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Short-term traffic flow prediction is a core branch of intelligent traffic systems (ITS) and
plays an important role in traffic management. The graph convolution network (GCN) is
widely used in traffic prediction models to efficiently handle the graphical structural data
of road networks. However, the influence weights among different road sections are usu-
ally distinct in real life and are difficult to analyze manually. The traditional GCN mecha-
nism, which relies on a manually set adjacency matrix, is unable to dynamically learn
such spatial patterns during training. To address this drawback, this study proposes a novel
location graph convolutional network (location-GCN). The location-GCN solves this prob-
lem by adding a new learnable matrix to the GCN mechanism, using the absolute value
of this matrix to represent the distinct influence levels among different nodes.
Subsequently, long short-term memory (LSTM) is employed in the proposed traffic predic-
tion model. Moreover, trigonometric function encoding was used in this study to enable
the short-term input sequence to convey long-term periodic information. Finally, the pro-
posed model was compared with the baseline models and evaluated on two real-world
traffic flow datasets. The results show that our model is more accurate and robust than
the other representative traffic prediction models.

� 2022 Elsevier Inc. All rights reserved.
1. Introduction

In intelligent traffic systems (ITS) research, short-term traffic flow prediction has drawn increasing attention in recent
years as a crucial task in intelligent traffic system research. A more accurate traffic prediction usually results in a better allo-
l Science
onomics
principal

Systems

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2022.08.080&domain=pdf
https://doi.org/10.1016/j.ins.2022.08.080
mailto:yszhang@whut.edu.cn
mailto:wucz@whut.edu.cn
https://doi.org/10.1016/j.ins.2022.08.080
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins


Z. Chen, Z. Lu, Q. Chen et al. Information Sciences 611 (2022) 522–539
cation of limited public transportation resources [48,17,3]. Precise traffic prediction can also help city administrators effi-
ciently manage urban traffic, avoiding potential accidents, risk situations, or traffic paralysis beforehand. The purpose of traf-
fic flow prediction is to predict the future traffic flow in several road nodes in an area based on historical traffic data. Traffic
flow in the same position usually has a steady temporal changing pattern, which indicates a strong correlation between his-
torical and future flows. Thus, traditional traffic prediction models, such as autoregressive integrated moving average
(ARIMA) and linear regression (LR), conduct predictions based on an analysis of the temporal pattern of traffic flow
[35,7]. Molnár et al. [26] considered traffic flow as an evolution of variables and proposed a Lagrangian continuum traffic
model, bridging microscopic and macroscopic approaches. However, these traditional mechanisms cannot efficiently handle
multi-feature sequence input, which is commonly observed in traffic prediction tasks, limiting their prediction accuracy.

In recent years, artificial neural networks (ANN) have demonstrated excellent performance in traffic prediction tasks
owing to their outstanding ability for pattern fitting and data processing. Inspired by the simple architecture and good per-
formance in nonlinear relationship fitting of ANN, Ma et al. [23] used a multi-layer perceptron (MLP) and ARIMA to conduct
traffic state prediction. Recurrent neural network (RNN), long short-term memory (LSTM), and gated recurrent unit (GRU)
models are all widely used ANN models that can analyze temporal patterns hidden in traffic data [32,50,43]. Because the
spatial pattern is also an important factor that needs to be carefully considered during traffic prediction, many widely used
spatial pattern analysis models exist. Convolutional neural networks (CNNs) and graph convolutional networks (GCNs) are
typical examples of such methods [42,27]. The graph wavelet gated recurrent (GWGR) neural network [5] uses wavelet
transform to detect sudden changes and peaks in the temporal signal, considering that the traffic status on a road segment
is highly influenced by the upstream/downstream segments and nearby bottlenecks. All these models consider the mutual
influences of nearby areas.

However, changes in traffic flow are affected by both temporal and spatial factors. Considering this, the most recent stud-
ies are attempting to develop spatial–temporal prediction methods. Among these studies, RNN and GCN models are usually
employed to compose a hybrid model, such as the diffusion convolutional recurrent neural network (DCRNN) proposed by Li
et al. [19]. RNN can process the temporal traffic pattern properly owing to its good memory ability; Moreover, GCN can be
more effectively applied in real-life tasks than CNN because it can handle graphical road network data. The classical GCN
mechanism relies on a manually set adjacency matrix to convey information about the influence weights among different
nodes. The elements of the adjacency matrix are usually set to the connectivity or distance of the road nodes to represent
the different influence weights of different road nodes. However, the distinct degrees of influence are usually difficult to ana-
lyze manually without training. When the connectivity is set as the element of the adjacency matrix, the adjacency matrix
becomes a 0–1 matrix, which means that all the upstream nodes of a downstream node contribute the same influence
weights in the convolution layer. This is completely contrary to real-life scenarios and will reduce the prediction accuracy.

To efficiently handle these shortcomings, a spatial–temporal traffic flow prediction method called location graph convo-
lution long short-termmemory (Loc-GCLSTM) is proposed in this study. It uses the absolute value of a newly added trainable
matrix of the GCN to dynamically learn the different influence weights among the nodes during the training process. More-
over, Loc-GCLSTM attempts to place the periodic pattern of traffic data into model inputs using trigonometric function
encoding. The main contributions of this study are as follows:

(a) The location-GCN is proposed to enable the convolution operation to dynamically learn the distinct influence weights
among different road section nodes, which allows the GCN mechanism to be more consistent with the real-life sce-
nario and improves the performance of the GCN model.

(b) A spatial–temporal traffic prediction model (Loc-GCLSTM) is proposed, which combines the proposed location-GCN
and LSTM to more efficiently capture the spatial–temporal information contained in real-life traffic data.

(c) Experiments based on two real-world traffic network datasets are conducted to verify the effectiveness of the pro-
posed method.

The remainder of this paper is organized as follows. Section 2 describes the related work and research status in the traffic
prediction domain. Section 3 illustrates a specified description of the application scenario and the technical details of the
proposed model. Then, in Section 4, several experiments based on our OpenITS and METR-LA datasets are designed and con-
ducted to comprehensively evaluate the proposed model. Finally, Section 5 summarizes the work and raises potential points
that warrant further study for improvement.
2. Literature Review

2.1. Classical Traffic Prediction Methods

Early models of traffic prediction, such as auto-regression (AR), autoregressive moving average (ARMA), and ARIMA,
conducted tasks based on AR and data stationary assumptions [38,35]. However, these models can only perform temporal
analysis on long-time-span data and can only be fit and tested on a single road, rendering them difficult to apply to
dynamic and volatile real-life traffic prediction. With the development of machine-intelligence techniques, some studies
have attempted to apply machine learning to traffic prediction. For example, some classical machine learning methods,
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such as the k-nearest neighbor (kNN), support vector regression (SVR), and extreme gradient boosting (XGBoost), have
been applied to traffic flow prediction[21,37,9]. To achieve better robustness in prediction, researchers have used a com-
bination of different machine learning models. Zhang et al. [45] combined XGBoost with the light gradient boosting
machine (LightGBM) [44] to conduct the traffic prediction task. Min and Wynter [25] built a model based on spatio-
temporal correlations using a multivariate spatial–temporal autoregressive (MSTAR) model. Rajabzadeh et al. [31] used
the stochastic differential equations (SDEs) to optimize a two-step prediction based on the Hull-White (HW) model and
the Vasicek model (EV).
2.2. Traffic Prediction using Single Deep Learning Model

