

q that admits an integral solution to the equation A · x =
u mod q, define the coset

Λu(A) = {x ∈ Zm : A · x = u mod q}.
For any vector c ∈ Rn and any positive real number s, define the following:

ρs,c(x) = exp

(
−π‖x− c‖2

s2

)
and ρs,c(Λ) =

∑

x∈Λ

ρs,c(x).

We often omit c if it is 0. Define the distribution over the coset Λu(A) as DΛu(A),s,c(x) =
ρs,c(x)/ρs,c(Λu(A)) for any x ∈ Λu(A).

Now let us look at the Gaussian distributions. For any vector c ∈ Rn and any positive
real number s, define the following:

ρs,c(x) = exp

(
−π‖x− c‖2

s2

)
and ρs,c(Λ) =

∑

x∈Λ

ρs,c(x).

Then the discrete Gaussian distribution over the lattice Λ with parameter s and center c,
denoted as DΛ,s,c, is defined to be DΛ,s,c(x) = ρs,c(x)/ρs,c(Λ) for any x ∈ Λ. We often omit
c if it is 0.

Note that the coset Λu(A) is not a lattice for any non-zero u ∈ Zn
q , since obviously 0 is

not inside this set. However, we can still define the discrete Gaussian distribution over the
coset Λu(A) in a similar way: DΛu(A),s,c(x) = ρs,c(x)/ρs,c(Λu(A)) for any x ∈ Λu(A).
Now we are going to recall some well-known facts about the discrete Gaussian distributions.

Lemma 3 ([31; 54]). Let n, q,m be some positive integers such that q ≥ 2 and m ≥
2n log q. Define a positive real number s such that s ≥ ω(

√
logm).

• Then for all but a 2q−n fraction of all matrices A over Zn×m
q , the distribution of the

syndrome u = A · x mod q for x ←֓ DZm,s is statistically close to uniform over Zn
q .

Besides, given A ·x = u mod q, the conditional distribution of x ←֓ DZm,s is DΛu(A),s.

• Let a ←֓ DZ,s, t = logn, and β = ⌈s · t⌉. Then the probability of |a| > β is negligible.

• The min-entropy of the distribution DZm,s is at least m − 1. In other words, for any
x ∈ DZm,s, we have DZm,s(x) ≤ 21−m.

Let S = [s1| · · · |sm] ∈ Zm×m
q be a full-rank matrix. The Gram-Schmidt orthogonalization

of these m vectors is a sequence of m new orthogonal vectors s̃1, s̃1, . . . , s̃m computed as
s̃1 = s1; s̃j = sj −

∑j−1
k=1 aj,k · s̃k, where we have aj,k = (s⊤

j · s̃k)/(s̃⊤
k · s̃k) for j = 2, . . . , m.

Denote S̃ = [s̃1| · · · |s̃m] be its Gram-Schmidt matrix. Define ‖S‖ = maxi∈[m]‖si‖ and ‖S̃‖ =
maxi∈[m]‖s̃i‖, where ‖·‖ is the Euclidean norm. We now recall some algorithms from previous
works that will be used in this work. The TrapGen algorithm is used to generate a matrix A
that is statistically close to random together with a good basis of the q-ary lattice Λ⊥(A).
The SampleD algorithm employs some good basis of the lattice Λ⊥(A) to output a short
vector in Λu(A) if Λu(A) is not empty. The ExtBasis algorithm extends a basis of a matrix
A to a basis of any matrix that ontains A as a submatrix.
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Lemma 4 (TrapGen [2; 51]). Let n,m, q be positive integers such that q ≥ 2 and m is of
order O(n log q). Then the PPT algorithm TrapGen(n,m, q) outputs a tuple (A,S) satisfying
the following conditions:

• A is within negligibly statistical distance from the uniformly random distribution over
Zn×m

q ,

• S is a basis for Λ⊥(A), that is, A · S = 0 mod q, and

• ‖S̃‖ ≤ O(
√
n log q).

Lemma 5 (SampleD [31]). Given a basis S ∈ Zm×m of the full-rank q-ary lattice Λ⊥(A)
for a matrix A ∈ Zn×m

q , a vector u over Zn
q , and a positive real number s ≥ ‖S̃‖ ·ω(

√
log n),

the PPT algorithm SampleD(A,S,u, s) outputs a vector x ∈ Λu(A) that is statistically close
to the distribution DΛu(A),s.

Lemma 6 (ExtBasis [19]). Given a basis S ∈ Zm×m of the full-rank q-ary lattice Λ⊥(A) for
some A ∈ Zn×m

q , and a matrix A′ ∈ Zn×m′

q containing A as a submatrix, the PPT algorithm

ExtBasis(S,A′) outputs a basis S′ ∈ Zm′×m′

of the q-ary lattice Λ⊥(A′) such that ‖S̃′‖ = ‖S̃‖.

We then review two lattice problems: short integer solution (SIS) problem and learning
with errors (LWE) problem, together with their hardness results. .

Definition 1 (SIS∞
n,m,q,β [1; 31]). Given a uniformly random input matrix A over Zn×m

q ,
the SIS∞

n,m,q,β problem asks to output a vector x ∈ Zm
q such that A · x = 0 mod q and

0 < ‖x‖∞ ≤ β.

Let q > β · Õ(
√
n) be an integer and m, β be polynomials in n. Then solving SIS∞

n,m,q,β

problem is at least as hard as solving SIVPγ problem in the worst case for some approximation
factor γ = β · Õ(

√
nm) ([53; 31; 52]).

Definition 2 (LWEn,q,χ [57]). For positive integers n,m, q ≥ 2 and a probability distribu-

tion χ over integers Z, define a distribution As,χ over Zn
q × Zq for s

$←− Zn
q as follows: it

samples a uniformly random vector a over Zn
q and an error element e according to χ, and

outputs (a, a⊤ ·s+e). Then the goal of the LWEn,q,χ problem is to distinguish m samples cho-
sen from a uniform distribution over Zn

q × Zq from m samples chosen from the distribution

As,χ for some s
$←− Zn

q .

If q ≥ 2 is an arbitrary modulus, then LWEn,q,χ problem is at least as hard as the worst-
case problem SIVPγ with γ = Õ(n · q/B) through an efficient quantum reduction (see,
e.g. [57; 55]). Additionally, it is showed that the hardness of the LWE problem is maintained
when the secret s is chosen from the error distribution χ (see [3]).

4.2. Stern-Like Protocols

We will work with statistical zero-knowledge argument of knowledge (ZKAoK) that op-
erates in Stern’s framework [60]. Stern’s protocol was originally proposed in the code-based
cryptography and was later adapted to the lattice setting [35; 42; 39; 41] to handle various
matrix-vector relations associated with SIS and LWE problems. The protocol consists of three
moves: commitment, challenge, and response. If a statistically hiding and computationally
binding commitment scheme is used in the first step, then one obtains a statistical ZKAoK
with perfect completeness and soundness error 2/3. To achieve negligible soundness error,
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one can repeat the protocol ω(log λ) times for security parameter λ. For our purpose of
using the protocol to sign a message, we further apply Fiat-Shamir transform [28] to obtain
a non-interactive proof. It was shown that the resulting NIZKAoK protocol is simulation-
sound extractable [26] in the random oracle model. In this paper, we work with a simplified
abstracted protocol from [41] that handles two moduli. We now recall this protocol.

Let qi, , Ki, Li be positive integers such that qi ≥ 2, Li ≥ Ki, and let L = L1 + L2. Let
VALID ⊆ {−1, 0, 1}L and a finite set S, associate every η ∈ S with a permutation Γη of L
elements such that the following conditions hold:





w ∈ VALID ⇐⇒ Γη(w) ∈ VALID for any η ∈ S,
If w ∈ VALID and η is uniform in S, then Γη(w) is uniform in VALID.

