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Abstract Standard evolutionary optimization algorithms assume that the
evaluation of the objective and constraint functions is straightforward and
computationally cheap. However, in many real-world optimization problems,
these evaluations involve computationally expensive numerical simulations
or physical experiments. Surrogate-assisted evolutionary algorithms (SAEAs)
have recently gained increased attention for their performance in solving these
types of problems. The main idea of SAEAs is the integration of an evolution-
ary algorithm with a selected surrogate model that approximates the computa-
tionally expensive function. In this paper, we propose a surrogate model based
on a Lipschitz underestimation and use it to develop a differential evolution-
based algorithm. The algorithm, called Lipschitz Surrogate-assisted Differen-
tial Evolution (LSADE), utilizes the Lipschitz-based surrogate model, along
with a standard radial basis function surrogate model and a local search pro-
cedure. The experimental results on seven benchmark functions of dimensions
30, 50, 100, and 200 show that the proposed LSADE algorithm is competitive
compared with the state-of-the-art algorithms under a limited computational
budget, being especially effective for the very complicated benchmark func-
tions in high dimensions.
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1 Introduction

Many real-world optimization problems involve expensive computations, such
as computational fluid dynamics and finite element analysis, or executions of
physical experiments. In such situations, the evaluation of objective functions
or constraints can take an excessively long time, prohibiting the use of conven-
tional optimization methods [1]. To mitigate the computational costs, surro-
gate models (sometimes called metamodels [2]) have been widely used in com-
bination with evolutionary algorithms (EAs), which are known as surrogate-
assisted EAs (SAEAs) [3].

SAEAs execute only a limited number of real objective function (or con-
straint) evaluations and use these evaluations to train surrogate models. The
surrogate models then serve as approximations of the real functions [4], and
their evaluation should have negligible computational costs compared to eval-
uating the real functions. Many standard machine learning models, such as
polynomial response surface [5], Kriging (or Gaussian processes) [6], artificial
neural networks [7], radial basis functions (RBFs) [8] or support vector regres-
sion [9] have been employed in SAEAs. The performance of different surrogate
models under multiple criteria was investigated in [10].

EAs are effective metaheuristics used for global optimization, which are in-
spired by the processes of biological evolution, such as reproduction, mutation,
and natural selection. The most widely known examples of these techniques
are genetic algorithms (GA), differential evolution (DE), evolutionary strategy
(ES), or particle swarm optimization (PSO). These methods were successfully
used in the optimization of various complex problems such as the hyperpa-
rameter optimization in deep learning [11], difficult assignment problems [12],
design of quantum operators [13], dynamical systems prediction [14], or solving
boundary value problems [15].

Surrogate models are being employed in a variety of real-world problems,
including protein structure prediction [16], elastic actuator design [17], struc-
tural optimization design of truss topology [18] or robust optimization of large
scale networks [19]. A review of recent advances and applications of surrogate
models for finite element method computations can be found in [20].

Based on the current surrogate model, the SAEAs typically choose two
types of solutions for real function evaluation: promising samples around the
optimum of the surrogate model, and uncertain samples with a large expected
approximation error. For example, in [21] the authors designed multiple trial
positions for each particle and then used an RBF model to select a position
with the minimum predicted fitness value. A global and a local surrogate-
assisted PSO algorithm for computationally expensive problems was devel-
oped in [22]. Here, the particle with a smaller predicted fitness value than its
personal historical best was exactly evaluated. The uncertain samples were
used to guide the search into some sparse and not yet well-explored areas,
while the promising samples were used to guide a local search in the most
promising areas. Many combinations of the two types are used to keep a good
balance of global exploration and local exploitation. For instance, [23] devel-
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oped a dimension reduction method to construct a Kriging surrogate model
in a lower-dimensional space and chose the offspring with better lower confi-
dence bound (LCB) values for real function evaluation. The LBC values were
also used in [24], where the authors employed two different surrogate mod-
els. Here, the weight coefficient of the two models was changed to control the
evolutionary progress. Another approach utilizing a trust region method for
the interleaved use of exact models with computationally inexpensive RBF
surrogates during a local search was developed in [25].

Surrogate models can guide the search of EAs to promising directions by us-
ing optima of these models, as was demonstrated in [21], [26], and many others.
It has also been shown that evaluating the uncertain samples can strengthen
the exploration capabilities of SAEAs and effectively improve the approxima-
tion accuracy of the surrogate [2], [4], and different methods for estimating the
degree of uncertainty in function prediction have been proposed [27].

In recent years, there has been a multitude of SAEAs proposed in the litera-
ture. These algorithms usually employ a metaheuristic algorithm to be the pri-
mary optimization framework and use the surrogates as additional tools to ac-
celerate the convergence of the underlying metaheuristic algorithm. In general,
it is difficult for EAs to search for global optima in high-dimensional spaces be-
cause of the curse of dimensionality. SAEAs also encounter the same challenge
when the dimension of a problem is high. Although current SAEAs can handle
high-dimensional expensive problems relatively well, most of these algorithms
still need many function evaluations (usually more than several thousands)
to obtain good optimization results. Also, these algorithms are developed for
optimizing problems whose dimensions are usually less than 30. For instance,
the generalized surrogate single-objective memetic algorithm proposed in [28]
needs 8000 function evaluations for 30D problems. The surrogate-assisted DE
algorithm introduced [29] needs more than 10000 function evaluations for 30D
problems. A similarly high number of required function evaluations were uti-
lized by Lipschitz-based algorithm in [30]. A framework combining particle
swarm optimization and RBF global surrogate was developed in [21], where
the proposed method first generates multiple candidate solutions for each par-
ticle in each generation, and then the surrogate is employed to select the
promising positions to form the new population. The Gaussian process model
was utilized in [23] with the lower confidence bound to prescreen solutions
in a differential evolution (DE) algorithm and a dimensional reduction tech-
nique was used to enhance the accuracy of the model. The maximum dimen-
sion of the test problems used in [23] was 50 and the dimension was reduced
to 4 before the surrogate was constructed. An alternative approach for this
issue is the use of multiple swarms, that can enhance population diversity,
explore different search spaces simultaneously to efficiently find promising ar-
eas, and combine the advantage of different swarms if heterogeneous swarms
are used. For computationally expensive problems, multiple swarms were used
in the surrogate-assisted multiswarm optimization (SAMSO) algorithm [31].
The SAMSO algorithm takes advantage of the good global searchability of
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the teaching learning-based optimization algorithm and the fast convergence
ability of the PSO algorithm.

Multiple surrogates have been shown to perform better than single ones in
assisting EAs, typically utilizing a global surrogate model to smooth out the
local optima, and local surrogate models to capture the local details of the
fitness function around the neighborhood of the current best individuals. In
[32] an ensemble surrogate-based model management method for surrogate-
assisted PSO was proposed. This method searches for the promising and most
uncertain candidate solutions to be evaluated using the expensive fitness func-
tion. Their results were outstanding on medium-scale test functions with a
limited number of function evaluations. Surrogate-assisted cooperative swarm
optimization (SA-COSO) for high-dimensional expensive problems, developed
in [26], combined two PSO methods to solve problems with dimension up to
200. Another algorithm for high dimensional expensive problems, called evolu-
tionary sampling assisted optimization (ESAO), which utilized a global RBF
model and a local optimizer, was developed in [33].

A generalized surrogate-assisted evolutionary algorithm (GSGA) based on
the optimization framework of the genetic algorithm was proposed in [34]. This
algorithm uses a surrogate-based trust region local search method, a surrogate-
guided GA updating mechanism with a neighbor region partition strategy, and
a prescreening strategy based on the expected improvement infilling criterion
of a simplified Kriging in the optimization process. A multi-objective infill
criterion for a Gaussian process assisted social learning particle swarm opti-
mization (MGP-SLPSO) algorithm was proposed in [35]. The multi-objective
infill criterion considers the approximated fitness and the approximation un-
certainty as two objectives and uses non-dominated sorting for model man-
agement. Surrogate-assisted grey wolf optimization (SAGWO) algorithm was
introduced in [36], where RBF is employed as the surrogate model. SAGWO
conducts the search in three phases, initial exploration, RBF-assisted meta-
heuristic exploration, and knowledge mining on RBF.