In recent years, a series of studies have attempted to use ANN, such as MLP and AutoEncoder, to predict traffic flows
[16,4]. The RNN was first used to analyze the changing patterns of historical traffic data for temporal models. However,
RNNs are not able to analyze long-term temporal dependencies, which usually continue for several moments. To this
end, LSTM and GRU have recently been proposed. To better analyze the bidirectional temporal pattern in flow changing,
Cui et al. [6] applied Bi-LSTM to generate the traffic pattern from both original and reversed order data using bidirectional
LSTM, achieving higher accuracy in prediction tasks. To better handle lane-level traffic data, Gu et al. [11] used entropy-
based grey relation analysis (EGRA) to analyze the influence among different lanes and presented a lane-level traffic pre-
diction model combining GRU and LSTM. Nested LSTM puts an LSTM unit inside an LSTM to improve the stability of the
learning process, with the goal of improving the learning of long-term traffic patterns in historical traffic data [24].
Inspired by natural language processing (NLP) tasks, many researchers have attempted to utilize sequence-to-sequence
(Seq2Seq) and attention mechanisms in traffic prediction, with the goal of obtaining more accurate prediction results
[20,29].

Spatial information is also of significant value for traffic flow prediction. For spatial models, the convolution operation
is typically applied to generalize and analyze the spatial correlations among nearby locations or road sections. CNN was
first used in traffic flow prediction to analyze several mutual influences of several nearby locations in a transportation
network [42]. Because CNN cannot efficiently analyze non-Euclidean structure data, GCN is introduced into traffic predic-
tion to handle graph-structured data, such as a transportation network composed of various road section nodes [2].
Because the road network in a GCN cannot dynamically change over time, graph attention (GAT) uses the attention mech-
anism to describe the correlations among different road section nodes and analyze graph structure traffic data [13,34].
Geng et al. [10] developed a multi-GCN model which introduces many other spatial factors among nodes, such as a dis-
tant map into the normal GCN mechanism for increased awareness of various traffic information.
2.3. Spatial–temporal Traffic Prediction

However, real traffic flows are influenced by both spatial and temporal factors. Recent research has focused on ana-
lyzing traffic patterns from both spatial and temporal perspectives [19,33,49]. DCRNN [19], temporal graph convolu-
tional network (T-GCN) [47], and sequence-to-sequence model based on graph convolution (GC-Seq2Seq) [12] are
three representative methods that directly combine spatial layers with temporal layers. To effectively use the mutual
influence between spatial and temporal factors, Xiao et al. [39] utilized spatial–temporal blocks for data analysis from
both spatial and temporal dimensions and proposed a spatial–temporal graph convolutional network (STGCN) model. In
the STGCN model, the temporal convolutional layers are realized by the CNN, and the graph convolutional layers are
realized by the GCN, attempting to better analyze the correlations between nearby moments and locations. To more
flexibly handle the dynamically changing traffic network, Wu et al. [36] proposed a graph attention LSTM network
(GAT-LSTM) to predict traffic flow, which uses GAT to update spatial information and LSTM to generalize the temporal
patterns hidden in historical traffic data to conduct spatial–temporal analysis dynamically. The attention graph convo-
lutional sequence-to-sequence model (AGC-Seq2Seq) was proposed by Zhang et al. [46] to train the Seq2Seq model in
traffic prediction, using GCN and an attention mechanism to promote accuracy. Peng et al. [28] similarly considered the
spatio-temporal features of traffic data and proposed a dynamic graph recurrent convolutional neural network for traffic
flow prediction.

In summary, spatiotemporal deep learning models have been the main trend in recent short-term prediction research.
Although these studies can achieve a higher prediction accuracy ratio than traditional regression models, most of them still
have some shortcomings. First, the GCN cannot analyze and distinguish the different influence weights of various upstream
nodes toward the same downstream node as the GAT, despite outperforming the GAT owing to its superior learning ability.
Furthermore, because ANN models usually consider a short sequence as input, it is difficult to convey periodic information
across weeks or even months in short-term prediction models. In addition, owing to the better performance and stronger
generalization ability of the GCN and LSTM, this study attempted to overcome the aforementioned drawbacks based on
an improved GCN-LSTM hybrid model.
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3. Methodology

3.1. Problem Description

The proposed ANNmodel aims to efficiently handle short-term traffic flow prediction tasks. In such tasks, historical traffic
data of several positions in an area are used to predict the future traffic data of the same positions.

In this study, the digraph G ¼ V ; E;Að Þwas used to describe the urban road network area where our traffic prediction task
was conducted, where Vis the set of road section nodes, Edenotes the set of edges among road section nodes, and Arepresents
the adjacencymatrix of the section nodes in the target area. Furthermore, Ai;jindicates whether the ith section is connected to
the jth section (Ai;j=1 if they are connected and zero otherwise). The diagonal values in the adjacency matrix were zero. For

an area with Nroad section nodes, the corresponding adjacency matrix is denoted as A 2 RN�N . In this study, different road
directions were considered for two different road sections.

3.2. Spatial–Temporal Analysis

Traditional traffic flow prediction models, including GRU, LSTM, GCN, or GAT, focus on analyzing the traffic pattern from a
single perspective. However, real-life traffic flow changes are affected by spatial and temporal factors. To better analyze his-
torical traffic data and achieve a more accurate prediction performance, historical traffic data must be investigated from both
spatial and temporal perspectives.

Based on a thorough consideration, LSTM and GCN were chosen as the basic methods in our model to conduct spatial and
temporal analyses.

3.2.1. Long Short-Term Memory
Among all the temporal analysis mechanisms in traffic flow prediction, LSTM is the most efficient, widely used, and rep-

resentative. Therefore, it was used in our model for temporal pattern processing. LSTM uses the cell state and three gated
structures: the input gate i, forget gate f, and output gate o, to realize the analysis, memory, and output of the long-term
dependencies of temporal sequences, respectively. Fig. 1 shows the structure of the LSTM unit.
f t ¼ r Vf ht�1 þWfXt þ bf

� � ð1Þ
it ¼ r Viht�1 þWiXt þ bið Þ ð2ÞeCt ¼ tanh VCht�1 þWCXt þ bCð Þ ð3Þ
Ct ¼ f t � Ct�1 þ it � eCt ð4Þ
ot ¼ r Voht�1 þWoXt þ boð Þ ð5Þ
ht ¼ ot � tanhCt ð6Þ
The aforementioned equations describe the whole processing flow of LSTM, where rand tanhare activation functions, Eq.
1 indicates the process of forget gate, Eqs. 2 and 3 indicate the process of input gate, Eq. 4 represents the fusion process of
information from the aforementioned two processes, as well as Eqs. 5 and 6 represent the process of output gate.