(8)

The target is to construct a statistical ZKAoK for the following abstract relation:

ρabstract =
{

(Mi,ui)i∈{1,2}, (w1‖w2) ∈ (ZKi×Li
qi

× ZKi
qi

)i∈{1,2} × VALID :

Mi ·wi = ui mod qi for i ∈ {1, 2}
}
,

where some entries of w1 may appear in w2 and vice versa. In other words, w1 and w2

are mutually related. To obtain the desired ZKAoK protocol, one has to prove that w =
(w1‖w2) ∈ VALID and w satisfies the two linear equations Mi ·wi = ui mod qi for i ∈ {1, 2}.
To prove w ∈ VALID in a zero-knowledge manner, the prover chooses η

$←− S and allows the
verifier to check Γη(w) ∈ VALID. According to the first condition in (8), the verifier should
be convinced that w is indeed from the set VALID. At the same time, the verifier cannot
learn any extra information about w due to the second condition in (8). Furthermore, to

prove in ZK that the linear equations hold, the prover chooses {rwi

$←− ZLi
qi
}i∈{1,2} as masking

vectors and then shows the verifier that the equation Mi · (wi + rwi
) = Mi · rwi

+ ui mod qi

holds for i ∈ {1, 2}.
In Figure 4, we recall in detail the interaction between two PPT algorithms prover P

and verifier V. The system utilizes a commitment scheme COM from [35]: COM : {0, 1}∗ ×
{0, 1}m → Zn

q . It is statistically hiding if m ≥ 2n log q and computationally binding if
SIS∞

n,2m,q,1 problem is hard. For w = (w1‖w2) ∈ ZL and r = (r1‖r2) ∈ ZL, denote w ⊞ r =
(w1+r1 mod q1‖w2+r2 mod q2). Note that for any η ∈ S, we have Γη(w⊞r) = Γη(w)⊞Γη(r).

Theorem 7 ([41]). Let COM be a statistically hiding and computationally binding commit-
ment scheme. Then the interactive protocol depicted in Figure 4 is a statistical ZKAoK
with perfect completeness, soundness error 2/3, and communication cost O(

∑2
i=1 Li log qi).

Specifically:

• There exists an efficient simulator that on input {(Mi,ui)}i∈{1,2}, with probability 2/3
it outputs an accepted transcript that is within statistical distance from the one produced
by an honest prover who knows the witness.

• There exists an efficient algorithm E that, takes as input {(Mi,ui)}i∈{1.2} and ac-
cepting transcripts (CMT, 1,RSP1), (CMT, 2,RSP2), (CMT, 3,RSP3), outputs w′ =
(w′

1‖w′
2) ∈ VALID such that Mi ·w′

i = ui mod qi for i ∈ {1, 2}.

We refer the readers to [41] for details of the proof.
We remark that when one works with SIS or LWE associated equations, one does not

have the above abstract relation directly. For example, for LWE related equations, the secret
vectors are usually B bounded and there is no direct permutation such that conditions in (8)
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1. Commitment: The prover P samples rw1

$←− ZL1

q1
, rw2

$←− ZL2

q2
, η

$←− S and randomness
ρ1, ρ2, ρ3 for COM. Let rw = (rw1

‖rw2
) and z = w ⊞ rw. Then he sends CMT =(

C1, C2, C3

)
to V, where

C1 = COM(η, {Mi · rwi
mod qi}i∈{1,2}; ρ1), C2 = COM(Γη(rw); ρ2),

C3 = COM(Γη(z); ρ3).

2. Challenge: V sends back a challenge Ch
$←− {1, 2, 3} to P.

3. Response: According to the choice of Ch, the prover P sends RSP computed in the
following way:

• Ch = 1: Let tw = Γη(w), tr = Γη(rw), and RSP = (tw, tr, ρ2, ρ3).

• Ch = 2: Let η2 = η, z2 = z, and RSP = (η2, z2, ρ1, ρ3).

• Ch = 3: Let η3 = η, z3 = rw, and RSP = (η3, z3, ρ1, ρ2).

Verification: When receiving RSP from the verifier P, the prover V performs as follows:

• Ch = 1: Verify that tw ∈ VALID, C2 = COM(tr; ρ2), C3 = COM(tw ⊞ tr; ρ3).

• Ch = 2: Parse z2 = (z2,1‖z2,2) such that z2,i ∈ ZLi for i ∈ {1, 2} and then verify that
C1 = COM(η2, {Mi · z2,i − ui mod qi}i∈{1,2}; ρ1), C3 = COM(Γη2

(z2); ρ3).

• Ch = 3: Parse z3 = (z3,1‖z3,2) such that z3,i ∈ ZLi for i ∈ {1, 2} and check that
C1 = COM(η3, {Mi · z3,i mod qi}i∈{1,2}; ρ1), C2 = COM(Γη3

(z3); ρ2).

In each case, if all the conditions hold, V outputs 1.

Figure 4: Stern-type statistical ZKAoK for the NP-relation ρabstract.
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hold. To solve this issue, Ling et al. [42] developed decomposition-extension techniques that
are essential to reduce the considered statement to an instance of the above abstract protocol.
Looking ahead, in Section 5 we reduce the relations considered in Section 4.3 to an instance
of the above abstract protocol.
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4.3. Description of Our Scheme

To obtain a concrete construction of TPBS from lattice assumptions, we will choose the
required building blocks specified in our generic construction in Section 3.1. As for zero-
knowledge techniques, we employ Stern-like protocols [35; 42], which are the most promising
choice for our purpose due to their versatility and extendability.

The space of user identities is set as ID ⊆ {0, 1}ℓ1 with ℓ1 = O(log n). This is sufficient
since we work with polynomial number of users. With regard to the policy language, we
follow Cheng et al. [22], who came up with an instantiation that captures policies in many
real-life scenarios towards construction of their lattice-based PBS. Let ℓ2 = O(log n) and d
be an integer such that n− ℓ2 < d. A policy checker is specified by two matrices G1 ∈ Z

n×ℓ2

2

and G2 ∈ Zn×d
2 , denoted as PCG1,G2

. A message m ∈ {0, 1}n satisfies a policy p ∈ {0, 1}ℓ2

if there exists q ∈ {0, 1}d such that

G1 · p + G2 · q = m mod 2. (9)

The associated language is

L(PCG1,G2
) = {(p,m) : ∃ q ∈ {0, 1}d s.t. G1 · p + G2 · q = m mod 2}.

Let ℓ = ℓ1 + ℓ2. Instead of using Bonsai signature scheme [19] as in [22], we choose Boyen
signature scheme [13]. This will reduce the public key size by a factor close to 2 and user
signing key size by a factor of ℓ/2. For encryption scheme, we start with GPV-IBE [31], and
then transform it to an IND-CCA secure encryption by using a strong one time signature
following the CHK technique [18]. When user id signs a message m, it has to generate a zero-
knowledge proof showing that (1) it possess a valid signature on id‖p for the Boyen signature;
(2) it has encrypted id correctly using GPV-IBE; (3) there exists a vector q such that the
above policy relation is satisfied for (p,m). Even a relation similar to the combination of (1)
and (2) is addressed in [43] and a relation that contains (3) as a sub-statement is addressed
in [22], it is not straightforward to obtain our zero-knowledge protocol. One reason is that the
relation considered in [43] has encrypted message to be id‖p while our relation has encrypted
message id, which makes the considered relation different. Another reason is that we have to
show that (1), (2), (3) are satisfied simultaneously. We manage to do so by carefully utilizing
the flexibility and extendability of Stern-like protocols. Furthermore, we employ the more
recent extension-permutation techniques from [44; 45] to achieve optimal permutation size
that is exactly the bit size of the secret input (denoted as |ξ|). This improves the signature
size slightly and is preferable to the suboptimal permutation size (O(|ξ|·log |ξ|)) if we use the
same extension-permutation techniques in [43; 22]. Details of our zero-knowledge protocol
are described in Section 5. For completeness, we recall Boyen’s signature and the GPV-IBE
scheme in Appendix B.2.

Now that we have established all the building blocks, our construction of TPBS follows
smoothly. We present it in the below.