In this paper, we propose a novel Lipschitz-based surrogate model, that
is designed to increase the exploration capabilities of SAEAs. We also de-
velop a new Lipschitz surrogate-assisted differential evolution (LSADE) algo-
rithm that uses the Lipschitz-based surrogate in combination with a standard
RBF surrogate and a local optimization procedure. The rest of this paper is
organized as follows. Section 2 briefly introduces the related techniques, in-
cluding surrogate models, Lipschitz-based underestimation, and DE. Section
3 describes the proposed LSADE algorithm in detail. In Section 4, we provide
a computational analysis of the individual components of the LSADE algo-
rithm, the frequency of the utilization of said components, the choice of an
RBF, and a comparison with other state-of-the-art SAEAs, namely with SA-
COSO, ESAO, SAMSO, GSGA, MGP-SLPSO, and SAGWO. The conclusions
and future research directions are described in Section 5.
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2 Related Techniques

2.1 Surrogate Models

Kriging models and RBFs are the most widely applied methods for generat-
ing surrogate models [37]. It has been shown that the Kriging model outper-
forms other surrogate models in solving low-dimensional optimization prob-
lems, and RBF is the most efficient method among surrogates for solving
high-dimensional optimization problems [38]. A disadvantage of Kriging is
that the training of the model is time-consuming when the number of sam-
ples is large. Since this paper focuses on high-dimensional problems, we will
adopt the RBF methodology for building the surrogate model, which has been
successfully used in several other SAEAs [26].

RBFs compute a weighted sum of prespecified simple functions to approx-
imate complex design landscape. Given t different sample points X1, . . . , Xt,
the RBF surrogates are written as [20]

fRBF(x) =

t∑
i=1

wiψ(||x−Xi||2),

where wi denotes the weight which is computed using the method of least
squares, and ψ is the chosen basis function. There are several (symmetric)
radial functions that can serve as a basis function, such as Gaussian function,
thin-plate splines, linear splines, cubic splines, and multiquadrics splines [20].

2.2 Lipschitz-based Underestimation

The use of a Lipschitz constant in optimization was first proposed in [39] and
[40] and initiated a line of research within global optimization that is active to
this day [41]. We assume that the unknown or expensive to compute objective
function f has a finite Lipschitz constant k, i.e.

∃k ≥ 0 s.t. |f(x)− f(x′)| ≤ k||x− x′||2 ∀(x, x′) ∈ X 2,

which is among the weakest regularity assumptions we can ask for. Based on a
sample of t evaluations of the function f at points X1, . . . , Xt, we can construct
a global underestimator fL of f by using the following expression [41]

fL(x) = max
i=1,...,t

f(Xi)− k||x−Xi||2. (1)

A visual representation of this Lipschitz-based surrogate function in 1D is
depicted in Figure 1, where each already evaluated point has two lines (one
to the left and the other to the right) emanating from it under an angle that
depends on the Lipschitz constant k. Then the surrogate is constructed as
the pointwise maximum of the individual lines. A 2D visualization is shown in
Figure 2. This surrogate has two important properties – it assigns low values to



6 Jakub Kůdela ID , Radomil Matoušek ID

Fig. 1 Visual representation of the Lipschitz-based surrogate in 1D.

Fig. 2 Visual representation of the Lipschitz-based surrogate on the Rosenbrock function
in 2D. Sampled points are highlighted in red and the Lipschitz-based surrogate in light blue.

points that are far from previously evaluated points and combines it with the
information (objective value and “global” Lipschitz constant) from the closest
evaluated point. Therefore, it can serve as a good “uncertainty measure” of
prospective points for evaluation, as points with low values of fL are either far
from any other evaluated solution, or relatively close to a good one.

Naturally, since we do not know the objective function f itself, we can
hardly expect to know the Lipschitz constant k. We will approach this issue
by estimating k from the previously evaluated points. We will use the ap-
proach described in [41], which utilizes a nondecreasing sequence of Lipschitz

constants ki∈Z that defines a meshgrid on R+. The estimate k̂t of the Lipschitz
constant is then computed as

k̂t = inf

{
ki∈Z : max

l 6=j

|f(Xj)− f(Xl)|
||Xj −Xl||2

≤ ki
}
. (2)

Sequences of different shapes could be considered – we utilize a sequence
ki = (1 +α)i that uses a parameter α > 0. For this sequence, the computation

(2) of the estimate is simplifies into k̂t = (1 + α)it , where

it =

⌈
ln(max

l 6=j

|f(Xj)− f(Xl)|
||Xj −Xl||2

)/ ln(1 + α)

⌉
. (3)
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2.3 Differential Evolution

EAs are powerful methods for solving complex engineering optimization prob-
lems, that are difficult to approach with standard optimization methods. In
this work, DE is employed as the optimization solver due to its straightforward
structure and its global optimization capabilities. Several variants of DE have
been developed to improve its performance [42]. In general, there are four
stages of DE: initialization, mutation, crossover, and selection. We assume
we have a population at the current generation, x = [x1, . . . , xt], where each
individual has dimension D, xi = (x1i , . . . , x

D
i ). In this work, we utilize the

DE/best/1 strategy for the mutation process of DE which, can be expressed
as

vi = xb + F · (xi1 − xi2), (4)

where xb is the current best solution, xi1 and xi2 are different randomly se-
lected individuals from the population, and F is a scalar number typically
within the interval [0.4, 1] [42]. The crossover stage of DE is conducted after
mutation and has the following form:

uji =

{
vji , if (Uj(0, 1) ≤ Cr | j = jrand),

xji , otherwise,
(5)

where uji the jth component of ith offspring, xij and vij are the jth compo-
nent of ith parent individual and the mutated individual, respectively. The
crossover constant Cr is between 0 and 1, Uj(0, 1) indicates a uniformly dis-
tributed random number, and jrand ∈ [1, . . . , D] is a randomly chosen index
that ensures ui has at least one component of vi. The interested reader can
find more information about the intricacies of DE in [42].

3 Proposed LSADE Method

The proposed LSADE method has four distinct parts: 1) the DE-based gen-
eration of prospective points, 2) the global RBF evaluation of the prospective
points, 3) the Lipschitz surrogate evaluation of the prospective points, and
4) the local optimization within a close range of the best solution found so
far. The execution of parts 2) – 4) of the algorithm can be controlled based
on chosen conditions, i.e., we may sometimes skip RBF surrogate evaluation,
Lipschitz surrogate evaluation, or local optimization, if deemed advantageous.

At the beginning of the process, Latin hypercube sampling [37] is used
to generate the initial population of t individuals, whose objective function
is evaluated [43]. The best individual is found, a parent population of size
p is randomly selected from the evaluated points and a new population is
constructed based on the DE rules (4) and (5). If the RBF evaluation condition
is true, the new population is evaluated based on the RBF surrogate model.
Then the best individual based on the RBF model has its objective function
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Algorithm 1 Pseudocode of the LSADE.
1: Generate an initial population of t points X1, . . . , Xt and evaluate their objective func-

tion values. Denode the best solution as Xb.
2: Set iter = 0 (iteration counter), NFE = t (number of function evaluations).
3: Use the evaluated points so far to estimate k by (3) and to construct the RBF surrogate.
4: Sample p points from the population as parents for DE.
5: Based on the DE rules (4) and (5), generate children.
6: Increase iter by 1.
7: if RBF condition then
8: Evaluate the children on the RBF surrogate.
9: Find the child with the minimum RFB surrogate value, and add it to the population

and evaluate its objective function value. Increase NFE by 1.

10: if Lipschitz condition then
11: Evaluate the children on the Lipschitz surrogate (1).
12: Find the child with the minimum Lipschitz surrogate value, and add it to the pop-

ulation and evaluate its objective function value. Increase NFE by 1.

13: if Local Optimization condition then
14: Construct a RBF local surrogate model using the best c solutions found so far.
15: Find the bounds in each dimension for the local optimization (6).
16: Minimize the local RBF surrogate model within the bounds. Denote the minimum

as X̂m and, if it is not already in the population, add it to the population and evaluate
its objective function value. Increase NFE by 1.

17: Find the best solution so far and denote it as Xb.
18: if NFE < NFEmax then
19: goto 3.
20: else
21: terminate.

evaluated and is added to the whole population. This step constitutes a global
search strategy.

If the Lipschitz evaluation condition is true, the Lipschitz constant k is
estimated based on (3) and the new population is evaluated on the Lipschitz
surrogate model (1). The best individual based on the Lipschitz surrogate
model has its objective function evaluated and is added to the whole popula-
tion.