3.2.2. Graph Convolution Network
A GCN can efficiently handle graph-structured data, such as urban traffic network data. This was used in our model for the

spatial analysis. When processing graph-structured data with Nnodes, the traditional GCN mechanism in a road network can
be expressed as follows:
Hl ¼
X; l ¼ 0
Aþ Eð ÞHl�1Wl l P 1

�
ð7Þ
A 2 RN�Nis the adjacency matrix, X 2 RN�Fdenotes the Ffeature’ input data of Nnodes, Hl 2 RN�F0 l P 1ð Þdenotes the convo-
lution result of F0features after lthconvolution, Eis the identity matrix, andWis the trainable matrix. Fig. 2 shows the physical
meaning of graph convolution. The convolution operation is a weighted summation of several nearby data points in an area.
When convoluting the red target nodes in the image, if l ¼ 1, the algorithm performs a weighted summation of the traffic
data of the target nodes and their upstream nodes. Subsequently, it updates the target nodes’ data, integrating upstream flow
information into it. If l ¼ 2, the algorithm performs a weighted summation of the green points whose distance is two, then
updates the target nodes’ data, spreading layer by layer until reaching the manually set maximum distance limit.

The traditional GCN mechanism uses Aþ Eto describe graph information, where adjacency matrix Aand identity matrix
Econsist of only zero and one, respectively. The target node with more than one upstream node’s data increases in size during
the graph convolution. Therefore, the inverse matrix of the digraph’s degree matrix is typically used to multiply the matrix
Aþ E, normalizing the data after every convolution operation. The equation can be written as follows:
525



Fig. 1. Unit structure of LSTM.
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Hl ¼
X; l ¼ 0
D�1 Aþ Eð ÞHl�1Wl l P 1

�
ð8Þ
3.3. Location Graph Convolution Network

3.3.1. Trainable Matrix
However, the classical graph convolution mechanism has certain drawbacks. As shown in Fig. 3, every row in the matrix

Hl�1represents the traffic data of a single node in the road network. During its multiplication with D�1 Aþ Eð Þ, elements in a
different row of Hl�1are weighted and summed to form a new row, which means that the traffic data in different upstream
nodes are conveyed into a single downstream node, updating the data of the target nodes. However, in the multiplication
between this weighted sum result and the original trainable matrix Wl, no interaction occurs between the two rows or
nodes. Therefore, in addition to the node traffic data matrix Hl�1, the only matrix involved in the weighted sum between
upstream and downstream nodes is D�1 Aþ Eð Þ. However, all elements in D�1 Aþ Eð Þ, which represent the influence weights
between the two different nodes, were manually set before training. In most cases, the different influence relationships
among various road section nodes are difficult to analyze manually. It is usually preferable to acquire this knowledge
through model training. Moreover, in most cases, the values of the adjacency matrix are set to zero and one, implying that
the mechanism implicitly proves that every upstream node has the same influence on the target downstream node, which is
completely contrary to reality. Both of the aforementioned points are detrimental to the model’s ability to effectively analyze
the traffic patterns and achieve high prediction accuracy.

To overcome this drawback, because the original trainable matrix Wlcannot be used for dynamical learning, a trainable
matrix Wmaskis proposed to learn the different weights of the two road nodes. We also hope that by using Wmask, the
improved GCN will be able to automatically adjust the influence weights during the training process.

Wmaskis an N � Nmatrix, where Nis the number of road-section nodes. It has the same shape as the adjacency matrix A.
The value at position i; jð Þis the weight of ithsection’s influence on the jthsection. In contrast to the traditional GCN mecha-
nism, which uses Aþ Eto acquire the graph information between nodes in the analysis, this matrix can independently change
different node pairs’ influences via the training, rather than merely being set as zero or one. The initial weight of this matrix
can be randomly set, although it is not recommended to set it as all zero because it does not correspond with real life.
Through this, information on the differences in the influence levels among different nodes can be learned.
Fig. 2. Layer by layer spreading by graph convolutional algorithm.
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Fig. 3. Drawbacks of traditional graph convolution.
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3.3.2. Calculating Improvement
To enable the proposed GCN mechanism operate, the calculation method of the GCN must be changed. After the pattern

learning of Wmask, the absolute value of each element in Wmaskis used to create a new matrix Wabsbecause the influence of
upstream roads on downstream roads is usually positive. It is then used to multiply the Aþ Ematrix to use the different influ-
ence levels among various nodes learned from real-life training data to adjust the values of the adjacency matrix. Thus, the
model can learn different influence levels for various road nodes. The improved mechanism can be described using the fol-
lowing equation:
Wabs ¼j Wmask i; j½ � j i 2 0;N � 1½ �; j 2 0;N � 1½ �ð Þ ð9Þ

Hl ¼
X; l ¼ 0
D�1 Wabs � Aþ Eð Þð ÞHl�1Wl l P 1

�
ð10Þ
By usingWmaskandWabs, the location-GCN can analyze a more detailed spatial pattern in traffic flow. A comparison sample
between traditional GCN and the proposed method is shown in Figure 4.

In a road network with four nodes, Nodes 2 and 3 are the upstream nodes of Node 0. Because the traditional GCN can only
represent the influence levels between point pairs with a value of zero or one, the weight values at positions 2;0½ �and 3;0½ �in
Aþ Eare both 0.5 after normalizing D�1, leading to the mechanism assuming that the influence weights of nodes 2 and 3
toward node 0 are equal. However, our mechanism can enable the model to learn the difference in influences during training
and allow the convolution operation to obtain this knowledge via dot multiplication with Wabs.

3.4. Trigonometric Function Encoding

For short-term traffic flow prediction, each input sample usually varies over a short time span, such as one or two hours.
The periodic changing pattern among days or weeks cannot be directly analyzed using the neural network model in each
sample processing. Thus, the periodic data must be encoded into the input samples of the network model.

As periodic functions, the sine and cosine functions can describe periodic information in traffic data. Thus, we used these
trigonometric functions to encode the hourly and moment information in the period. The time interval of the task was set to
5 min, allowing the time point data to be first transferred to i; jð Þ, implying that the ith5 min in the day and the jthh in the
week. Then, trigonometric function encoding encodes i; jð Þinto four columns moment sin;moment cos;hour sin, and hour cos,
using the following equations:
moment sin ¼ sin
2pi

moment num
ð11Þ

moment cos ¼ cos
2pi

moment num
ð12Þ

hour sin ¼ sin
2pj

hour num
ð13Þ

hour cos ¼ cos
2pj

hour num
; ð14Þ
where moment num is the total number of 5-min-interval moments in a day and hour numis the total number of hours per
week. Using this method, our prediction method can analyze the long-term periodic patterns in short-term traffic flow pre-
diction tasks.

3.5. The proposed model Loc-GCLSTM

To better handle the periodic pattern in historical traffic data, Loc-GCLSTM first applies a trigonometric function to encode
moment data, using the periodic property of the sine function and the cosine function to describe periodic information in the
traffic pattern. Subsequently, the data is put into a location-GCN layer, where a trainable matrix is utilized to learn the dif-
ferent influence levels of various upstream road sections toward each downstream section. Finally, the spatial-analyzing
location-GCN is combined with the temporal-analyzing LSTM to conduct the prediction. After the spatial analysis conducted
by location-GCN and temporal analysis conducted by LSTM, the last step output of LSTM is chosen to be put into a fully con-
527



Fig. 4. Drawbacks of traditional graph convolution.