Setup(1λ) Given the security parameter λ, it first specifies public parameters as follows:

• Message length n = O(λ), user identity length ℓ1 = O(log n), policy length
ℓ2 = O(logn), witness length d such that ℓ2 + d > n. Policy specifying matrix
G1 ∈ Z

n×ℓ2

2 and G2 ∈ Zn×d
2 . Define ℓ = ℓ1 + ℓ2.

• Modulus q = O(ℓn2), m ≥ 2n log q.

• Two real numbers s = ω(
√

logm) · O(
√
ℓn log q) and s1 = ω(logm). Two integer

bounds β = ⌈s·logn⌉ and B = Õ(
√
n). Let χ be an efficiently sample distribution

over integers Z that outputs a sample e with |e| ≤ B.
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• Two hash functions H1 : {0, 1}∗ → Zn×ℓ1

q and H2 : {0, 1}∗ → {1, 2, 3}κ, the latter
of which will be modeled as random oracle in the security proof.

• A strong one time signature scheme OT S = (OGen,OSign,OVerify) to apply CHK
transform [18].

• A statistically hiding and computationally binding commitment scheme from [35]:
COM : {0, 1}∗ × {0, 1}m → Zn

q for our proof system.

• A number of protocol repetitions κ = ω(log λ).

In addition, the algorithm generates key pair mvk = (A,A0, . . . ,Aℓ,u) ∈ (Zn×m
q )ℓ+2×

Zn
q and msk = S ∈ Zm×m for Boyen signature scheme [13], key pair mek = B and

mdk = T for GPV-IBE scheme [31], where (A,S) and (B,T) are generated via
TrapGen(n,m, q). The public parameter pp then contains all parameters together with
mvk,mek. It returns pp,msk,mdk.

KeyGen(msk, id ∈ {0, 1}ℓ1,Pid) For all p ∈ {0, 1}ℓ2 ∈ Pid, we sign id‖p using msk = S via

algorithm SampleD
(
ExtBasis(S,Aid‖p),Aid‖p,u, s)

)
, where Aid‖p = [A|A0 +

∑ℓ1

j=1 id[j] ·
Aj +

∑ℓ2

j=1 p[j] ·Aℓ1+j], obtaining a signature vid‖p ∈ Λu(Aid‖p) satisfying the following:

Aid‖p · vid‖p = u mod q; ‖vid‖p‖∞ ≤ β. (10)

It returns uskid =
(
id, {p,vid‖p : p ∈ Pid}

)
.

Sign(uskid,m ∈ {0, 1}n,q ∈ {0, 1}d) Parse uskid =
(
id, {p,vid‖p : p ∈ Pid}

)
. If ∃ p ∈ Pid such

that G1 · p + G2 · q = m mod 2, then it does following.

• It first generates a one time key pair (ovk, osk)← OGen(1λ).

• It next encrypts id with respect to “identity” ovk. Specifically, it computes G =
H1(ovk) ∈ Zn×ℓ1

q , samples s ←֓ χn, e1 ←֓ χm, e2 ←֓ χℓ1 , and computes (c1, c2) ∈
Zm

q × Zℓ1

q as

c1 = B⊤ · s + e1; c2 = G⊤ · s + e2 + id · ⌊q
2
⌋. (11)

• Then it generates a NIZKAoK proof π to show possession of a tuple

ξ = (id‖p,vid‖p, s, e1, e2,q)

such that equations (10), (11), (9) holds and that

‖s‖∞ ≤ B, ‖e1‖∞ ≤ B, ‖e2‖∞ ≤ B. (12)

This is done by running the statistical ZKAoK in Section 5 with public input
ζ = (A,A0, . . . ,Aℓ,u,B,G, c1, c2,G1,G2,m) and secret input ξ as above. Then
the protocol is repeated κ times to achieve negligible soundness error and made
non-interactive via Fiat-Shamir transform [28]. The result proof is a triple π =
((CMTi)

κ
i=1,CH, (RSPi)

κ
i=1) with CH = H2(ζ, (CMTi)

κ
i=1).

• Finally, it runs the algorithm OSign(osk; c1, c2, π) to obtain a one time signature
sig on the tuple (c1, c2, π). Let σ = (ovk, c1, c2, π, sig). Return σ.

Otherwise, this algorithm returns ⊥.
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Verify(pp,m, σ) Let σ = (ovk, c1, c2, π, sig). The algorithm proceeds as follows.

• It first runs the verification algorithm OVerfiy(ovk, (c1, c2, π), sig). Return 0 if
OVerfiy returns 0.

• It then parses π = ((CMTi)
κ
i=1,CH = (Ch1, . . . ,Chκ), (RSPi)

κ
i=1). Return 0 if

CH 6= H2(ζ, (CMTi)
κ
i=1).

• Next, for each i ∈ [κ], it runs the verification step of the protocol in Section 5 to
check the validity of RSPi with respect to CMTi and Chi. Return 0 if any of the
verification does not pass. Otherwise return 1.

Open(mdk,m, σ) Parse σ = (ovk, c1, c2, π, sig). Return ⊥ if Verify(pp,m, σ) = 0. Else, this
algorithm opens the signature using mdk = T as follows.

• Compute G = H1(ovk)
△
= [g1| · · · |gℓ1

]. Run fi ← SampleD(B,T, gi, s1) for
i ∈ [ℓ1]. Define the decryption key with respect to “identity” ovk as Fiden =
[f1| · · · |fℓ1

] ∈ Zm×ℓ1

q . Note that B · Fovk = G mod q.

• Decrypt (c1, c2) using Fovk by computing

id′ = ⌊c2 − F⊤
ovk · c1

⌊ q
2
⌋ ⌉.

Return id′.

Asymptotic Efficiency. We first analyze the efficiency of our construction with respect to
security parameter λ.

• Public parameter pp is dominated by the public key of the underlying encryption
scheme and signature scheme, which has bit size O(ℓλ2 log2 q) = Õ(ℓλ2). The bit size
of msk and mdk is O(λ2 log3 λ) = Õ(λ2).

• The bit size of user secret key uskid is dominated by those of Boyen signatures, which
is O(λ log λ · cid) = Õ(cid · λ) with cid = |Pid|.

• The bit size of signature is dominated by that of NIZKAoK proof π, which isO(L1 log q+
L2) · ω(log λ) = Õ(ℓλ). Note that L1, L2 are the bit sizes of witness vectors w1,w2 in
Section 5 and O(L1 log q + L2) = O(ℓλ log3 λ).

Correctness. Correctness of the above construction relies on the following facts: (1) the
underlying zero-knowledge protocol is perfectly complete; (2) the GPV-IBE scheme [31] for
the choice of parameters is correct.

Correctness of Verify algorithm directly follows from fact (1). As for the correctness of
Open algorithm, note that

c2 − F⊤
ovk · c1 = G⊤ · s + e2 + id · ⌊q

2
⌋ − F⊤

ovk ·B⊤ · s− F⊤
ovk · e1

= e2 − F⊤
ovk · e1 + id · ⌊q

2
⌋

Recall that ‖e1‖∞ ≤ B, ‖e2‖∞ ≤ B, B = Õ(
√
n), and each column of Fovk is obtain

via algorithm SampleD(B,T, ·, s1) with s1 = ω(logm). Therefore, we have ‖Fovk‖∞ ≤
⌈s1 logm⌉. Hence

‖e2 − F⊤
ovk · e1‖∞ ≤ B +mB · ⌈s1 logm⌉ = Õ(n1.5) ≤ ⌈q

5
⌉ = O(ℓn2).
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Therefore, the rounding algorithm described in Open returns id with overwhelming proba-
bility.

Security. We summarize the security of our scheme in the following theorem.

Theorem 8. In the random oracle model, assuming hardness of SIVP
Õ(ℓ·n2)

in the worst

case, our scheme satisfies simulatability and extractability defined in Section 2.