If the Local optimization condition is true, we construct a local RBF sur-
rogate model using the best c solutions found so far, which we denote by
X̂1, . . . , X̂c. Additionally, we find the bounds for the local optimization proce-
dure within those c points:

lb(i) = min
j=1,...,c

X̂j(i), i = 1, . . . , D,

ub(i) = max
j=1,...,c

X̂j(i), i = 1, . . . , D,
(6)

and perform a local optimization of the local RBF model within the bounds
[lb, ub]. For local optimization we adapt a sequential quadratic programming
strategy, which was also used by the winner of the 2020 CEC Single Objective
Bound Constrained Competition [44]. We find the local optimum and check,
if it is not already in the population, before evaluating it and adding it to the
population.
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Table 1 Benchmark functions used for the comparison

Problem Description Property Optimum
F1 Ellipsoid Unimodal 0
F2 Rosenbrock Multimodal with narrow valley 0
F3 Ackley Multimodal 0
F4 Griewank Multimodal 0
F5 F10 in [45] Very complicated multimodal -330
F6 F16 in [45] Very complicated multimodal 120
F7 F19 in [45] Very complicated multimodal 10

The evaluation of points based on the Lipschitz-based surrogate model can
be thought of as an exploration step in the algorithm (and should increase
our ability to find the regions of good solutions), whereas the evaluation of
points based on the local optimization procedure can be thought of as an
exploitation step of the algorithm (and should give us the means to improve
the best solutions we have found so far).

The cycle of generating new population, evaluating it on the RBF and
Lipschitz surrogate models and conducting the local optimization is carried
out until a maximum number of objective function evaluations is reached.
The pseudocode1 for the LSADE method is described in Algorithm 1.

4 Results and Discussion

To examine the effectiveness of the proposed method, we compare it with six
other state-of-the-art algorithms on a testbed of standard benchmark functions
[45] that are summarized in Table 1. Although there are more recent bench-
mark sets, such as [46], these were not yet used for benchmarking SAEAs. The
dimensions for the comparison are D = 30, 50, 100, 200 for all of the benchmark
functions. We also investigate the advantages of the individual components of
the LSADE method, the choice of the conditions for using the different compo-
nents, and the choice of basis functions for the RBF surrogates. The algorithm
is implemented in MATLAB R2020b and runs on an Intel(R) Core(TM) i5-
4460 CPU @ 3.20 GHz desktop PC.

4.1 Experiment Setting

For constructing both the local and the global RBF surrogate models we used
the SURROGATES toolbox [47] with default settings (multiquadric RBF with
parameter c = 1). The DE coefficients were set to F = 0.5 and Cr = 0.5 [48].
The number of initial points were set to 100 for D = [30, 50] and 200 for
D = [100, 200]. The number of children was set to D. The local optimization
uses the best c = 3·D points found so far (or less if there are not enough points

1 The MATLAB code can be found at the authors github:
https://github.com/JakubKudela89/LSADE

https://github.com/JakubKudela89/LSADE
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Table 2 Comparison of the individual components of LSADE on D = [30, 50].

D F R0 |Li0 |Lo0 R0 |Li0 |Lo1 R0 |Li1 |Lo0 R0 |Li1 |Lo1 R1 |Li0 |Lo0 R1 |Li0 |Lo1 R1 |Li1 |Lo0 R1 |Li1 |Lo1

F1 1898 124.3 222.1 7.787 3.660 0.0041 7.237 0.010

F2 4641 193.2 379.9 60.79 38.55 30.32 46.32 29.79

F3 20.35 16.94 13.55 12.96 12.63 16.99 5.399 13.37

F4 467.0 109.1 53.63 9.595 1.234 10.69 2.030 0.431

F5 434.7 -126.9 33.95 -114.6 -133.2 -153.7 -133.4 -216.9

F6 1154 814.7 587.6 488.4 608.8 603.3 490.8 440.7

30

F7 1348 1194 987.9 959.2 1062 1086 976.7 973.0

F1 6365 148.5 1131 6.645 285.5 3.727 69.96 2.352

F2 10279 283.5 1070 79.83 214.4 65.41 161.8 65.12

F3 20.59 17.45 15.48 13.38 18.36 17.98 10.58 15.56

F4 926.6 307.0 162.5 21.87 79.97 191.9 9.117 6.463

F5 1185 30.64 396.1 -122.9 272.9 20.02 161.9 -138.0

F6 1276 880.6 679.3 368.9 787.4 752.7 567.8 410.4

50

F7 1460 1296 1086 1019 1229 1238 1047 1077

yet evaluated), and utilizes the sequential quadratic programming algorithm
implemented in the FMINCON function with default parameters. The Lips-
chitz approximation parameter was set to α = 0.01. The maximum number of
function evaluations was set to 1000 for all problems. For all benchmark func-
tions, 20 independent runs are conducted to get statistical results. Finally,
some of the more in-depth results regarding the sensitivity of the parameters
of the LSADE algorithm are studied in the Appendix.

4.2 Comparison of Individual Components

Firstly, we assess the effectiveness of the individual components of the LSADE:
the RBF surrogate, the Lipschitz surrogate, the local optimization procedure,
and their combinations. This corresponds to setting the RBF condition, Lip-
schitz condition, and Local Optimization condition to true or false (1 or 0)
for every iteration of the algorithm. We denote the 8 possible variations as a
triplet (R – RBF, Li – Lipschitz, Lo – Local Optimization) R# |Li# |Lo#,
where the “#” indicates if the condition was true or false. The R0 |Li0 |Lo0
variation does not use any optimization (as there is no rule to add points for
evaluation) and instead just evaluates 1000 randomly selected points, using
the entire computational budget. The results (mean of the best-found objec-
tive function values over the 20 runs) for the different variations in dimensions
D = [30, 50] are reported in Table 2. Not surprisingly, the R0 |Li0 |Lo0 variant
comes out being substantially worse than the other ones and is the only one
that has its cells in the table colored in grey. The remaining variations are

https://orcid.org/0000-0002-4372-2105
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Table 3 Comparison of the static rules for the Lipschitz and Local Optimization conditions,
D = [30, 50].

F1 [0.0036, 0.3671]

Li |Lo 1 2 4 8 0

1 0.0102 0.0342 0.1328 0.3671 7.2373

2 0.0063 0.0085 0.0223 0.041 1.5932

4 0.0041 0.0048 0.0087 0.0129 0.6838

8 0.0047 0.0036 0.0062 0.0107 0.2917

0 0.0041 0.0046 0.0179 0.0063 3.6604

F2 [25.90, 32.59]

Li |Lo 1 2 4 8 0

1 29.79 29.82 27.85 27.78 46.32

2 29.05 32.59 29.61 28.69 44.16

4 30.93 29.42 29.02 26.79 33.70

8 30.21 25.90 31.71 26.38 36.15

0 30.32 27.80 28.55 31.25 38.55

F3 [1.67, 15.78]

Li |Lo 1 2 4 8 0

1 13.37 7.85 2.30 1.67 5.39

2 13.94 10.95 6.28 3.48 4.74

4 15.22 13.79 9.24 6.42 7.40

8 15.78 14.62 9.80 10.19 9.69

0 16.99 16.17 14.99 13.39 12.63

F4 [0.0035, 1.107]

Li |Lo 1 2 4 8 0

1 0.431 0.290 0.508 0.595 2.030

2 0.586 0.144 0.109 0.197 1.253

4 0.702 0.120 0.075 0.078 1.082

8 1.107 0.160 0.035 0.061 1.025

0 10.69 2.193 0.615 0.139 1.234

F5 [-222.1, -168.5]

Li |Lo 1 2 4 8 0

1 -216.9 -222.1 -212.1 -217.3 -133.4

2 -192.1 -206.8 -191.6 -168.5 -137.5

4 -189.3 -182.8 -185.3 -177.0 -140.4

8 -173.0 -178.5 -184.1 -177.0 -140.0

0 -153.7 -157.6 -167.8 -167.0 -133.2

F6 [418.7, 558.4]

Li |Lo 1 2 4 8 0

1 440.7 423.8 438.0 437.4 490.8

2 476.1 440.5 462.8 418.7 493.7

4 492.1 466.4 471.9 463.9 511.6

8 558.4 529.0 509.1 495.0 543.8

0 603.3 592.8 597.7 587.1 608.9

F7 [958.1, 1036.4]

Li |Lo 1 2 4 8 0

1 973.1 986.9 968.9 960.1 976.7

2 971.4 968.5 974.3 958.1 972.8

4 1010 998.7 994.3 981.9 1005

8 1036.4 1013 987.1 1014 1029

0 1086.8 1070 1040 1033 1062

Min and max mean values from the static rules for D = 50

(disregarding rules with Li0 or Lo0)

F1 F2 F3 F4 F5 F6 F7

min 0.445 47.45 6.459 1.010 -138.0 363.2 1019

max 6.003 65.37 16.78 71.78 0.750 615.8 1195

color-coded in the following way: the variant with the best (lowest) mean ob-
jective function value for a given problem instance has the corresponding cell
in the table colored in a dark shade of green, the one with the worst (highest)
mean objective function value has a dark red color, and the ones in between
are ordered from green (better) to red (worse). This paradigm is also used in
the subsequent tables for making straightforward comparisons. From Table 2
we can see that the “usefulness” of the individual components of LSADE is
very problem-dependent, as there are instances, where adding either compo-
nent may be beneficial or detrimental. However, based on the results, it seems
advantageous to have the RFB condition be true, as the majority of the best
results (11 of the 14 instances) were achieved by the R1 variants. As for the
other two components, the situation is more nuanced – it is clear that they
are both beneficial (the best results are always in a variant with either Li1
or Lo1), but the trade-off between adding one or the other needs to be be
investigated in more detail.
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Table 4 Comparison of the dynamic rules for the Lipschitz and Local Optimization condi-
tions, D = [30, 50, 100].