Fig. 5. Structure of Loc-GCLSTM.
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nected layer to generate the output forecast flow sequences, considering that the last step output of LSTM is the semantic
vector that generalizes the pattern of the sample flow. The structure of the proposed model is shown in Fig. 5. The compu-
tational complexity of the spatial analysis is O n2

� �
, where n denotes input data size [41]. For the temporal analysis, its com-

putational complexity per time step is O Wð Þ, whereW ¼ KH þ KCSþ CSI þ HI denotes the number of weights; K;C; S;H, and I
denote the number of output units, number of memory cell blocks, size of the memory cell blocks, number of hidden units,
and (maximal) number of units connected to memory cells, gate units, and hidden units, respectively, [14]. Hence, the com-
putational complexity of Loc-GCLSTM per time step was O n2 þW

� �
.

4. Experiments and Results

4.1. Datasets

We conducted experiments on two real-world datasets: OpenITS and METR-LA1. The OpenITS dataset was collected from
the OpenITS platform, with data recorded between 3 o’clock and 24 o’clock each day from July 1st, 2019 to July 31st, 2019 (July
2nd was not included) in Xuancheng, Anhui Province, PRC. Thirteen road section observation nodes were selected for the exper-
1 The raw dataset is available at https://github.com/liyaguang/DCRNN/tree/master/data
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Fig. 6. Locations of observation points in OpenITS dataset.
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iments, and the time interval was set to 5 min. The specified locations of the observation nodes are shown in Fig. 6. Each obser-
vation section is denoted by an arrow, and the direction of the arrow indicates the flow direction of the observation node. The
red nodes represent selected test nodes. The obtained data were saved in the form of CSV files, and a new weather column was
manually added to the data. The test nodes’ 06:30–09:30, 10:30–13:30, as well as 17:00–22:00 data on the 3rd, 5th, 7th, 15th,
16th, 18th, and 27th of July was chosen as the test dataset. All observation points’ 03:00–24:00 data on days other than the
seven test days were used as the training dataset. In this study, the K-nearest mechanism was applied to fill in the missing data.

METR-LA contains the all-day traffic data collected in 207 positions on the highways of Los Angeles County, from March
2012 to June 2012. We selected data fromMarch and April as our experimental dataset. With more road sections and a much
more complicated traffic situation in Los Angeles compared to XuanCheng in the OpenITS dataset, METR-LA can more clearly
show the effectiveness of the promotions used in Loc-GCLSTM. The METR-LA dataset was randomly divided into training and
test datasets in a proportion of four to one. All the data for every road section and moment are included in this dataset, ren-
dering the experiment more challenging. The K-nearest mechanism was also applied to fill in the missing data of the METR-
LA dataset. Fig. 7 shows the observation-point settings for the METR-LA dataset.

4.2. Data Preprocess

The two datasets were preprocessed using the same method. A sliding window was used to process the datasets: starting
from the first five minutes of each day, samples were generated every two consecutive hours (24-timesteps with a 5-min
interval), with the 24-timesteps not being interrupted. Moreover, 5440 samples for the OpenITS dataset and 17520 samples
for the METR-LA dataset were collected. We applied fivefold cross-validation to conduct the experiments, that is, we ran-
domly divided the dataset into five folds, using the first (second, third, fourth, and fifth) fold as the test set and the remaining
folds as the training set. The average result was reported as the performance indicator of each method used in our
experiments.

The training and test samples were arranged into two NumPy arrays in the shape of sample num;node num; time lags;½
feature nums�, where sample numdenotes the total number of samples, node numrepresents the number of nodes in the road
network, time lagsdenotes the time steps (12 in our experiments) of each sample, and feature numsrepresents the number of
features. The traffic flow, average speed, flow density, proportion of large and regular vehicles, moment (5-min interval, 1-
day period), hour (1-h interval, 1-week period), lane number, and weather of every observation point were chosen as the
input features in the OpenITS dataset. Traffic flow, moment (5-min interval, 1-day period), and hour (1-h interval, 1-week
period) were selected in the METR-LA dataset. The time point and hour data were encoded by a trigonometric function,
whereas the weather was encoded by a number. These data were input into the model after z-score standardization.

4.3. Evaluation Criteria and Comparison Models

The root mean square error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE), median abso-
lute percentage error (MdAPE), and median absolute error (MdAE) were chosen as the evaluation criteria for our experi-
ments. These five criteria are widely used in traffic-prediction tasks. Notably, MdAPE and MdAE use the median of the
errors instead of their mean (in contrast to MAPE and MAE).
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Fig. 7. Locations of observation points in METR-LA dataset [19].
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In our experiments, three conventional machine learning methods (LR, XGBoost, and SVR) and three deep learning meth-
ods (LSTM, STGCN, and DCRNN) were selected for comparison. LR, XGBoost, SVR, and LSTM are temporal analysis models,
whereas STGCN and DCRNN are spatial–temporal prediction models. Detailed information on these models is as follows:

� LR [7] is the most basic short-term traffic prediction method, which uses linear parameters to simply fit the training sam-
ples’ patterns. LR usually uses ordinary least squares or linear least squares to update its parameters. After the data fitting,
the LR model can be described as the following equation:
Y ¼ w1x1 þw2x2 þ � � � þwnxn ð20Þ
� XGBoost [9] is an improvement based on gradient boosting decision tree (GBDT) [40], which is the best performing and
widely used boosting model in recent traffic prediction competitions. XGBoost is an ensemble model based on several
single-tree models. Thus, it can reduce the sensitivity to the abnormal samples of the model, enhancing stability.

� SVR [37] is an outstanding machine learning mechanism focusing on vital samples, avoiding local data perturbation. It
uses a soft margin mechanism to allow the samples to fluctuate in a small error range, improving the model’s general-
ization ability. In addition, it selects vital samples as support vectors to conduct the data fitting, obtaining a better view
of the global data samples, which results in a comparable high accuracy.

� LSTM [50], as mentioned previously, is the most classical neural network model used in the temporal analysis. With the
use of cell state and gated mechanism, LSTM can efficiently learn the long-term dependency pattern compared with other
methods; thus, it is commonly used in temporal analysis tasks. However, a single LSTM network cannot handle the spatial
factors, which are also crucial in traffic prediction.

� STGCN [39] combines temporal analysis using CNN and spatial analysis using GCN and introduces gated linear units
(GLU) to optimize its output ability. CNN is used to generalize the temporal changing pattern of traffic data layer by layer.
GLU is used to optimize the CNN output by enabling it to fit a more complex pattern. A GCN is always put between every
two CNNs, aiming at analyzing the spatial pattern of traffic flow. Using such a structure, STGCN is a spatial–temporal traf-
fic prediction model that can consider the mutual influence between two perspectives. However, because STGCN does not
use the RNN-based mechanism for spatial analysis, it cannot thoroughly investigate the flow changing details.
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� DCRNN [19] is a spatial–temporal model, which consists of bidirectional GCN and GRU. It adds a pair of trainable weights
to learn the influence of one node’s upstream and downstream positions separately. Moreover, the weighted sum of the
upstream and downstream convolution is put into a multi-layer GRU network to further analyze the temporal changing
pattern of the historical traffic data.