Proof. In Theorem 1 and Theorem 2, we showed that the generic construction satisfies ex-
tractability and simulatability if the underlying signature scheme is EU-CMA, the underlying
encryption scheme is IND-CCA, and the underlying proof system is SE-NIZK. However, the
security of our lattice-based construction is not straightforward due to the random oracle
model. More specifically, we do not have a trapdoor tr when we run SimSetupnizk, which
makes algorithms SimProve and Extrnizk different from those in the standard model. For the
sake of presentation, we provide these two algorithms for our proof system in Appendix A.
The security of our construction will then follow from Theorem 1 and Theorem 2. In addi-
tion,

• The GPV-IBE scheme, via CHK transform [18] is IND-CCA secure assuming the
hardness of LWEn,q,χ (see [31]), which in turn relies on hardness of SIVPγ for γ =
Õ(n · q/B) = Õ(ℓ · n2).

• Boyen signature is EU-CMA assuming hardness of SIS∞
n,m,q,Õ(ℓ·n)

(see [13; 51]), which

in turn relies on worst-case hardness of SIVPγ for γ = Õ(ℓ · n) · Õ(
√
nm) = Õ(ℓ · n).

• The commitment scheme COM utilized in our proof system is statistically hiding and
computationally binding assuming hardness of SIS∞

n,2m,q,1, which in turn depends on
worst-case hardness of SIVP

Õ(n)
.

Therefore, our scheme is simulatable and extractable if SIVP
Õ(ℓ·n2)

is hard.

5. The Underlying Zero-Knowledge Argument System

This section presents our statistical ZKAoK of secret vector ξ such that it satisfies equa-
tions (10), (11), (9), (12), which will be invoked by user when signing messages. The
target is to reduce those statements to an instance of the abstract relation described in
Section 4.2 such that conditions in (8) hold. To this end, we first recall the decompo-
sition technique from [42] to unify our considered statements into equations of the form
{M̂i · ŵi = ui mod qi}i∈{1,2} such that ‖ŵi‖∞ ≤ 1 for i ∈ {1, 2}. Then we employ the
extension-permutation techniques from [44; 45] instead of those presented in [43; 22], which
is crucial to achieve optimal permutation size, to specify a set VALID that contains our ex-
tended secret vector w = (w1‖w2) and a permutation Γη such that conditions in (8) holds.

Decomposition. For a positive integer B ≥ 2, let δB := ⌊log2 B⌋+ 1 = ⌈log2(B + 1)⌉ and

the sequence B1, . . . , BδB
, where Bj = ⌊B+2j−1

2j ⌋, for any j ∈ [δB]. It is then verifiable that
∑δB

j=1Bj = B. In addition, for any integer a ∈ [0, B], one can decompose a into a vector of the

form idecB(a) = [a(1)|a(2)| · · · |a(δB))⊤ ∈ {0, 1}δB , satisfying that [B1|B2| · · · |BδB
] · idecB(a) =

a. The procedure of the decomposition is presented below in a deterministic manner.

1. a′ := a.

2. For j = 1 to δB do:

22



(i) If a′ ≥ Bj then a(j) := 1, else a(j) := 0;

(ii) a′ := a′ − Bj · a(j).

3. Output idecB(a) = [a(1)|a(2)| · · · |a(δB)]⊤.

When dealing with vectors of dimension m and of range [−B,B], we define vdecm,B that
maps a = [a1|a2| · · · |am]⊤ to a vector in {−1, 0, 1}mδB of the following form:

a′ = (σ(a1) · idecB(|a1|)‖σ(a2) · idecB(|a2|)‖ · · · ‖σ(am) · idecB(|am|)),

where ∀j ∈ [m]: σ(aj) = 0 if aj = 0; σ(aj) = −1 if aj < 0; σ(aj) = 1 if aj > 0.
Define a matrix Gm,B ∈ Zm×mδB to be

Gm,B =




B1 . . . BδB

. . .

B1 . . . BδB




Then we have

a = Gm,B · vdecm,B(a). (13)

Our statistical ZKAoK. The goal is to prove knowledge of ξ as described in Section 4.3
so that equations (10), (11), (9), (12) hold. For completeness, we recall it below and then
describe our protocol.

Public input ζ: A,A0, . . . ,Aℓ ∈ Zn×m
q ,u ∈ Zn

q ,B ∈ Zn×m
q ,G ∈ Zn×ℓ1

q , c1 ∈ Zm
q , c2 ∈

Zℓ1

q ,G1 ∈ Z
n×ℓ2

2 ,G2 ∈ Zn×d
2 , m ∈ {0, 1}n.

Secret input ξ: id‖p ∈ {0, 1}ℓ1+ℓ2 , vid‖p ∈ Z2m
q , s ∈ Zn

q , e1 ∈ Zm
q , e2 ∈ Zℓ1

q , q ∈ {0, 1}d.

Prover’s goal:





[A|A0 +
∑ℓ1

j=1 id[j] ·Aj +
∑ℓ2

j=1 p[j] ·Aℓ1+j] · vid‖p = u mod q;

c1 = B⊤ · s + e1 mod q; c2 = G⊤ · s + e2 + id · ⌊ q
2
⌋ mod q;

G1 · p + G2 · q = m mod 2;

‖vid‖p‖∞ ≤ β; ‖s‖∞ ≤ B; ‖e1‖∞ ≤ B; ‖e2‖∞ ≤ B.

(14)

Decomposing-Unifying. Note that the secret vectors in the equation of third line of (14)
already have infinity norm 1. So we focus on secret vectors whose infinity norm bound is
not 1. Denote vid‖p = (v1‖v2) such that v1,v2 ∈ Zm

q . Let





v̂1 = vdecm,β(v1) ∈ {−1, 0, 1}mδβ , v̂2 = vdecm,β(v2) ∈ {−1, 0, 1}mδβ ;

Â = A ·Gm,β, Âi = Ai ·Gm,β , for i ∈ [0, ℓ].

According to (13), the first equation in (14) is now equivalent to

Â · v̂1 + Â0 · v̂2 +
ℓ1∑

j=1

Âj · id[j]v̂2 +
ℓ2∑

j=1

Âℓ1+j · p[j]v̂2 = u mod q. (15)
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Similarly, we decompose s, e1, e2 and form new matrices B̂, Ĝ as follows.





ŝ = vdecn,B(s) ∈ {−1, 0, 1}nδB , ê1 = vdecm,B(e1) ∈ {−1, 0, 1}mδB ,

ê2 = vdecℓ1,B(e2) ∈ {−1, 0, 1}ℓ1δB ;

B̂ = B ·G⊤
n,B, Ĝ = G ·G⊤

n,B.

Therefore, based on equation (13), the second line in (14) is now equivalent to

c1 = B̂ · ŝ + Gm,B · ê1 mod q; c2 = Ĝ · ŝ + Gℓ1,B · ê2 + id · ⌊q
2
⌋ mod q. (16)

For simplicity, we let

ŵ1,1
△
= mix(id‖p, v̂2) = (id[1]v̂2‖ · · · ‖id[ℓ1]v̂2‖p[1]v̂2‖ · · · ‖p[ℓ2]v̂2) ∈ {−1, 0, 1}ℓmδβ

ŵ1,2 = (ŝ‖ê1‖ê2) ∈ {−1, 0, 1}(n+m+ℓ1)δB

Let L̂1 = 2mδβ+ℓmδβ+(n+m+ℓ1)δB+ℓ1 and form secret vector ŵ1 = (v̂1‖v̂2‖ŵ1,1‖ŵ1,2‖id) ∈
{−1, 0, 1}L̂1.

Through some basic algebra, we can from a matrix M̂1 ∈ Z(n+m+ℓ1)×L̂1

q and vector u1 =
(u‖c1‖c2) ∈ Zn+m+ℓ1

q such that equations (15), (16) are equivalent to one equation of the
following form

M̂1 · ŵ1 = u1 mod q.

Similarly, define L̂2 = ℓ2 + d, we can form M̂2 ∈ Z
n×L̂2

2 , u2
△
= m ∈ Zn

2 , and ŵ2 = (p‖q) ∈
{0, 1}L̂2 such that G1 · p + G2 · q = m mod 2 is equivalent to

M̂2 · ŵ2 = u2 mod 2.