D F [min,max] 1-4 | 8-1 1-6 | 8-1 1-8 | 8-1 1-4 | 6-1 1-6 | 6-1 1-8 | 6-1 1-4 | 4-1 1-6 | 4-1 1-8 | 4-1

F1 [0.0061, 0.0113] 0.0113 0.0087 0.0069 0.0103 0.0107 0.0079 0.0082 0.0066 0.0061

F2 [26.63, 27.06] 27.06 26.69 26.83 27.04 27.01 26.63 26.95 26.86 26.75

F3 [1.122, 3.496] 1.308 1.152 1.480 1.235 1.279 1.122 2.546 3.496 3.327

F4 [0.013, 0.051] 0.051 0.033 0.012 0.037 0.040 0.019 0.040 0.013 0.014

F5 [-218.7, -196.3] -218.7 -213.4 -214.5 -196.3 -197.0 -198.5 -213.1 -211.3 -215.5

F6 [402.8, 439.6] 433.7 439.6 436.5 402.8 406.3 412.2 425.1 434.6 434.6

30

F7 [964.8, 978.9] 965.7 967.5 975.0 964.8 969.0 970.6 978.9 978.3 974.8

F1 [0.839, 1.686] 1.358 1.686 1.126 1.400 1.339 0.839 1.499 1.248 1.144

F2 [47.65, 58.89] 47.65 47.73 49.71 50.12 50.25 51.67 58.15 58.69 57.93

F3 [6.876, 12.42] 6.876 7.469 8.467 8.995 8.858 9.344 11.02 12.03 12.42

F4 [0.749, 1.097] 0.819 0.789 0.749 0.887 0.898 0.879 1.031 1.045 1.097

F5 [-136.4, -97.26] -98.78 -97.26 -99.96 -108.7 -107.5 -123.9 -136.4 -132.3 -131.1

F6 [367.2, 405.2] 370.3 379.2 405.2 384.8 375.1 388.8 367.2 384.1 380.7

50

F7 [1015, 1068] 1016 1027 1053 1015 1025 1033 1037 1051 1068

F1 [88.13, 125.3] 112.8 105.2 94.59 97.99 106.3 88.13 125.3 110.3 112.0

F2 [123.6, 147.5] 140.6 135.7 132.8 138.0 141.1 123.6 147.5 129.0 138.4

F3 [12.05, 15.11] 12.05 12.77 13.41 13.25 13.48 14.06 14.78 14.90 15.11

F4 [6.517, 18.74] 6.517 7.434 12.47 7.574 8.522 11.37 10.64 14.74 18.74

F5 [34.52, 117.6] 60.28 117.6 82.19 92.60 96.94 94.94 34.52 44.79 82.18

F6 [332.7, 363.0] 332.7 343.6 360.0 343.4 345.0 354.1 333.7 351.5 363.0

100

F7 [1144, 1193] 1144 1162 1185 1162 1176 1193 1160 1184 1192

4.3 Tuning the Lipschitz and Local Optimization Conditions

As LSADE allows controlling the addition of points for evaluation for the indi-
vidual surrogates, we use it for tuning the balance between the exploration via
the Lipschitz condition and the exploitation via the Local Optimization con-
dition (from this point onward, the RBF condition is always true). We start
by using static rules for both conditions to be true, which will be based on
the current iteration number. We consider 5 possibilities: 1 – iteration number
divisible by 1 (i.e., every iteration); 2 – iteration number divisible by 2 (ev-
ery other iteration); 4 – iteration number divisible by 4; 8 – iteration number
divisible by 8; 0 – never. For example, Li2 |Lo0 means that points for real
function evaluation based on the Lipschitz condition are added every two it-
erations and the Local Optimization is not used at all. In this setting, there
were 25 variations in total. The results of the computations (mean over the
20 independent runs) for all 25 variations of the considered static rules for
D = 30 are reported in Table 3. In the table, next to the benchmark function
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identifier is the best and worst results in square brackets, where we chose to
omit the rules with Li0 or Lo0 (as these were often quite a lot worse than the
other ones). Also in Table 3 are the aggregate results for D = 50, while the
detailed results can be found in the Appendix. These results suggest that using
both the Lipschitz surrogate and the local optimization procedure is benefi-
cial for every benchmark problem. The Lispchitz surrogate is especially well
suited for problems F3 and F5-F7 (which are the ones with the complicated
multimodal structure). However, none of the variations performed very well
for all the considered problems, and the difference between the best and the
worst variation for a given problem (even with disregarding rules with Li0 or
Lo0) was quite high.

Since the Lipschitz surrogate should serve as an exploration-enhancing part
of the algorithm, it is only natural that the frequency of its use should dimin-
ish as the iterations progress, to make space for the parts of the algorithm
that focus on the exploitation of prospective areas. Hence, we devised several
dynamic rules that decrease the frequency of using the Lipschitz surrogate,
and increase the frequency of the local optimization, both in a linear manner.
For instance, the variant Li1-4 |Lo8-1 starts with the Lipschitz surrogate being
used every iteration and the local optimization procedure being used every 8
iterations, and ends with the Lipschitz surrogate being used every 4 iterations
and the location optimization procedure being used every iteration. The indi-
vidual conditions for the 9 considered variations can be found in the Appendix.
The results of the computations with the dynamic rules for D = [30, 50, 100]
are summarized in Table 4. When comparing the results from the dynamic and
the static rules, two important observations can be made. First, the dynamic
rules have a much smaller interval between the best and the worst variation
for the given problem instance, while the values of the best instances remain
comparable. Second, there is one variation that stands out as having good
results across many problem instances, particularly in higher dimensions.

The Li1-4 |Lo8-1 variant of the algorithm was selected as the best-performing
one and will be used as the default variation for the subsequent modifications.
It would probably be advantageous to devise a scheme that automatically de-
cides on the frequency of using the Lipschitz surrogate or the local optimization
procedure based on the past improvements and to tailor it for each problem
separately. This is a research topic we plan to investigate in the future.

4.4 Comparison of Different RBFs

Next, we investigate the effect of using different basis functions for the two
RBF surrogate models (one global and one local). We use the Li1-4 |Lo8-1
rule for the Lipschitz and Local Optimization conditions that was tuned for
the multiquadratic (MQ) basis function and run the algorithm with cubic,
thin plate spline (TPS), linear, and Gaussian basis function for the two RBFs
instead. The results of the computations can be found in Table 5. From these
results, it is apparent that the choice of the basis function has a substantial
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Table 5 Comparison of different basis functions, D = [30, 50, 100].