4.4. Experimental Setting

All experiments were compiled and tested on a Windows platform (CPU: Intel(R) Core(TM) i7-8700 K CPU @ 3.70 GHz,
GPU: NVIDIA GeForce RTX 2080 Ti). Tensorflow was used for the implementation of all neural-network-based models[1].
During the training of the neural network, the mean square error (MSE) was used as the loss function, whereas the root mean
square propagation (RMSProp) [22,18,8] was used as the optimizer. The neural network model was trained for 600 epochs in
the OpenITS experiment and for 300 epochs in the METR-LA experiment. In the proposed model, cosine annealing learning
rate adjustment (CALRA) [15] was used to improve the training performance. The period cycle number of CALRA was four.
The maximum initial learning rate and minimum initial learning rate were 2.4e-5 and 1.5e-5, respectively. In addition, we
used a grid search to configure an optimal combination [30] and obtained performance with different parameters; the effects
of different parameters are shown in Fig. 8. Batch size refers to the number of samples traversed before calculating the loss
function. Although a smaller batch size may lead to better model performance, it will increase the computational cost. A sim-
ilar effect was observed when the number of units increased. However, no absolute negative correlation exists among batch
size, units, and model performance, as shown in Fig. 9. Therefore, we set the batch size and number of units to 64 and 256,
respectively, after the grid search. The setting of parameters in each layer is shown in Table 1. Further analysis of the grid
settings for each parameter and the margin effect on the prediction performance of the proposed model are described in
detail in the Appendix.

A grid search was conducted to obtain the best parameters for the baseline models. In the LSTMmodel, the batch size was
set to 32, the number of units was set to 256 for both LSTM layers, and a fully connected layer of 12 units was connected to
yield the output. In the STGCN model, number of channels in the three layers in the ST-Conv block were set to 256, 64, and
256, and the graph convolution kernel size and temporal convolution kernel size were both set to three. In addition, the
learning rate was set to the same value as that of the proposed model, and the batch size was set to 32. In the DCRNNmodel,
the maximum steps of random walks, that is, K, was set to one, the numbers of units in the convolution layer and in the two
GRU layers were set to 64 and 128, respectively, the batch size was set to 32, and the decaying learning rate degrades the
performance of this model. Therefore, we employed a fixed learning rate with a value of 3e� 5. In XGBoost, the best results
were achieved when the maximum depth was set to six and the subsample was set to 0.9. The radial basis function (RBF)
kernel and penalty term C ¼ 1 were applied in SVR. Default parameters were used for the LR. Only a limited number of
parameter values can be examined using the grid search strategy; however, it is clear from these results that the effect of
the parameters on the performance is much less than the improvement provided by the model structure. Therefore, we
applied these parameters to obtain the results of the comparison. The next subsection presents the results of the comparison.

4.5. Results

4.5.1. Prediction results
Table 2 shows the accuracy comparison among the models in the five evaluation criteria for the OpenITS dataset. Loc-

GCLSTM achieved the best results according to all criteria. Notably, the STGCN spatial–temporal model performs worse than
LSTM because of the lack of LSTM for long-term dependency analysis. When compared with LSTM, Loc-GCLSTM improved
the RMSE by 17.91 %, MAE by 17.14 %, and MAPE by 1.51 %. When compared with the DCRNN, Loc-GCLSTM improved the
RMSE by 4.99 %, MAE by 4.89 %, and MAPE by 5.52 %.

Table 3 shows the accuracy comparison between the models for the five evaluation criteria on the METR-LA dataset. Fur-
thermore, Loc-GCLSTM outperformed the other methods according to all the criteria. Because the task is to predict the traffic
flow for the next 12 five-minute time intervals, the LSTMmodel also performs well on this dataset, which fully demonstrates
the excellence of LSTM in performing multiple sequence prediction tasks. Loc-GCLSTM improved by 7.54% in RMSE, 6.08% in
MAE, and 8.67% in MAPE compared with LSTM, and improved by 8.54% in RMSE, 10.86% in MAE, and 13.02% in MAPE com-
pared with DCRNN. The improvement of the proposed model over the other selected models in each evaluation criterion can
also be observed in the table.

Fig. 10 shows the distribution of the prediction errors of LSTM, DCRNN, and Loc-GCLSTM on the OpenITS and METR-LA
datasets, where the x-axis represents the error between the predicted result and the ground truth, and the y-axis represents
the distribution of the error. It is clear that the distribution of Loc-GCLSTM is denser near 0, indicating that Loc-GCLSTM
obtains more accurate results in most cases. It is also denser along the x-axis, indicating that Loc-GCLSTM is more robust
in terms of prediction accuracy.

4.5.2. Convergence Rate
The predicted results of LSTM, STGCN, DCRNN, and Loc-GCLSTM for the test dataset were recorded after each epoch dur-

ing the training process. The RMSE was used to evaluate the convergence rate. Fig. 11 shows the evaluation results, where
the X-axis records the number of epochs and the Y-axis records the RMSE score, the yellow line corresponds to LSTM, the
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Fig. 8. Effects of different parameters (a) MAE value of layers = 3; (b) MAE value of layers = 4; (c) RMSE value of layers = 3; (d) RMSE value of layers = 4.

Fig. 9. Parameter sensitivity analysis of layers = 4.
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blue line corresponds to STGCN, the purple line corresponds to DCRNN, and the red line corresponds to Loc-GCLSTM. It is
evident that Loc-GCLSTM has the fastest convergence rate and the most stable and highest prediction accuracy on both
the OpenITS and METR-LA datasets.
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Table 1
Settings of each layer of the model.

Number Name Settings

1 graph_convolution_1 units = 128,steps = 1
2 lstm_1 units = 256,bias_regularizer = l2(0.01)
3 lstm_2 units = 256,bias_regularizer = l2(0.01)
4 fully-connected_1 units = 12

Table 2
Performance comparison between the proposed model and the selected baseline models on OpenITS dataset.

LR XGBoost SVR LSTM STGCN DCRNN Loc-GCLSTM

RMSE 12.325 11.547 11.287 9.463 9.982 8.176 7.768
MAE 9.173 8.626 8.389 7.095 7.497 6.181 5.879
MAPE(%) 28.195 24.252 23.405 20.275 21.985 18.214 17.208
MdAE 7.150 6.794 6.507 5.452 5.808 4.814 4.598
MdAPE(%) 28.205 24.133 23.323 20.239 22.083 18.177 17.198

Table 3
Performance comparison between the proposed model and the selected baseline models on the METR-LA dataset.