Extending-Permuting. Now we will manage to transform our secret vector ŵ = (ŵ1‖ŵ2)
to w = (w1‖w2) so that the latter fulfills the conditions in (8). To this end, we employ the
following refined extension-permutation techniques in [44; 45].
Technique for proving that z ∈ {0, 1}m. For any a ∈ {0, 1}, we denote by a the bit 1−a.
The addition operation modulo 2 is denoted by ⊕. For any z = [z1| · · · |zm]⊤ ∈ {0, 1}m,
define an extension of it as

enc2(z) = [z̄1|z1| · · · |z̄m|zm]⊤ ∈ {0, 1}2m.

Now for any vector b = [b1| · · · |bm]⊤ ∈ {0, 1}m, associate a permutation φb that works as
follows. When applying to vector v = [v0

1|v1
1| · · · |v0

m
|v1

m
]⊤ ∈ Z2m, it permutes v into the

following vector
[vb1

1 |vb̄1

1 | · · · |vb1

m
|vb̄1

m
]⊤.

For any z,b ∈ {0, 1}m, it is verifiable that the following equivalence holds.

v = enc2(z)⇐⇒ φb(v) = enc2(z⊕ b). (17)

Define valid2 = {v : ∃ z ∈ {0, 1}m s.t. v = enc2(z)}. We have that: if v ∈ valid2 and b is
uniformly chosen from {0, 1}m, then φb(v) is uniform in valid2. In the Stern’s framework,
to prove knowledge of z ∈ {0, 1}m, we first extend z to v ∈ valid2 and then show that v
is indeed from the set valid2 through the equivalence observed in (17). In addition, vector
b acts as a “one-time pad” to perfectly hide v, and hence hide z. Moreover, if we need to
prove that z appears somewhere else, we can use the same b at those places.
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Technique for proving that z ∈ {−1, 0, 1}m. For any integer vector a = [a1| · · · |am]⊤ ∈
Zm, denote by [a]3 the vector a′ = [a′

1| · · · |a′
m
]⊤ ∈ {−1, 0, 1}m, such that ai = a′

i mod 3 for
i ∈ [m]. For z = [z1| · · · |zm]⊤ ∈ {−1, 0, 1}m, define the 3m-dimensional vector enc3(z) as
follows:

enc3(z) =
[
[z1 + 1]3|[z1]3, [z1 − 1]3| · · · |[zm + 1]3|[zm]3, [zm − 1]3

]⊤ ∈ {−1, 0, 1}3m.

Now, for any b = [b1| · · · |bm]⊤ ∈ {−1, 0, 1}m, define the permutation ϕb that transforms

vector v = [v
(−1)
1 |v(0)

1 |v(1)
1 | · · · |v(−1)

m |v(0)
m |v(1)

m ]⊤ ∈ Z3m into vector

ϕb(v) = [v
([−e1−1]3)
1 |v([−e1]3)

1 |v([−e1+1]3)
1 | · · · |v([−em−1]3)

m
|v([−em]3)

m
|v([−em+1]3)

m
]⊤.

It is observed that, for any z,b ∈ {−1, 0, 1}, the following equivalence holds.

v = enc3(z) ⇐⇒ ϕb(v) = enc3([z + b]3). (18)

Define valid3 = {v : ∃ z ∈ {−1, 0, 1}m s.t. v = enc3(z)}. We have that: if v ∈ valid3 and
b is uniformly chosen from {−1, 0, 1}m, then ϕb(v) is uniform in valid3. Similarly, to prove
knowledge of z{−1, 0, 1}m, we extend it to v ∈ valid3 and utilize equivalence (18) to show
well-formedness of v. Further, the uniformity of b perfectly hides the value of v.

Technique for proving that y = t · z. For any integers t ∈ {0, 1} and z ∈ {−1, 0, 1},
construct the 6-dimensional integer vector ext(t, z) ∈ {−1, 0, 1}6 as follows:

ext(t, z) =
[
t · [z+1]3 | t · [z+1]3 | t · [z]3 | t · [z]3 | t · [z−1]3 | t · [z−1]3

]⊤
.

Now, for any b ∈ {0, 1} and e ∈ {−1, 0, 1}, define the permutation ψb,e(·) that transforms
vector

v =
[
v(0,−1)|v(1,−1)|v(0,0)|v(1,0)|v(0,1)|v(1,1)

]⊤ ∈ Z6

into vector

ψb,e(v) =
[
v(b,[−e−1]3) |v(b,[−e−1]3) |v(b,[−e]3) |v(b,[−e]3) |v(b,[−e+1]3) |v(b,[−e+1]3)

]⊤
.

We then observe that the following equivalence holds for any t, b ∈ {0, 1} and any z, e ∈
{−1, 0, 1}.

v = ext(t, z) ⇐⇒ ψb,e(v) = ext( t⊕ b, [z + e]3 ). (19)

Define valide = {v : ∃ t ∈ {0, 1}, z ∈ {−1, 0, 1} s.t. v = ext
(
t, z

)
}. We have that: if

v ∈ valide and b, e are uniformly chosen from {0, 1} and {−1, 0, 1} respectively, then ψb,e(v)
is uniform in valide. To prove knowledge of y = t · z for t ∈ {0, 1} and z ∈ {−1, 0, 1}, we
first extend y to v ∈ valide and prove well-formedness of v through equivalence (19). The
randomness of values b, e hides values t, z. Also, if t, z appear elsewhere, we use the same
b, e to show that t, z simultaneously satisfy multiple conditions.
Technique for proving that y = mix(t, z). For any vectors t = [t1| · · · |tm1

]⊤ ∈ {0, 1}m1

and z = [z1| · · · |zm2
]⊤ ∈ {−1, 0, 1}m2, recall that y is of the form [t1 · z1| · · · |t1 · zm2

| · · · |tm1
·

z1| · · · |tm1
· zm2

]⊤. Define 6m1m2-dimensional integer vector Ext
(
mix(t, z)

)
∈ {−1, 0, 1}6m1m2

in the following way:
(
ext(t1, z1)‖ · · · ‖ext(t1, zm1

)‖ · · · ‖ext(tm1
, z1)‖ · · · ‖ext(tm1

, zm1
)
)
.
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Next, for any b ∈ {0, 1}m1 and e ∈ {−1, 0, 1}m2, let the permutation Ψb,e(·) act as follows.
When applying to vector of form

v =
(
v1,1‖ · · · ‖v1,m2

‖ · · · ‖vm1,1‖ · · · ‖vm1,m2

)
∈ Z6m1m2 ,

where each block is of size 6, it transforms v into Ψb,e(v) of form

(
ψb1,e1

(v1,1)‖ · · · ‖ψb1,em2
(v1,m2

)‖ · · · ‖ψbm1
,e1

(vm1,1)‖ · · · ‖ψbm1
,em2

(vm1,m2
)
)
.

It then follows from (19) that the following equivalence holds for any t,b ∈ {0, 1}m1 and any
z, e ∈ {−1, 0, 1}m2:

v = Ext
(

mix(t, z)
)
⇐⇒ Ψb,e(v) = Ext

(
mix(t⊕ b, [z + e]3 )

)
. (20)

Being prepared with the above extension-permutation techniques, we are ready to extend
our secret vector ŵ to vector w in a set VALID and define a suitable permutation Γη such
that we obtain equivalence similar to (17), (18) and (20). When a secret input appears more
than once in our extended vector w, it is crucial that we use the same randomness to define
our permutation.

Let L1,1 = 3mδβ, L1,2 = L1,1, L1,3 = 6ℓmδβ , L1,4 = 3(n + m + ℓ1)δB, L1,5 = 2ℓ1,
and L1 = 2L1,1 + L1,3 + L1,4 + L1,5, L2 = 2(ℓ2 + d). Now we define the extension of

ŵ1 = (v̂1‖v̂2‖ŵ1,1‖ŵ1,2‖id) ∈ {−1, 0, 1}L̃1 and ŵ2 = (p‖q) ∈ {0, 1}L̂2 as follows.