D F MQ Cubic TPS Linear Gaussian

F1 0.011 0.011 0.509 6.276 0.003

F2 27.06 27.77 31.86 93.31 28.10

F3 1.308 0.256 0.418 4.946 4.164

F4 0.051 0.176 0.577 1.883 0.944

F5 -218.7 -172.6 -155.9 -143.6 -9.30

F6 433.7 426.2 437.2 448.1 526.5

30

F7 965.7 938.8 944.4 965.8 951.7

F1 1.358 0.434 7.556 54.78 0.191

F2 47.65 47.98 62.20 221.8 47.71

F3 6.876 0.695 1.822 10.56 5.161

F4 0.819 0.380 0.801 5.668 0.930

F5 -98.78 -10.03 2.45 82.64 274.9

F6 370.3 481.6 464.5 521.6 585.6

50

F7 1016 976.3 979.6 1054 985.7

F1 112.8 30.94 279.5 766.6 20.39

F2 140.6 106.4 331.7 714.5 165.1

F3 12.05 4.622 9.089 16.65 8.965

F4 6.517 0.816 2.190 69.61 0.946

F5 60.28 646.8 527.1 701.2 1012

F6 332.7 550.4 522.9 572.5 596.3

100

F7 1144 1056 1146 1248 1112

effect on the performance of the algorithm. Both the multiquadratic and the
cubic basis functions performed very well on most of the problem instances,
the TPS function was consistently mediocre, the Gaussian function performer
mostly poorly (apart from the F1 problem) and the linear function performed
the worst. The convergence histories of these variations can be found in the
Appendix. Once again, it would very likely be beneficial to devise a scheme
that would automatically choose the “appropriate” basis function for each
problem separately. In the same vein, using different RBFs for the local and
global models could also improve the performance of the algorithm.

4.5 Comparison with Other Algorithms

The proposed LSADE method is compared with six SAEAs, namely, SA-
COSO [26], ESAO [33], SAGWO [36], GSGA [34], MGP-SLPSO [35], and
SAMSO [31], which are all methods for high-dimensional expensive problems
that can be compared on the same testbed (although some of the problems
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Table 6 Comparison with other algorithms, average objective function value.

D F SAMSO MGP-SLPSO GSGA SAGWO ESAO SA-COSO LSADE-MQ LSADE-C

F1 0.0053 0 0.073 0.00007 0.027 3.85 0.0113 0.0115

F2 28.3 100 27.60 28.30 25.04 59.9 27.06 27.77

F3 0.628 6.58 0.023 0 2.521 5.01 1.308 0.256

F4 0.538 0.013 0.228 0.015 0.953 1.44 0.051 0.176

F5 -239 -220 -203.0 -128.8 6.325 -57.4 -218.7 -172.6

F6 372 N/A 424.7 489.8 N/A 528 433.7 426.2

30

F7 922 952 927.2 973.2 931.6 969 965.7 938.8

F1 0.513 0 0.621 0.004 0.740 46.6 1.358 0.434

F2 50.1 120 48.21 49.06 47.39 253 47.65 47.98

F3 1.53 9.31 0.022 0 1.431 8.86 6.876 0.695

F4 0.666 0.154 0.346 0.025 0.94 5.63 0.819 0.380

F5 -169 33 -75.82 98.39 198.6 235 -98.78 -10.03

F6 326 N/A 403.3 502.0 N/A 613 370.3 481.6

50

F7 970 1060 970.7 1044.1 975.3 1080 1016 976.3

F1 72.1 0.00005 12.33 0.139 1283 985 112.8 30.94

F2 286 612 109.1 123.4 578.8 2500 140.6 106.4

F3 6.12 14.3 1.31 0 10.36 15.9 12.05 4.622

F4 1.06 0.715 0.706 0.023 57.34 63.5 6.517 0.816

F5 737 885 672.5 800.1 713.4 1420 60.28 646.8

F6 513 N/A 447.2 518.6 N/A 807 332.7 550.4

100

F7 1290 1390 1256 1350 1372 1410 1144 1056

F1 1520 N/A N/A N/A 17616 16382 3959 793.6

F2 1150 N/A N/A N/A 4318 16411 927.2 576.3

F3 12 N/A N/A N/A 14.69 17.86 15.20 14.58

F4 9.03 N/A N/A N/A 572.9 577.7 135.6 2.892

F5 4960 N/A N/A N/A 5389 3927 1416 2305

F6 684 N/A N/A N/A N/A N/A 578.7 722.7

200

F7 1340 N/A N/A N/A 1456 1347 1276 1222

have not been evaluated by some of the algorithms). SA-COSO is a surrogate-
assisted cooperative swarm optimization algorithm, in which a surrogate-assisted
particle swarm optimization algorithm and a surrogate-assisted social learn-
ing based particle swarm optimization algorithm cooperatively search for the
global optimum. ESAO is an evolutionary sampling-assisted optimization method
that combines global and local search to balance exploration and exploita-
tion, and employs DE as the optimization method. SAGWO utilizes the grey
wolf optimization algorithm and conducts the search in three phases, initial
exploration, RBF-assisted meta-heuristic exploration, and knowledge mining
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on RBF. GSGA uses a surrogate-based trust region local search method, a
surrogate-guided GA updating mechanism with a neighbor region partition
strategy, and a prescreening strategy based on the expected improvement infill-
ing criterion of a simplified Kriging in the optimization process. MGP-SLPSO
employs a multi-objective infill criterion that considers the approximated fit-
ness and the approximation uncertainty as two objectives for a Gaussian pro-
cess assisted social learning particle swarm optimization algorithm. SAMSO is
a a surrogate-assisted multiswarm optimization algorithm for high-dimensional
problems, which includes two swarms: the first one uses the learner phase of
teaching-learning-based optimization to enhance exploration and the second
one uses the particle swarm optimization for faster convergence. The data for
the comparison were obtained from the corresponding papers, with the excep-
tion of the data for SA-COSO and ESAO, which were obtained from [31].

The average objective function value for the considered algorithms and for
the LSADE algorithm with multiquadratic and cubic RBFs are reported in
Table 6. More detailed results, including the best results, worst results, and
standard deviations of the independent runs for all the considered algorithms
can be found in the Appendix. Looking at D = 30 first, we can see that
there is no one algorithm that is strictly better than all the others on all the
benchmark functions. The less complicated functions F1-F4 are dominated by
MGP-SLPSO, GSGA, SAGWO, and EASO, while for the more complicated
functions F5-F7 SAMSO seems to be the best. Both of the LSADE variants
come out somewhere in the middle for all problems. In a direct comparison
with LSADE, the best ones are SAMSO (better in 5/7 than LSADE-MQ) and
GSGA (better in 5/7 than LSADE-C). For D = 50 the situation is quite sim-
ilar: the best algorithms for the less complicated problems are MGP-SLPSO,
SAGWO, and ESAO, while SAMSO dominates the more complicated prob-
lems again. Both of the LSADE variants are, once again, somewhere in the
middle. In a direct comparison with LSADE, the SAMSO is the best (bet-
ter in 6/7 than LSADE-MQ). However, the situation changes substantially
for higher dimensions. For D = 100, MGP-SLPSO, LSADE-C, and SAGWO
dominate the less complicated functions, while LSADE-MQ and LSADE-C
have the best results for the more complicated function. In direct compari-
son with LSADE, the best ones are GSGA and SAGWO (both 4/7 for both
variants). For D = 200, only three of the six considered algorithms reported
results (possibly because of prohibitively large computational times as will be
investigated in the following section). In these largest instances, LSADE-MQ
and LSADE-C were the best choices for all problems with the exception of F3
for which SAMSO was the best.

The convergence histories of the considered algorithms forD = [50, 100, 200]
are depicted in Figures 3 and 4, where on the y axis are not the objective func-
tion values, but the difference between the objective function value and the
corresponding optimum (otherwise, the log operator would fail for F5). For
D = 200, the convergence histories of the six compared algorithms were not
available, and the convergence history of LSADE can be found in the Ap-
pendix. From these results, it is quite clear that the LSADE algorithm with
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properly tuned rules for using the newly proposed Lipschitz surrogate model
and local optimization procedure compares well to the state-of-the-art SAEAs,
especially for the high-dimensional highly complicated benchmark problems.

Fig. 3 Convergence history of the considered algorithms on the benchmark functions F1–F4
in dimensions D = [30, 50, 100].
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Fig. 4 Convergence history of the considered algorithms on the complicated benchmark
functions F5–F7 in dimensions D = [30, 50, 100].

4.6 Computational Complexity

For LSADE the computational complexity mainly consists of five parts: the
computation time for initial search, creating and evaluating the local and
global RBF surrogate models, creating and evaluating the Lipschitz model,
local optimization, and real function evaluations. In the following, we focus on
empirical analysis of the computational time for the surrogates and the local
optimization procedure, as the time for real function evaluations depends on
the problem the algorithm is applied to solve (these evaluations are expected
to be costly, otherwise the algorithm should not be used). First, we compare
the computational times for the individual components of the LSADE algo-
rithm, using the R0 |Li0 |Lo1, R0 |Li1 |Lo0, and R1 |Li0 |Lo0 variants of the
algorithm for the computation of the benchmark problems for D = [30, 50].
The results of these computations are reported in Table 7. We observe that
the computation of Lipschitz surrogate model is significantly less computation-
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ally demanding than the computation of the (multiquadratic) RBF surrogate
model. Unsurprisingly, the computational requirements for the local optimiza-
tion are quite large, as these computations also contain the construction of the
local RBF surrogate model.