LR XGBoost SVR LSTM STGCN DCRNN Loc-GCLSTM

RMSE 7.073 7.006 7.138 6.664 7.392 6.736 6.161
MAE 3.830 3.585 3.685 3.589 4.297 3.775 3.365
MAPE(%) 10.215 9.548 9.666 9.968 12.087 10.467 9.104
MdAE 2.149 1.834 2.074 1.947 2.526 2.151 1.898
MdAPE(%) 8.471 8.086 8.031 7.925 10.120 8.607 7.548

Fig. 10. Comparison between the distribution of prediction errors on (a) OpenITS dataset; (b) METR-LA dataset.
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4.5.3. Prediction-Truth Comparison
Fig. 12 shows a comparison between the prediction result and the ground truth for both the OpenITS and METR-LA data-

sets, where the X-axis is the value of the ground truth and the Y-axis is the value of the prediction result. In each image, 100
randomly sampled points of Loc-GCLSTM and the comparison model exist. It can be observed that the sample points of Loc-
GCLSTM, compared with the other models, are denser around the line y ¼ x, indicating higher accuracies.
4.5.4. Predicted Results and Ground Truth
Under the evaluation of the OpenITS dataset, the first and fourth observation nodes at 07:30–09:30, as well as 11:30–

13:30 on July 5th, July 7th, and July 16th, a total of four time slot prediction results of LSTM and Loc-GCLSTM were chosen
for comparison with the ground truth. In Fig. 13, the green lines represent the ground truth, the blue lines represent the pre-
dicted results of LSTM, and the red lines represent the prediction results of Loc-GCLSTM. It can be observed that the predic-
tion results of Loc-GCLSTM are closer to the ground truth.
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Fig. 11. Comparison of convergence rates on (a) OpenITS dataset and (b) METR-LA dataset.
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4.5.5. Predicted Accuracy on Each Road
As shown in Fig. 14, Loc-GCLSTM was compared with normal LSTM, DCRNN, and STGCN on each road’s prediction accu-

racy using RMSE, MAPE, and MAE, under the evaluation of the OpenITS dataset. On every selected test road, Loc-GCLSTM
outperformed LSTM and DCRNN. The accuracy improvements did not vary significantly between each road section, indicat-
ing that Loc-GCLSTM can usually conduct a more accurate prediction on most real-life roads.

4.5.6. Location Module Analysis
To further analyze the effect of the location module on the performance of the proposed model in traffic flow prediction,

we constructed a comparison model without a location-based learning component for validation, in which all parameters
were the same as the proposed model except for the GCN layer. As shown in Fig. 15, the location module did not have a sig-
nificant impact on model’s performance on the OpenITS dataset. However, on the META-LA dataset, the proposed location-
based learning component had a significant impact on the model performance in traffic flow prediction. This is possibly
because the key to improving the performance of our model is to capture the different impact weights of roads. However,
because the OpenITS dataset contains a small number of roads and a small amount of data, the proposed component does
not fully demonstrate its performance. For the META-LA dataset, which has enough roads and sample size, the location mod-
ule can completely exploit the potential information between road nodes, thus significantly improving the accuracy of the
traffic flow prediction.

5. Conclusion

In this study, a new short-term traffic flow prediction model named Loc-GCLSTM is proposed. The model combines a
location-GCN with LSTM to conduct predictions from both temporal and spatial perspectives. Location-GCN enables the
graph convolution mechanism to learn different influence weights among nodes dynamically during training using the abso-
lute value of an added trainable matrix. Moreover, trigonometric function encoding is used to preprocess the time point data,
enabling the short-term input sequence to convey periodic patterns to the network model.

The experimental results show that the proposed Loc-GCLSTM model can achieve the best prediction performance com-
pared with various models on both the OpenITS and METR-LA datasets. It also has good robustness compared to other mod-
els, which indicates a better application potential in real life. The convergence rate of our model is also faster than that of the
other compared models, indicating a lower requirement for computing resources. Moreover, our main contributions, such as
location-GCN, do not conflict with advanced models such as DCRNN and GC-Seq2Seq; they can also be used in those models.

However, the location-GCN used in our study only considers the differences among the influences of different road sec-
tions. It is still not possible to learn how the influence weights of different nodes change over time. Because location-GCN is
still based on the traditional GCN mechanism, the node sections of the road network cannot be changed in both the training
and testing processes, limiting the convenience and flexibility of the model in real-life usage. All these drawbacks merit fur-
ther study.
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Fig. 12. Random-sampled comparison between the prediction results and the ground truth on (a) OpenITS dataset and (b) METR-LA dataset.
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Fig. 13. Comparison between predicted results and ground truth on the OpenITS dataset.

Fig. 14. Comparison of prediction results on each road among Loc-GCLSTM, DCRNN, LSTM, and STGCN. (a) Comparison of RMSE; (b) Comparison of MAPE;
(c) Comparison of MAE.

Fig. 15. Effect of the location module on (a) OpenITS dataset and (b) METR-LA dataset.
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Appendix A

The appendix describes further analysis of the grid settings for each parameter and its effects on the prediction perfor-
mance of the proposed model. To optimize the model for more accurate traffic flow prediction results, the parameters of
the model must be selected, which is often known as parameter tuning. Several approaches exist for tuning. For our study,
we chose the method of grid search, which is an extensive search of a subset of the hyperparameter space of the algorithm
[30], i.e., each possible combination of parameters was attempted, and finally the optimal combination of parameters was
selected by evaluating the performance o=f each combination according to the evaluation criteria mentioned in the previous
section.

To obtain the optimal parameter combination of the proposed model, we conducted experiments on the same dataset as
[19], that is, the METR-LA dataset, and searched left and right based on its grid settings when performing the grid search. The
grid search hyperparameters considered in this study is listed in Table 4. The specific grid for each model parameter com-
bination and performance evaluation are listed in Table 5. Fig. 16 shows the MAE values of each parameter setting when the
number of layers was set to four in the proposed model. Batch size refers to the number of samples traversed before calcu-
lating the loss function. We observed that a smaller batch size enables the model to have higher prediction accuracy at the
expense of increasing computational cost when units were set to 32, 64, and 128. A similar effect was observed when the
number of units was increased. However, when units were set to 256, with the decrease in batch size, the errors on the val-
idation dataset first rapidly decreased and then slightly increased. Considering the sensitivity and margin effects of the afore-
mentioned two parameters on the prediction accuracy and the impact on the computational cost, we set the batch size and
units to 64 and 256 in the proposed model, respectively.
Table 4
Grid search hyperparameters settings.

Number Hyperparameters Values

1 batch size 16,32,64,128
2 units 32,64,128,256
3 layers 3,4

Table 5
Grid search parameter combination settings and performance evaluation scores when layers = 4.