• w1,1 = enc3(v̂1) ∈ {−1, 0, 1}L1,1 and w1,2 = enc3(v̂2) ∈ {−1, 0, 1}L1,2.

• w1,3 = Ext(ŵ1,1) ∈ {−1, 0, 1}L1,3, recall that ŵ1,1 = mix(id‖p, v̂2).

• w1,4 = enc3(ŵ1,2) ∈ {−1, 0, 1}L1,4 and w1,5 = enc2(id) ∈ {0, 1}L1,5.

• w2,1 = enc2(p) ∈ {0, 1}2ℓ2 and w2,2 = enc2(q) ∈ {0, 1}2d.

Form secret vector w1 = (w1,1‖w1,2‖w1,3‖w1,4‖w1,5) ∈ {−1, 0, 1}L1. In the meanwhile,

we add suitable zero-columns to matrix M̂1 to obtain matrix M1 ∈ Z(n+m+ℓ1)×L1

q so that
M1 · w1 = u1 mod q. Similarly, form w2 = (w2,1‖w2,2) ∈ {0, 1}L2 and a suitable matrix
M2 ∈ Z

n×L2

2 such that we have M2 ·w2 = u2 mod 2. Let L = L1 + L2 and w = (w1‖w2) ∈
{−1, 0, 1}L.

Now we specify the set VALID that consists of the secret vector w, the set S and the
associated permutation set {Γη : η ∈ S} so that the requirements in (8) are satisfied.

Let VALID be the set that contains vectors of form

z = (z1,1‖z1,2‖z1,3‖z1,4‖z1,5‖z2,1‖z2,2) ∈ {−1, 0, 1}L

satisfying:

• There exists yv,1,yv,2 ∈ {−1, 0, 1}mδβ such that z1,i = enc3(yv,i) for i ∈ {1, 2}.

• There exists yid ∈ {0, 1}ℓ1,yp ∈ {0, 1}ℓ2 such that z1,3 = Ext
(

mix( yid‖yp, yv,2 )
)
,

z1,5 = enc2(yid), z2,1 = enc2(yp).

• There exists y1,4 ∈ {−1, 0, 1}(n+m+ℓ1)δB and yq ∈ {0, 1}d such that z1,4 = enc3(y1,4)
and z2,2 = enc2(yq).
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It is clear that our secret vector w belongs to the set VALID.
Let S = ({−1, 0, 1}mδβ)2 × {−1, 0, 1}(n+m+ℓ1)δB × {0, 1}ℓ1 × {0, 1}ℓ2 × {0, 1}d. For any

η = (bv,1,bv,2,b1,4,bid,bp,bq) ∈ S, let permutation Γη : ZL → ZL act as follows. When
applying to vector of form

z = (z1,1 ‖ z1,2 ‖ z1,3 ‖ z1,4 ‖ z1,5 ‖ z2,1 ‖ z2,2) ∈ ZL

such that the size of the blocks are 3mδβ, 3mδβ, 6ℓmδβ, 3(n + m + ℓ1)δB, 2ℓ1, 2ℓ2, 2d
respectively, it transforms z into vector Γη(z) of the following form

Γη(z) =
(
ϕbv,1

(z1,1) ‖ ϕbv,2
(z1,2) ‖ Ψbid‖bp, bv,2

(z1,3)

‖ ϕb1,4
(z1,4) ‖ φbid

(z1,5) ‖ φbp
(z2,1) ‖ φbq

(z2,2)
)
.

Observing the equivalences in (17), (18), and (20), it is verifiable that VALID, S, Γη fulfill
the conditions in (8). Therefore, we have successfully reduced the considered statement into
an instance of the abstracted relation described in Section 4.2. At this point, we can run the
interactive protocol described in Figure 4 and obtain the desired statistical ZKAoK protocol,
with perfect correctness, soundness error 2/3, and communication cost O(L1 log q + L2),
which is of order O(ℓλ log3 λ).

6. Conclusions and Open Questions

In this work, we enhanced the study of PBS, by introducing and formalizing the notion
of TPBS that equips PBS with a user tracing feature, providing a generic and modular
construction of TPBS that satisfies the stringent security requirements we suggest, and
instantiating a TPBS scheme based on concrete, quantum-safe assumptions from lattices.
We believe our results will inspire further improvements for PBS - an appealing privacy-
enhancing cryptographic primitive that deserves more attention from the community.

Naturally, our work raises a number of interesting open questions. In terms of func-
tionality, it would be alluring to provide PBS/TPBS with useful features such as support of
dynamically growing groups [8], efficient revocation of signing keys [9], as well as fine-grained
tracing mechanisms [36; 59; 37]. It would also be great to design concrete lattice-based in-
stantiations of PBS/TPBS that involve more expressive policy languages (e.g., those related
to membership/non-membership of sets and ranges, branching programs and circuits). In
terms of security, it would be desirable to obtain post-quantum schemes in the standard
model or with security proofs in the QROM [10]. Finally, in terms of efficiency, it would be
interesting to develop lattice-based PBS/TPBS schemes with shorter, practically relevant
signature sizes. To this end, a promising starting point would be to adapt into the context
of PBS the recently proposed techniques for efficient lattice-based zero-knowledge proofs by
Bootle et al. [11] and Yang et al. [64].
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Appendix A. Deferred Algorithms for Our Proof System

In this section, we describe algorithms SimProve and Extrnizk for our SE-NIZK proof
system. Note that in Section 5 we have successfully transformed the considered statement
when generating signatures to an instance of the abstract relation in Section 4.2, it thus
suffices to consider the following abstract relation

ρabstract =
{

(Mi,ui)i∈{1,2}, (w1‖w2) ∈ (ZKi×Li
qi

× ZKi
qi

)i∈{1,2} × VALID :

Mi ·wi = ui mod qi for i ∈ {1, 2}
}
,

such that the conditions in (8) hold.
The SimProve algorithm. Giving input (Mi,ui)i∈{1,2}, the algorithm proceeds as follows.
It first chooses challenge CH = (Ch1, . . . ,Chκ) uniformly at random from the set {1, 2, 3}κ.
Now it computes (CMT1, . . . ,CMTκ), (RSP1, . . . ,RSPκ) in the following way. For each
j ∈ [κ],

• if Chj = 1, it samples w′
j = (w′

j,1‖w′
j,2)

$←− VALID, rj,w1

$←− ZL1

q1
P, rj,w2

$←− ZL2

q2
, ηj

$←− S
and ρj,1, ρj,2, ρj,3

$←− {0, 1}m for COM. Let rj,w = (rj,w1
‖rj,w2

) and z′
j = w′

j ⊞rj,w. Then

it computes CMTj =
(
C ′

j,1, C
′
j,2, C

′
j,3

)
as

C ′
j,1 = COM(ηj , {Mi · rj,wi

mod qi}i∈{1,2}; ρj,1),

C ′
j,2 = COM(Γηj

(rj,w); ρj,2), C
′
j,3 = COM(Γηj

(z′
j); ρj,3).

and RSPj = (tj,w, tj,r, ρj,2, ρj,3), where tj,w = Γηj
(w′

j) and tj,r = Γηj
(rj,w).
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• if Chj = 2, it samples w′
j = (w′

j,1‖w′
j,2)

$←− VALID, rj,w1

$←− ZL1

q1
P, rj,w2

$←− ZL2

q2
, ηj

$←− S
and ρj,1, ρj,2, ρj,3

$←− {0, 1}m for COM. Let rj,w = (rj,w1
‖rj,w2

) and z′
j = w′

j ⊞rj,w. Then

it computes CMTj =
(
C ′

j,1, C
′
j,2, C

′
j,3

)
as

C ′
j,1 = COM(ηj , {Mi · (w′

j,i + rj,wi
)− ui mod qi}i∈{1,2}; ρj,1),

C ′
j,2 = COM(Γηj

(rj,w); ρj,2), C
′
j,3 = COM(Γηj

(z′
j); ρj,3).

and RSPj = (ηj,2, zj,2, ρj,1, ρj,3), where ηj,2 = ηj and zj,2 = z′
j.