Table 7 Computational time [s] of the individual components of LSADE, D = [30, 50].

D F R0 |Li0 |Lo1 R0 |Li1 |Lo0 R1 |Li0 |Lo0

30

F1 76.35 3.44 38.96

F2 43.12 3.36 38.97

F3 46.59 3.19 38.36

F4 30.02 3.03 37.46

F5 70.94 3.40 39.10

F6 55.24 7.01 43.27

F7 74.55 7.03 44.49

50

F1 239.17 5.46 51.15

F2 158.25 5.57 51.57

F3 153.27 5.41 53.34

F4 85.77 5.78 53.40

F5 231.53 5.75 52.91

F6 170.06 9.62 56.26

F7 229.90 9.43 55.92

The computational requirements for different variants of the LSADE algo-
rithm will differ based on the number of RBF and Lipschitz surrogate evalu-
ations, and on the number of times the local optimization procedure is used.
The number of times these individual components were used for the variant
of LSADE that was chosen for numerical comparisons (Li1-4 |Lo8-1), as well
as for the other variants can be found in the Appendix. The average compu-
tational times of LSADE-MQ and LSADE-C for the benchmark problems for
D = [30, 50, 100, 200] can be found in Table 8. The computational times for
different variants of LSADE as well as for different basis functions can also be

Table 8 Comparison with other algorithms, computational times [s].

D SA-COSO MGP-SLPSO SAGWO LSADE-MQ LSADE-C

30 N/A N/A 226 33.24 54.14

50 595 666 428 59.8 83.45

100 833 741 1099 164.1 167.7

200 N/A N/A N/A 591.3 685.6
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Table 9 Dependence of computational time [s] of computing the Lipschitz constant estimate
on dimension D and on the number of points for surrogate construction n.

D

30 50 100 200 500 1000

n

30 2.13E-04 9.45E-05 1.34E-04 1.81E-04 2.76E-04 4.84E-04

50 3.31E-04 3.03E-04 2.97E-04 4.52E-04 7.54E-04 1.32E-03

100 9.77E-04 8.73E-04 1.11E-03 1.60E-03 2.96E-03 5.40E-03

200 3.02E-03 3.41E-03 5.14E-03 6.27E-03 1.20E-02 2.13E-02

500 1.87E-02 2.16E-02 2.73E-02 3.91E-02 7.56E-02 1.34E-01

1000 6.98E-02 8.81E-02 1.13E-01 1.56E-01 3.11E-01 5.39E-01

found in the Appendix. Also in Table 8 are the computational times of SA-
COSO, MGP-SLPSO, and SAGWO that were reported in the respective pa-
pers. As for the other compared algorithms, GSGA reported a computational
time of 3 hours for the function F3 in D = 100, and EASO and SAMSO did not
include an empirical analysis of computational complexity. This comparison
gives a clue as to why were the MGP-SLPSO, SAGWO, and GSGA algorithms
not used for solving the large D = 200 problems – the computational times
become a bit prohibitive for a large number of runs on numerous benchmark
functions (but not necessarily prohibitive for a real application). On the other
hand, the computational requirements for LSADE remain relatively low, with
a dependence on the problem dimension that is roughly quadratic (at least
for the considered benchmark problems). This is another indication that the
LSADE algorithm is well suited for high-dimensional expensive problems.

The complexity of the Lipschitz surrogate itself depends on two main oper-
ations: on the estimation of the Lipschitz constant and on the evaluation of the
surrogate. Through empirical analysis (performed on F7) shown in Table 9 we
can see that for the Lipschitz constant estimation there is a linear dependence
of the computational time on the problem dimension D and a quadratic de-
pendence on the number of evaluated points n. Similarly, in Table 10, we find
that the computational time for evaluating the Lipschitz surrogate depends
linearly on both D and n.

5 Conclusion

In this paper, we proposed a novel Lipschitz-based surrogate model for com-
putationally expensive problems and used it to develop LSADE, a differen-
tial evolution-based surrogate-assisted evolutionary algorithm. The LSADE
algorithm utilizes the combination of the Lipschitz-based and standard RBF
surrogate models and a local optimization procedure to balance the explo-
ration and the exploitation on a limited computational budget. The proposed
LSADE algorithm was evaluated and its hyperparameters (such as the choice
of the particular RBF surrogate and the frequency of its individual compo-
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Table 10 Dependence of computational time [s] for evaluating 10,000 points on the Lips-
chitz surrogate model on dimension D and on the number of points for surrogate construction
n.

D

30 50 100 200 500 1000

n

30 7.09E-02 6.81E-02 8.57E-02 1.19E-01 2.15E-01 3.92E-01

50 8.97E-02 1.05E-01 1.32E-01 1.85E-01 3.43E-01 6.08E-01

100 1.60E-01 1.88E-01 2.47E-01 3.53E-01 6.73E-01 1.19E+00

200 3.07E-01 3.61E-01 4.81E-01 6.91E-01 1.33E+00 2.38E+00

500 7.29E-01 8.88E-01 1.17E+00 1.69E+00 3.30E+00 5.93E+00

1000 1.45E+00 1.76E+00 2.33E+00 3.37E+00 7.06E+00 1.22E+01

nents) were tuned on a testbed of seven widely used 30, 50, 100, and 200
dimensional benchmark problems. The computational results show its effec-
tiveness and competitiveness with other state-of-the-art algorithms, especially
for complicated and high-dimensional problems.

There still remains much room for further improvements. The conditions
for including new points based on the Lipschitz surrogate and local optimiza-
tion could be made in an adaptive manner based on the progress of the al-
gorithm. Similarly, the use of different RBFs or ensembles within the same
algorithm, or the use of different evolutionary algorithms could also make the
method more effective for certain classes of problems. The method could also
be tested on a more diverse set of benchmark functions. Future work will also
include the extension of the Lipschitz-based surrogate model to multifidelity
and multicriteria optimization problems and its application to real-world prob-
lems.
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Table 11 Results for the static rule, D = 50.

Li |Lo F1 F2 F3 F4 F5 F6 F7

0 | 0 285.5 214.4 18.36 79.97 272.9 787.4 1229

0 | 1 3.728 65.41 17.99 191.9 20.03 752.7 1238

0 | 2 3.523 66.94 17.77 122.0 4.710 738.0 1231

0 | 4 22.32 69.03 17.71 73.31 14.93 703.4 1209

0 | 8 5.086 65.10 17.72 43.94 -6.35 697.0 1181

1 | 0 69.96 161.8 10.58 9.118 161.9 567.8 1047

2 | 0 41.16 112.8 13.81 5.002 204.2 597.8 1102

4 | 0 35.79 97.44 16.41 6.165 181.6 621.2 1133

8 | 0 34.67 90.68 16.95 8.976 216.4 654.0 1162

1 | 1 2.352 65.12 15.56 6.464 -138.0 410.4 1077

1 | 2 3.861 62.05 13.81 1.628 -132.2 363.2 1028

1 | 4 4.645 61.36 9.822 1.082 -120.9 364.7 1019

1 | 8 6.003 49.13 6.460 1.045 -106.2 389.8 1023

2 | 1 0.817 60.57 15.61 12.24 -76.34 454.4 1100

2 | 2 0.687 55.65 15.34 2.408 -92.19 423.2 1102

2 | 4 1.253 51.08 14.16 1.183 -90.54 423.9 1061

2 | 8 1.959 50.49 13.92 1.010 -60.46 440.9 1058

4 | 1 0.575 65.37 16.07 30.49 -66.03 558.6 1156

4 | 2 0.702 56.74 16.21 6.269 -64.67 544.1 1125

4 | 4 0.513 54.82 15.78 1.424 -45.27 491.7 1095

4 | 8 0.967 47.45 15.69 1.105 -46.09 468.2 1112

8 | 1 0.629 62.46 16.78 71.78 -18.57 615.8 1195

8 | 2 0.623 58.93 16.73 18.43 -40.99 570.5 1181

8 | 4 0.445 59.70 16.72 4.286 0.750 568.5 1156

8 | 8 0.708 48.66 16.50 1.587 -35.96 533.9 1150

Appendix A - Detailed Results for the Static Rules

In Table 11 are the detailed results for the static rules for D = 50. It shows,
once again, that using both the Lipschitz surrogate model and the local opti-
mization procedure provides substantial benefits. On its own, using the Lips-
chitz surrogate model was better than using the local optimization procedure
for benchmark functions F3, F4, F6 and F7. However, the combinations of
these two components are far superior for all considered benchmark functions.