Layers = 4 Metrics units = 32 units = 64 units = 128 units = 256

batch size = 16 MSE 39.261 38.501 38.137 39.124
RMSE 6.260 6.200 6.171 6.251
MAE 3.460 3.405 3.356 3.371
MAPE 9.293 9.180 9.082 9.092
MdAE 1.986 1.938 1.886 1.878
MdAPE 7.732 7.603 7.526 7.553

batch size = 32 RMSE 39.661 38.607 38.326 38.122
MSE 6.293 6.209 6.186 6.170
MAE 3.490 3.422 3.398 3.368
MAPE 9.358 9.217 9.153 9.047
MdAE 2.022 1.956 1.934 1.883
MdAPE 7.769 7.640 7.589 7.480

batch size = 64 MSE 40.684 39.447 38.671 38.015
RMSE 6.372 6.275 6.231 6.161
MAE 3.566 3.487 3.426 3.365
MAPE 9.570 9.382 9.214 9.104
MdAE 2.105 2.016 1.958 1.898
MdAPE 7.954 7.776 7.641 7.548

batch size = 128 MSE 41.191 40.216 39.344 38.549
RMSE 6.412 6.335 6.268 6.204
MAE 3.606 3.538 3.486 3.419
MAPE 9.721 9.495 9.355 9.249
MdAE 2.152 2.068 2.022 1.955
MdAPE 8.093 7.904 7.791 7.671
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Fig. 16. Effects of different units and batch size setting (a) MAE value of different batch size when units = 32; (b) MAE value of different batch size when
units = 64; (c) MAE value of different batch size when units = 128; (d) MAE value of different batch size when units = 256.

Z. Chen, Z. Lu, Q. Chen et al. Information Sciences 611 (2022) 522–539
References

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,
G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Zheng, X., 2016. Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467.

[2] A. Ali, Y. Zhu, M. Zakarya, Exploiting dynamic spatio-temporal correlations for citywide traffic flow prediction using attention based neural networks,
Information Sciences 577 (2021) 852–870.

[3] B. Chen, D. Sun, J. Zhou, W. Wong, Z. Ding, A future intelligent traffic system with mixed autonomous vehicles and human-driven vehicles, Information
Sciences 529 (2020) 59–72.

[4] Chen, Z., Chen, Q., Zhang, J., Zhang, Y., Yang, S., Dong, Y., Chen, C., 2020b. Traffic Flow Prediction Based on Cooperative Vehicle Infrastructure for Cloud
Control Platform. Technical Report. SAE Technical Paper.

[5] Z. Cui, R. Ke, Z. Pu, X. Ma, Y. Wang, Learning traffic as a graph: A gated graph wavelet recurrent neural network for network–scale traffic prediction,
Transportation Research Part C: Emerging Technologies 115 (2020) 102620.

[6] Cui, Z., Ke, R., Pu, Z., Wang, Y., 2018. Deep bidirectional and unidirectional LSTM recurrent neural network for network–wide traffic speed prediction.
arXiv preprint arXiv:1801.02143.

[7] L. Dai, W. Qin, H. Xu, T. Chen, C. Qian, Urban traffic flow prediction: A MapReduce based parallel multivariate linear regression approach, in: 17th
International IEEE Conference on Intelligent Transportation Systems (ITSC), IEEE, 2014, pp. 2823–2827.

[8] De, S., Mukherjee, A., Ullah, E., 2018. Convergence guarantees for RMSProp and ADAM in non–convex optimization and an empirical comparison to
Nesterov acceleration. arXiv preprint arXiv:1807.06766.

[9] X. Dong, T. Lei, S. Jin, Z. Hou, Short–term traffic flow prediction based on XGBoost, in: 2018 IEEE 7th Data Driven Control and Learning Systems
Conference (DDCLS), IEEE, 2018, pp. 854–859.

[10] X. Geng, Y. Li, L. Wang, L. Zhang, Q. Yang, J. Ye, Y. Liu, Spatiotemporal multi–graph convolution network for ride–hailing demand forecasting, in:
Proceedings of the AAAI Conference on Artificial Intelligence, 2019, pp. 3656–3663.

[11] Y. Gu, W. Lu, L. Qin, M. Li, Z. Shao, Short–term prediction of lane–level traffic speeds: A fusion deep learning model, Transportation Research Part C:
Emerging Technologies 106 (2019) 1–16.

[12] Guo, J., Song, C., Wang, H., 2019. A multi-step traffic speed forecasting model based on graph convolutional LSTM, in: 2019 Chinese Automation
Congress (CAC), IEEE. pp. 2466–2471.

[13] K. He, Y. Huang, X. Chen, Z. Zhou, S. Yu, Graph attention spatial–temporal network for deep learning based mobile traffic prediction, in: 2019 IEEE
Global Communications Conference (GLOBECOM), IEEE, 2019, pp. 1–6.

[14] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural computation 9 (1997) 1735–1780.
[15] Huang, G., Li, Y., Pleiss, G., Liu, Z., Hopcroft, J.E., Weinberger, K.Q., 2017. Snapshot ensembles: Train 1, get m for free. arXiv preprint arXiv:1704.00109.
[16] Innamaa, S., 2000. Short–term prediction of traffic situation using MLP–neural networks, in: Proceedings of the 7th World Congress on Intelligent

Transport Systems, Turin, Italy, pp. 6–9.
[17] J. Jiang, Q. Chen, J. Xue, H. Wang, Z. Chen, A novel method about the representation and discrimination of traffic state, Sensors 20 (2020) 5039.
[18] Kurbiel, T., Khaleghian, S., 2017. Training of deep neural networks based on distance measures using RMSProp. arXiv preprint arXiv:1708.01911.
538

http://refhub.elsevier.com/S0020-0255(22)00990-2/h0010
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0010
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0015
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0015
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0025
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0025
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0035
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0035
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0035
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0045
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0045
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0045
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0050
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0050
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0050
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0055
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0055
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0065
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0065
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0065
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0070
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0085


Z. Chen, Z. Lu, Q. Chen et al. Information Sciences 611 (2022) 522–539
[19] Li, Y., Yu, R., Shahabi, C., Liu, Y., 2017. Diffusion convolutional recurrent neural network: Data–driven traffic forecasting. arXiv preprint
arXiv:1707.01926.

[20] B. Liao, S. Tang, S. Yang, W. Zhu, F. Wu, Multi–modal sequence to sequence learning with content attention for hotspot traffic speed prediction, Pacific
Rim Conference on Multimedia, Springer. (2018) 212–222.

[21] G. Lin, A. Lin, D. Gu, Using support vector regression and k-nearest neighbors for short-term traffic flow prediction based on maximal information
coefficient, Information Sciences 608 (2022) 517–531.

[22] S. Lu, Z. Jin, Improved Stochastic gradient descent algorithm for SVM, International Journal of Recent Engineering Science (IJRES) 4 (2017) 28–31.
[23] T. Ma, C. Antoniou, T. Toledo, Hybrid machine learning algorithm and statistical time series model for network–wide traffic forecast, Transportation

Research Part C: Emerging Technologies 111 (2020) 352–372.
[24] X. Ma, H. Zhong, Y. Li, J. Ma, Z. Cui, Y. Wang, Forecasting transportation network speed using deep capsule networks with nested LSTM models, IEEE

Transactions on Intelligent Transportation Systems (2020).
[25] W. Min, L. Wynter, Real–time road traffic prediction with spatio–temporal correlations, Transportation Research Part C: Emerging Technologies 19

(2011) 606–616.
[26] T.G. Molnár, D. Upadhyay, M. Hopka, M. Van Nieuwstadt, G. Orosz, Delayed lagrangian continuum models for on–board traffic prediction,