• if Chj = 3, it first computes w′
j,i such that Mi · w′

j,i = ui mod qi for each i ∈ {1, 2}.
Then it samples rj,w1

$←− ZL1

q1
P, rj,w2

$←− ZL2

q2
, ηj

$←− S and ρj,1, ρj,2, ρj,3
$←− {0, 1}m

for COM. Let w′
j = (w′

j,1‖w′
j,2), rj,w = (rj,w1

‖rj,w2
) and z′

j = w′
j ⊞ rj,w. Compute

CMTj =
(
C ′

j,1, C
′
j,2, C

′
j,3

)
as

C ′
j,1 = COM(ηj , {Mi · rj,wi

mod qi}i∈{1,2}; ρj,1),

C ′
j,2 = COM(Γηj

(rj,w); ρj,2), C
′
j,3 = COM(Γηj

(z′
j); ρj,3).

and RSPj = (ηj,3, zj,3, ρj,1, ρj,2), where ηj,3 = ηj and zj,3 = rj,w.

Finally, it outputs the proof π =
(
(CMTi)i∈[κ],CH, (RSPi)i∈[κ]

)
and program the random

oracle as H2((Mi,ui)i∈{1,2}, (CMTi)i∈[κ]) = CH.

The Extrnizk algorithm. Let A be an algorithm that outputs a tuple
(
(M∗

i ,u
∗
i )i∈{1,2}, π

∗
)

after querying simulated proofs for the input {(M1,i,u1,i)i∈{1,2}, . . . , (MQs,i,uQs,i)i∈{1,2}},
where Qs is the total number of statements queried by A. The Extrnizk algorithm out-
puts ⊥ if π∗ is not valid or the outputted tuple is one of the queried tuples. Otherwise, it
proceeds as follows.

Parse π∗ =
(
(CMT∗

i )i∈[κ], (Ch∗
i )i∈[κ], (RSP∗

i )i∈[κ]

)
. We claim that A queried to the random

oracle H2 the tuple h∗ △
= ((M∗

i ,u
∗
i )i∈{1,2}, (CMT∗

i )i∈[κ]). Otherwise, guessing correctly this
value occurs with probability 3−κ, which is negligible since κ = ω(log λ). Let QH2

be total
number of queries to H2 and h∗ be the t∗th hash query. Now the Extrnizk algorithm replays
A for polynomial-number times with the same random tape and input as in the original
run. For each replay, Extrnizk behaves exactly the same as the original execution except
the difference in the hash replies from the t∗th query onwards. More precisely, it replies
CH1, . . . ,CHt∗−1 as in the original run while replying fresh random values CH′

t∗ , . . . ,CH′
QH2

.

As such, the t∗th hash query toH2 for all new runs is h∗. By the improved forking lemma [15],
with probability at least 1/2 the Extrnizk algorithm can obtain a three-fork involving the

same tuple h∗ with pairwise distinct values CH
(1)
t∗ ,CH

(2)
t∗ ,CH

(3)
t∗ . It is verifiable that with

probability 1 − (7
9
)κ, there exists j ∈ [κ] such that the jth entry of CH

(1)
t∗ ,CH

(2)
t∗ ,CH

(3)
t∗ ,

denoted as Ch
(1)
t∗,j,Ch

(2)
t∗,j ,Ch

(3)
t∗,j forms the set {1, 2, 3}. Without loss of generality, assume

Ch
(i)
t∗,j = i for i ∈ {1, 2, 3}. We now show how to extract a witness w∗ = (w∗

1‖w∗
2) from the

corresponding (valid) responses RSP
(1)
t∗,j ,RSP

(2)
t∗,j,RSP

(3)
t∗,j with respect to CMT∗

j . Suppose

RSP
(1)
t∗,j = (tj,w, tj,r, ρ

(1)
j,2 , ρ

(1)
j,3), RSP

(2)
t∗,j = (ηj,2, zj,2, ρ

(2)
j,1 , ρ

(2)
j,3), RSP

(3)
t∗,j = (ηj,3, zj,3, ρ

(3)
j,1 , ρ

(3)
j,2),

CMT∗
j = (C∗

j,1, C
∗
j,2, C

∗
j,3). Let zj,2 = (zj,2,1‖zj,2,2) and zj,3 = (zj,3,1‖zj,3,2), where zj,2,i, zj,3,i ∈
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ZLi
qi

for i ∈ {1, 2}. From the validity of the responses, we have





tj,w ∈ VALID;

C∗
j,1 = COM(ηj,2, {M∗

i · zj,2,i − u∗
i mod qi}i∈{1,2}, ρ

(2)
j,1);

C∗
j,1 = COM(ηj,3, {M∗

i · zj,3,i mod qi}i∈{1,2}, ρ
(3)
j,1);

C∗
j,2 = COM(tj,r, ρ

(1)
j,2) = COM(Γηj,3

(zj,3), ρ
(3)
j,2);

C∗
j,3 = COM(tj,w ⊞ tj,r, ρ

(1)
j,3) = COM(Γηj,2

(zj,2), ρ
(2)
j,3).

Due to the binding property of the commitment scheme COM, we have

tj,w ∈ VALID; ηj,2 = ηj,3;

tj,r = Γηj,3
(zj,3); tj,w ⊞ tj,r = Γηj,2

(zj,2);

M∗
i · zj,2,i − u∗

i = M∗
i · zj,3,i mod qi for i ∈ {1, 2}.

Let w∗ = (w∗
1‖w∗

2) = Γ−1
ηj,2

(tj,w), where w∗
i ∈ ZLi for i ∈ {1, 2}. Then we have w∗ ∈ VALID.

Note that we now have Γηj,2
(w∗)⊞Γηj,2

(zj,3) = Γηj,2
(zj,2), implying w∗

⊞zj,3 = zj,2. In other
words, we have w∗

i + zj,3,i = zj,2,i mod qi for i ∈ {1, 2}. Next, for i ∈ {1, 2}, the following
equation holds:

M∗
i ·w∗

i = M∗
i · (zj,2,i − zj,3,i) = u∗

i mod qi.

Finally, the Extrnizk algorithm outputs w∗.

Appendix B. Deferred Building Blocks

Appendix B.1. Building Blocks for the Generic Construction

Digital Signature Schemes. A digital signature scheme SIG [32] consists of the following
three polynomial-time algorithms: KeyGen, Sign, Verify.

KeyGen This algorithm takes as input 1λ, and outputs a public-secret key pair (vk, sk).

Sign This algorithm takes as input sk and a message m, and outputs a signature σ.

Verify This algorithm takes as input vk, message-signature pair (m, σ), and outputs a bit.

Correctness. A SIG scheme is said to be correct if for all λ, all (vk, sk)← KeyGen(1λ) and
all m, we have Verify(vk, m, Sign(sk, m)) = 1.
EU-CMA. Existential unforgeability under chosen message attacks (EU-CMA) of a SIG
scheme is formalized using the following experiment ExpEU−CMA

SIG,A (1λ). First, a challenger
C runs KeyGen to obtain (vk, sk). Then C invokes an adversary A by sending vk. A is
also given a signing oracle Sign(sk, ·), where it could ask for signatures of any number of
messages. Finally, A outputs an attempted forgery (m∗, σ∗). The experiment returns 1 if
m∗ was not queried to Sign(sk, ·) by A and that Verify(vk, m∗, σ∗) = 1. Define the advantage
of A as AdvEU−CMA

SIG,A (1λ) = Pr[ExpEU−CMA
SIG,A (1λ) = 1]. A SIG scheme is said to be existentially

unforgeable under chosen message attacks if for any PPT A, AdvEU−CMA
SIG,A (1λ) is negligible

in λ.

Public Key Encryption Schemes. A public key encryption scheme PKE [56] consists
of three polynomial-time algorithms: KeyGen, Enc, Dec.