Appendix B - Conditions for the Dynamic Rules

In Table 12 are the conditions used for the dynamic rules of the LSADE algo-
rithm. The mod function gives the remainder after division (modulo operation)
and d·e is the ceil operation that rounds the value inside to the nearest integer
greater than or equal to that value.
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Table 12 Conditions for dynamic rules of the different variants of the LSADE algorithm.

Li |Lo Lipschitz condition Local Condition

1-4 | 8-1 mod(iter, d 8·iter
1000

e) = 0 mod(iter, d 8000−15·iter
1000

e) = 0

1-6 | 8-1 mod(iter, d 10·iter
1000

e) = 0 mod(iter, d 8000−15·iter
1000

e) = 0

1-8 | 8-1 mod(iter, d 14·iter
1000

e) = 0 mod(iter, d 8000−15·iter
1000

e) = 0

1-4 | 6-1 mod(iter, d 8·iter
1000

e) = 0 mod(iter, d 6000−12·iter
1000

e) = 0

1-6 | 6-1 mod(iter, d 10·iter
1000

e) = 0 mod(iter, d 6000−10·iter
1000

e) = 0

1-8 | 6-1 mod(iter, d 14·iter
1000

e) = 0 mod(iter, d 6000−10·iter
1000

e) = 0

1-4 | 4-1 mod(iter, d 8·iter
1000

e) = 0 mod(iter, d 4000−8·iter
1000

e) = 0

1-6 | 4-1 mod(iter, d 12·iter
1000

e) = 0 mod(iter, d 4000−8·iter
1000

e) = 0

1-8 | 4-1 mod(iter, d 15·iter
1000

e) = 0 mod(iter, d 4000−8·iter
1000

e) = 0

Appendix C - Computational Complexity for Different Dynamic
Rules and Basis Functions

The computational complexity of the different variants of the LSADE algo-
rithm depends on the number of times the algorithm computed the RBF global
and local models, the Lipschitz model and the local optimization procedure.
Based on the rules described in Table 12, the number of evaluation of the
individual components of the LSADE algorithm for the different variations of
the dynamic rule are shown in Table 13.

Table 13 Number of evaluations of the individual components of LSADE for different
dynamic rules for D = [30, 50]

Li |Lo global RBF surrogate Lipschitz surrogate local optimization

(+local RBF)

1-4 | 8-1 495 260 145

1-6 | 8-1 510 231 159

1-8 | 8-1 531 189 180

1-4 | 6-1 471 254 175

1-6 | 6-1 512 231 157

1-8 | 6-1 533 189 178

1-4 | 4-1 445 248 207

1-6 | 4-1 469 200 231

1-8 | 4-1 483 172 245

In Table 14 are the computational times for the different variation of the
dynamic rule for D = [30, 50, 100]. We can see that the computational effort is
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Table 14 Computational time [s] for the different dynamic rules for D = [30, 50, 100]

D F 1-4 | 8-1 1-6 | 8-1 1-8 | 8-1 1-4 | 6-1 1-6 | 6-1 1-8 | 6-1 1-4 | 4-1 1-6 | 4-1 1-8 | 4-1

30

F1 34.81 35.30 38.17 43.48 36.11 35.77 36.47 39.48 39.76

F2 36.44 38.48 42.56 53.36 37.84 37.81 40.02 42.55 43.94

F3 28.24 33.15 35.92 39.94 31.07 30.67 30.01 33.20 33.78

F4 29.62 33.24 36.32 40.36 32.01 32.38 31.52 32.34 34.22

F5 36.27 40.97 45.66 41.19 38.88 43.65 39.14 40.21 41.59

F6 36.95 39.75 48.67 43.02 40.63 47.03 39.86 40.17 42.91

F7 30.39 34.61 42.91 35.24 32.88 40.35 33.63 34.65 36.38

50

F1 66.73 69.96 75.20 84.41 73.73 90.86 82.39 89.50 88.31

F2 70.27 74.56 81.22 97.81 81.04 94.28 93.03 97.69 97.13

F3 44.13 46.28 49.45 59.08 51.52 61.87 58.04 58.47 58.86

F4 49.63 52.70 58.52 64.85 59.76 75.67 63.64 70.84 74.52

F5 70.52 74.81 80.54 97.25 77.47 94.39 91.03 91.95 94.57

F6 64.46 69.44 73.05 80.62 69.74 77.45 82.91 85.41 86.28

F7 52.90 55.64 61.47 58.95 58.13 66.13 66.27 69.47 71.75

100

F1 194.43 209.00 228.94 237.74 229.36 234.38 270.51 301.35 312.44

F2 200.79 225.49 244.92 256.21 239.94 248.38 287.85 327.42 331.41

F3 124.03 146.51 137.47 150.47 144.99 147.01 174.52 203.86 182.72

F4 136.74 161.40 185.65 163.92 168.58 185.41 199.25 238.07 238.36

F5 202.60 211.31 246.00 239.35 231.15 242.88 280.10 309.55 360.38

F6 163.63 170.32 199.43 187.03 176.06 199.93 219.83 246.08 276.70

F7 126.78 138.73 170.19 151.88 150.29 168.68 173.01 207.39 234.45

tied most directly to the number of times the local optimization procedure was
used – the variants that use it more often needed more computational time,
especially when the dimension of the problems increased. Another interesting
observation can be made regarding the difference in computational complexity
for the different benchmark functions – F1, F2, and F5 seem to require signif-
icantly more computational effort for the dynamic rules, especially in higher
dimensions. We can compare this observation with the computational times
for the individual components of LSADE that is reported in the paper. There,
we can see that the computational times for local optimization procedure were
quite high for problems F1, F5, and F7, while the other two components had
only small dependence of computational time on the benchmark function.

However, when we look at the computational complexity for different basis
functions, that is reported in Table 15, we see that this dependence on the
benchmark function is not shared among them. What we see instead is that
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for each choice of a basis function there are benchmark functions for which
the computations seem to be more “difficult”, regardless of dimension. For in-
stance, F3 and F4 need more computational time for the linear basis function,
while being among the “easiest” for the multiquadratic basis function. This
could be explained by the different nature (and, thus, different “difficulty”)
of the local RBF models for the sequential quadratic programming optimizer
that is used as the local optimization procedure.

Appendix D - Convergence Histories for Different Basis Functions

The convergence histories for different basis functions are depicted in Figure
5. We can see that, most of the time, the best variant (i.e., the best choice
of the basis function) of LSADE for a particular problem instance did not
plateau around the 1000 real function evaluation limit. Also, the best per-
forming variant for the particular problem instance (i.e, the one that had be
best result after 1000 real function evaluations) is not necessarily the one that
was the best when the number of real function evaluations was smaller. This
phenomenon can be clearly observed for the D = 200 benchmark problems,
where the convergence histories for cubic and multiquadratic basis functions
cross one another for the majority of the considered benchmark functions.
This suggests that it may be beneficial to consider several basis functions in
an ensemble at the same time and find a rule for using one of them based on
the properties of the particular problem.

Appendix E - Detailed Results for the Algorithms Considered for
the Comparison

In Tables 16 and 17 are detailed results of the computations of the six algo-
rithms considered for comparison and two two LSADE variants (LSADE-MQ
and LSADE-C). These detailed results were obtained from the respective pub-
lications, with the expection of the results for EASO and SA-COSO that were
obtained from the SAMSO paper, and contain the best value, mean, the worst
value, and standard deviation from the corresponding computational experi-
ments (for some algorithms, some of these statistics were not available, and
not all of the algorithms were tried on all of the benchmark functions).

From these results, we can see that although the LSADE variants are
mediocre for the benchmark problems in smaller dimensions, they are perform-
ing very well in the dimensions D = [100, 200], especially for the benchmark
functions F5-F7 with a more complicated multimodal landscape. For instance,
the worst solution obtained by LSADE-MQ in D = 100 for benchmark func-
tions F5-F7 was better than the mean of the solutions of all other compared
algorithms (except for LSADE-C).
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Table 15 Computational time [s] for the different basis functions, D = [30, 50, 100, 200].