Transportation Research Part C: Emerging Technologies 123 (2021) 102991.
[27] H. Peng, B. Du, M. Liu, M. Liu, S. Ji, S. Wang, X. Zhang, L. He, Dynamic graph convolutional network for long-term traffic flow prediction with

reinforcement learning, Information Sciences 578 (2021) 401–416.
[28] H. Peng, H. Wang, B. Du, M.Z.A. Bhuiyan, H. Ma, J. Liu, L. Wang, Z. Yang, L. Du, S. Wang, Spatial temporal incidence dynamic graph neural networks for

traffic flow forecasting, Information Sciences 521 (2020) 277–290.
[29] P. Peng, D.W. Xu, H. Gao, Q. Xuan, Y. Liu, H.F. Guo, et al, Short–term traffic flow prediction using attention–based long short–termmemory network, in:

2019 IEEE Fourth International Conference on Data Science in Cyberspace (DSC), IEEE, 2019, pp. 403–409.
[30] I. Priyadarshini, C. Cotton, A novel lstm–cnn–grid search-based deep neural network for sentiment analysis, The Journal of Supercomputing 77 (2021)

13911–13932.
[31] Y. Rajabzadeh, A.H. Rezaie, H. Amindavar, Short–term traffic flow prediction using time–varying Vasicek model, Transportation Research Part C:

Emerging Technologies 74 (2017) 168–181.
[32] Y. Song, J. Lu, RNN–based traffic flow prediction for dynamic reversible lane control decision. Data Sci, Knowl. Eng. Sens. Decis. Support 1 (2018) 323–

330.
[33] J. Wang, Q. Chen, H. Gong, STMAG: A spatial-temporal mixed attention graph-based convolution model for multi-data flow safety prediction,

Information Sciences 525 (2020) 16–36.
[34] Y. Wang, C. Jing, S. Xu, T. Guo, Attention based spatiotemporal graph attention networks for traffic flow forecasting, Information Sciences 607 (2022)

869–883.
[35] B.M. Williams, L.A. Hoel, Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results, Journal

of Transportation Engineering 129 (2003) 664–672.
[36] T. Wu, F. Chen, Y. Wan, Graph attention LSTM network: A new model for traffic flow forecasting, in: 2018 5th International Conference on Information

Science and Control Engineering (ICISCE), IEEE, 2018, pp. 241–245.
[37] T. Wu, K. Xie, G. Song, C. Hu, A multiple SVR approach with time lags for traffic flow prediction, in: 2008 11th International IEEE Conference on

Intelligent Transportation Systems, IEEE, 2008, pp. 228–233.
[38] Z.B. Xian, L. Qiang, ARMA–based traffic prediction and overload detection of network, Journal of Computer Research and Development 12 (2002).
[39] G. Xiao, R. Wang, C. Zhang, A. Ni, Demand prediction for a public bike sharing program based on spatio–temporal graph convolutional networks,

Multimedia Tools and Applications (2020) 1–19.
[40] Z. Xu, R. Zhu, Q. Yang, L. Wang, R. Wang, T. Li, Short–term bus passenger flow forecast based on the multi–feature gradient boosting decision tree, in:

The International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, Springer, 2019, pp. 660–673.
[41] Yu, B., Yin, H., Zhu, Z., 2017. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint

arXiv:1709.04875.
[42] F. Yu, D. Wei, S. Zhang, Y. Shao, 3D CNN–based accurate prediction for large–scale traffic flow, in: 2019 4th International Conference on Intelligent

Transportation Engineering (ICITE), IEEE, 2019, pp. 99–103.
[43] D. Zhang, M.R. Kabuka, Combining weather condition data to predict traffic flow: A GRU–based deep learning approach, IET Intelligent Transport

Systems 12 (2018) 578–585.
[44] J. Zhang, D. Mucs, U. Norinder, F. Svensson, LightGBM: An effective and scalable algorithm for prediction of chemical toxicity–application to the Tox21

and mutagenicity data sets, Journal of Chemical Information and Modeling 59 (2019) 4150–4158.
[45] M. Zhang, X. Fei, Z. Liu, Short–term traffic flow prediction based on combination model of XGBoost–LightGBM, in: 2018 International Conference on

Sensor Networks and Signal Processing (SNSP), IEEE, 2018, pp. 322–327.
[46] Z. Zhang, M. Li, X. Lin, Y. Wang, F. He, Multistep speed prediction on traffic networks: A deep learning approach considering spatio–temporal

dependencies, Transportation Research Part C: Emerging Technologies 105 (2019) 297–322.
[47] L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, H. Li, T–gcn: A temporal graph convolutional network for traffic prediction, IEEE Transactions

on Intelligent Transportation Systems 21 (2019) 3848–3858.
[48] Z. Zheng, D. Su, Short–term traffic volume forecasting: A k–nearest neighbor approach enhanced by constrained linearly sewing principle component

algorithm, Transportation Research Part C: Emerging Technologies 43 (2014) 143–157.
[49] Y. Zhou, J. Li, H. Chen, Y. Wu, J. Wu, L. Chen, A spatiotemporal hierarchical attention mechanism-based model for multi-step station-level crowd flow

prediction, Information Sciences 544 (2021) 308–324.
[50] Z. Zou, P. Gao, C. Yao, City–level traffic flow prediction via LSTM networks, in: Proceedings of the 2nd International Conference on Advances in Image

Processing, 2018, pp. 149–153.
539

http://refhub.elsevier.com/S0020-0255(22)00990-2/h0100
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0100
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0105
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0105
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0110
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0115
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0115
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0120
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0120
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0125
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0125
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0130
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0130
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0135
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0135
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0140
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0140
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0145
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0145
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0145
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0150
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0150
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0155
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0155
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0160
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0160
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0165
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0165
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0170
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0170
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0175
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0175
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0180
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0180
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0180
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0185
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0185
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0185
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0190
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0195
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0195
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0200
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0200
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0200
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0210
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0210
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0210
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0215
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0215
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0220
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0220
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0225
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0225
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0225
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0230
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0230
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0235
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0235
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0240
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0240
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0245
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0245
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0250
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0250
http://refhub.elsevier.com/S0020-0255(22)00990-2/h0250

	Spatial–temporal short-term traffic flow prediction model based on dynamical-learning graph convolution mechanism
	1 Introduction
	2 Literature Review
	2.1 Classical Traffic Prediction Methods
	2.2 Traffic Prediction using Single Deep Learning Model
	2.3 Spatial–temporal Traffic Prediction

	3 Methodology
	3.1 Problem Description
	3.2 Spatial–Temporal Analysis
	3.2.1 Long Short-Term Memory
	3.2.2 Graph Convolution Network

	3.3 Location Graph Convolution Network
	3.3.1 Trainable Matrix
	3.3.2 Calculating Improvement

	3.4 Trigonometric Function Encoding
	3.5 The proposed model Loc-GCLSTM

	4 Experiments and Results
	4.1 Datasets
	4.2 Data Preprocess
	4.3 Evaluation Criteria and Comparison Models
	4.4 Experimental Setting
	4.5 Results
	4.5.1 Prediction results
	4.5.2 Convergence Rate
	4.5.3 Prediction-Truth Comparison
	4.5.4 Predicted Results and Ground Truth
	4.5.5 Predicted Accuracy on Each Road
	4.5.6 Location Module Analysis


	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Appendix A 
	References