KeyGen On input security parameter λ, this algorithm outputs a public-secret key pair
(ek, dk).
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Enc On input encryption key ek and a message m, this algorithm outputs a ciphertext ct.

Dec On input decryption key dk and ct, this algorithm outputs m′ or⊥ indicating decryption
failure.

Correctness. A PKE scheme is said to be correct if for all λ, (ek, dk) ← KeyGen(1λ), all
m, we have Dec(dk,Enc(ek, m)) = m.
IND-CCA. Indistinguishability under chosen ciphertext attacks (IND-CCA) of a PKE
scheme is modeled using the following experiment ExpIND−CCA

PKE,A (1λ). To begin with, a chal-
lenger C chooses a random bit b ∈ {0, 1} and runs the key generation algorithm to obtain
(ek, dk). An adversary A is then invoked by given ek and a decryption oracle Dec(dk, ·),
from which it could query decryption of any number of ciphertexts. When A outputs two
messages m0, m1 to C, the latter returns a ciphertext ct that is an encryption of mb. Af-
ter receiving the challenged ciphertext ct, A still has access to the decryption oracle but
is not allowed to submit ct as a query. Finally, A outputs a bit b′ guessing ct is an
encryption of mb′ . The experiment returns 1 if b′ = b. Define the advantage of A as
AdvIND−CCA

PKE,A (1λ) = Pr[ExpIND−CCA
PKE,A (1λ) = 1]. A PKE scheme is said to be indistinguish-

able under chosen ciphertext attacks if AdvIND−CCA
PKE,A (1λ) is negligible for any probabilistic

polynomial-time algorithm A.
Simulation-Sound Extractable Non-Interactive Zero-Knowledge Proof Systems.
Fix an NP-relation ρ, a simulation-sound extractable non-interactive zero-knowledge (SE-
NIZK) proof system Π [34] for the relation ρ consists the following polynomial-time algo-
rithms: Setup, Prove, Verify.

Setup This algorithm takes 1λ as input and returns a common reference string crs.

Prove This algorithm takes crs and a statement-witness pair (x, w) ∈ ρ, and outputs a proof
π.

Verify Given as input crs and (x, π), it returns a bit.

Completeness. Π is said to be complete if for all λ, all (x, w) ∈ ρ, we have Pr[crs ←
Setup(1λ), π ← Prove(crs, x, w) : Verify(crs, x, π) = 1] = 1.

Soundness. Π is said to be sound if for all λ, all P̂rove, all x /∈ Lρ, we have Pr[crs ←
Setup(1λ), π ← P̂rove(crs, x) : Verify(crs, x, π) = 1] ≤ 2−λ.

To define zero-knowledge (ZK) and simulation-sound extractability (SE), we need the
following three polynomial-time algorithms: SimSetup, SimProve, and Extr.

SimSetup This algorithm takes 1λ as input and returns a simulated common reference string
crs together with a trapdoor tr.

SimProve It takes as input tr and a statement x and outputs a simulated proof π. Note that
x may not be in language Lρ.

Extr On input a tuple (tr, x, π), this algorithm outputs a witness w.

Zero-Knowledge. Informally speaking, ZK implies that a simulated crs is indistinguish-
able from one produced by Setup and that a simulated proof is indistinguishable from one
generated by Prove. We model the definition of ZK in experiment ExpZK

Π,A(1λ) in Figure B.5.

Π is said to satisfy (computational) zero-knowledge if AdvZK
Π,A(1λ) = Pr[ExpZK

Π,A(1λ) = 1] is
negligible in λ for all PPT adversary A.
Simulation-Sound Extractability. We model the definition of SE using experiment
ExpSE

Π,A(1λ) in Figure B.5. Π is said to simulation-sound extractable if for all PPT ad-

versary A, we have AdvSE
Π,A(1λ) = Pr[ExpSE

Π,A(1λ) = 1] negligible in λ.
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Initialize
ExpZK

Π,A(1λ)

b
$←− {0, 1}

(crs0, tr)← SimSetup(1λ)
crs1 ← Setup(1λ)
Return crsb

Proof(x, w)

If (x, w) ∈ ρ, then π0 ← SimProve(tr, x)
else π0 ← ⊥

π1 ← Prove(crs, x, w)
Return πb

Finalize(b′)

Return (b′ = b)

Initialize
ExpSE

Π,A(1λ)

(crs0, tr)← SimSetup(1λ), Q← ∅
Return crs

SimProve(x)

π ← SimProve(crs, tr, x)
Q = Q ∪ {(x, π)}
Return π

Finalize(x, π)

w ← Extr(tr, x, π)
Return 1 if the following hold :

(x, π) /∈ Q
Verify(crs, x, π) = 1
(x, w) /∈ ρ

Figure B.5: Games defining zero-knowledge and simulation-sound extractability of a proof
system Π.

Appendix B.2. Building Blocks for the Concrete Construction

Below we recall Boyen signature scheme [13]. The scheme takes the following parameters:
security parameter λ, message length ℓ, a integer n = O(λ), a sufficient large modulus
q = poly(n), a integer m ≥ 2n log q, a real number s = ω(

√
logm) · O(

√
ℓn log q), and a

integer bound β = ⌈s · log n⌉. The verification key is a tuple (A,A0, . . . ,Aℓ,u) while the
signing key a matrix S, where (A,S) is generated by TrapGen(n,m, q) described in Lemma 4
and matrices A0, . . . ,Aℓ and vector u are all uniformly at random from Zn×m

q and Zn
q ,

respectively.
To sign a message m = [m[1]| · · · |m[ℓ]]⊤ ∈ {0, 1}ℓ, the signer forms matrix Am in the

following way: Am = [A|A0 +
∑ℓ

j=1 m[j] ·Aj] ∈ Zn×2m
q . It then outputs a vector v ∈ Λu(Am)

via SampleD
(
ExtBasis(S,Am),Am,u, s)

)
. To verify the validity of a signature v, it suffices

to check that Am ·v = u mod q and ‖v‖∞ ≤ β. The above scheme is shown to be EU-CMA
secure if SIS∞

n,m,q,ℓÕ(n)
is hard [13; 51].

We now review the GPV-IBE scheme [31] in the following. The scheme has the following
parameters: security parameter λ, message length ℓ1, a integer n = O(λ), a prime modulus
q = O(n2), a integer m ≥ 2n log q, a real number s1 = ω(logm), an integer bound B =
Õ(
√
n) and an efficiently sample distribution χ over integer Z that outputs a sample e

such that |e| ≤ B with overwhelming probability, a hash function H1 : {0, 1}∗ → Zn×ℓ1

q .
The master public-secret key pair is (B,T) generated via TrapGen(n,m, q). For a identity
iden ∈ {0, 1}∗, the extraction algorithm first hashes iden to a matrix G = [g1| · · · |gℓ1

] ∈ Zn×ℓ1

q

using H1 and then runs fi ← SampleD(B,T, gi, s1) for i ∈ [ℓ1]. Define the decryption key of
user iden as Fiden = [f1| · · · |fℓ1

] ∈ Zm×ℓ1

q .
To encrypt a message m = [m[1]| · · · |m[ℓ1]]

⊤ ∈ {0, 1}ℓ1 under identity iden, the sender
first hashes iden to obtain G as above and computes ciphertext as (c1, c2) = (B⊤ · s +
e1,G

⊤ · s + e2 + m · ⌊ q
2
⌋) ∈ Zm

q × Zℓ1

q , where s ←֓ χn, e1 ←֓ χm, and e2 ←֓ χℓ1. To decrypt
a ciphertext of the above form, the receiver computes m

′ = c2 − F⊤
iden · c1 ∈ Zℓ1

q . Then for
each i ∈ [ℓ1], set m[i] = 1 if m′[i] is closer to ⌊ q

2
⌋ than to 0; otherwise, set m[i] = 0. Return

m = [m[1]| · · · |m[ℓ1]]
⊤ ∈ {0, 1}ℓ1. The scheme is proven to be chosen plaintext attacks (CPA)

secure if LWEn,q,χ is hard [31].
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