D F MQ Cubic TPS Linear Gaussian

30

F1 34.81 54.53 43.40 33.71 45.88

F2 36.44 58.33 49.46 32.42 50.65

F3 28.24 51.36 41.60 48.91 51.99

F4 29.62 62.10 54.11 54.30 51.92

F5 36.27 54.06 44.84 33.63 38.53

F6 36.95 53.23 51.09 37.53 43.71

F7 30.39 45.41 49.36 38.11 40.61

50

F1 66.73 102.76 92.01 44.63 86.73

F2 70.27 108.29 85.52 48.05 85.45

F3 44.13 64.07 62.10 77.25 76.60

F4 49.63 93.61 84.86 76.13 77.39

F5 70.52 76.13 70.61 41.16 47.43

F6 64.46 72.62 73.43 44.33 53.72

F7 52.90 66.70 59.00 43.56 52.37

100

F1 194.43 243.85 201.95 93.25 214.97

F2 200.79 257.15 209.09 104.64 189.06

F3 124.03 171.90 191.66 168.00 175.51

F4 136.74 179.88 179.44 167.52 131.28

F5 202.60 107.27 90.91 70.36 84.71

F6 163.63 104.77 88.37 80.79 88.68

F7 126.78 109.52 93.51 90.94 96.84

200

F1 883.57 1078.10 – – –

F2 847.72 1114.60 – – –

F3 446.99 801.77 – – –

F4 420.28 501.90 – – –

F5 640.02 546.68 – – –

F6 467.05 327.74 – – –

F7 433.72 428.97 – – –
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Fig. 5 Convergence history of LSADE with different basis functions on the benchmark
functions F1–F7 in different dimensions.
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Table 16 Detailed statistics of the results for SAMSO, MGP-SLPSO, GSGA, and SAGWO
algorithms on all considered benchmark functions.

SAMSO MGP-SLPSO GSGA SAGWO

D F mean std best mean worst std best mean worst std best mean worst std

F1 0.0053 0.0057 N/A 0 N/A 0 0.0051 0.072 0.326 0.093 0.00001 0.000065 0.0003 0.000075

F2 28.3 0.854 N/A 100 N/A 22.3 25.69 27.59 29.04 1.295 26.79 28.29 28.83 0.517

F3 0.628 0.542 N/A 6.58 N/A 2.6 0.0065 0.023 0.057 0.023 0 0 0 0

30 F4 0.538 0.144 N/A 0.013 N/A 0.005 0.095 0.228 0.383 0.222 0.000001 0.015 0.134 0.032

F5 -239 24.3 N/A -220 N/A 19.6 -245.2 -203 -159.0 24.87 -176 -128.8 -58.71 30.82

F6 372 14.7 N/A N/A N/A N/A 275.5 424.7 563.1 106.2 348.4 489.8 675.8 128.8

F7 922 3.66 N/A 952 N/A 19 918.8 927.2 938.8 6.043 942.5 973.2 1016 18.47

F1 0.513 0.285 0 0 0 0 0.203 0.621 1.868 0.484 0.0007 0.004 0.015 0.0036

F2 50.1 0.768 88.4 120 165 18.7 46.84 48.21 49.10 0.766 48.35 49.06 49.94 0.449

F3 1.53 0.436 7.77 9.31 12.1 1.13 0.0060 0.021 0.076 0.023 0 0 0 0

50 F4 0.666 0.107 0.037 0.154 0.614 0.13 0.272 0.346 0.442 0.071 0.000035 0.025 0.230 0.058

F5 -169 31.7 -43.4 33 88.4 36.1 -139.6 -75.82 12.09 49.99 -16.63 98.39 161.5 46.90

F6 326 98.6 N/A N/A N/A N/A 271.8 403.3 524.8 87.59 430.2 502 564.2 45.25

F7 970 29.2 1030 1060 1110 21.4 943.7 970.7 1002 18.18 910 1044 1132 40.83

F1 72.1 17.8 0 0.00005 0.001 0.0002 2.603 12.32 27.15 9.394 0.017 0.139 0.371 0.097

F2 286 52.5 455 612 733 67.9 99.743 109.0 139.3 11.76 104.9 123.4 144.8 11.02

F3 6.12 0.409 13.4 14.3 15.7 0.621 0.156 1.31 2.807 0.968 0 0 0 0

100 F4 1.06 0.026 0.478 0.715 0.847 0.724 0.580 0.706 0.804 0.070 0.00021 0.023 0.229 0.052

F5 737 42 877 885 1160 117 620.4 672.5 705.2 29.79 676.7 800.1 919.0 79.27

F6 513 18.5 N/A N/A N/A N/A 422.4 447.2 472.6 14.25 482.0 518.6 555.3 20.54

F7 1290 33.4 1330 1390 1490 47.7 1220 1256 1287 24.56 910.2 1350 1437 107.5

F1 1520 21.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

F2 1150 11.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

F3 12 0.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

200 F4 9.03 1.33 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

F5 4960 138 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

F6 684 37.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

F7 1340 24.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
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Table 17 Detailed statistics of the results for EASO, SA-COSO, LSADE-MQ, and LSADE-
C algorithms on all considered benchmark functions.

EASO SA-COSO LSADE-MQ LSADE-C

D F mean std mean std best mean worst std best mean worst std

F1 0.027 0.070 3.85 1.19 0.0039 0.011 0.021 0.005 0.0008 0.011 0.047 0.012

F2 25.04 1.57 59.9 24.3 24.31 27.06 29.35 1.243 27.20 27.77 29.36 0.546

F3 2.521 0.84 5.01 1.22 0.026 1.308 3.028 1.011 0.0025 0.256 1.186 0.441

30 F4 0.953 0.05 1.44 0.18 0.0098 0.051 0.107 0.027 0.046 0.176 0.673 0.172

F5 6.325 26.5 -57.4 17.5 -278.2 -218.7 -136.0 35.68 -256.2 -172.6 -81.31 39.83

F6 N/A N/A 528 94.8 229.2 433.7 664.1 149.3 233.5 426.2 674.3 148.1

F7 931.6 8.94 969 24.3 922.2 965.7 1097 51.86 916.1 938.8 1004.3 26.37

F1 0.740 0.555 46.6 17.4 0.265 1.358 3.500 0.860 0.047 0.433 1.304 0.299

F2 47.39 1.71 253 56.7 43.92 47.65 49.17 1.332 45.53 47.98 49.19 0.864

F3 1.431 0.249 8.86 1.1 2.615 6.876 15.39 3.456 0.029 0.695 2.264 0.600

50 F4 0.94 0.042 5.63 0.892 0.560 0.819 1.051 0.132 0.198 0.38 0.662 0.129

F5 198.6 45.8 235 40.9 -194.6 -98.78 -5.288 52.92 -183.0 -10.03 151.2 93.88

F6 N/A N/A 613 37.4 259.0 370.3 579.8 109.5 339.2 481.6 657.1 80.89

F7 975.3 37.1 1080 36.6 954.3 1016 1134 53.369 936.1 976.3 1103 38.52

F1 1283 134 985 214 58.02 112.8 171.2 33.61 12.93 30.94 61.73 12.46

F2 578.8 44.8 2500 97.4 108.3 140.6 194.3 24.10 97.62 106.4 120.8 6.631

F3 10.36 0.211 15.9 0.514 9.431 12.05 16.54 2.203 3.540 4.622 6.157 0.619

100 F4 57.34 5.84 63.5 14.9 3.344 6.517 10.04 1.974 0.694 0.816 0.923 0.059

F5 713.4 26.5 1420 123 -71.63 60.28 426.2 121.0 503.0 646.8 768.0 64.37

F6 N/A N/A 807 65.7 267.3 332.7 419.4 37.77 486.8 550.4 688.2 43.30

F7 1372 27.5 1410 22.8 1076 1144 1232 44.45 1002 1056 1146 34.27

F1 17616 1170 16382 2980 2473 3959 5192 705.2 587.6 793.5 1137 154.3

F2 4318 284 16411 4100 683.0 927.2 1087 112.4 507.3 576.3 662.5 46.35

F3 14.69 0.219 17.86 0.022 13.97 15.2 16.08 0.509 11.59 14.58 17.30 1.400

200 F4 572.9 36 577.7 101 93.89 135.6 188.2 22.05 2.149 2.892 3.456 0.394

F5 5389 157 3927 27.3 1114 1416 2034 287.1 2042 2305 2625 156.8

F6 N/A N/A N/A N/A 474.5 578.7 883.3 88.76 541.2 722.7 818.7 60.65

F7 1456 20.4 1347 24.7 1226 1276 1352 28.15 1140 1222 1274 33.38
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