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Abstract

Anomaly detection is a well-known task that involves the
identification of abnormal events that occur relatively infre-
quently. Methods for improving anomaly detection perfor-
mance have been widely studied. However, no studies uti-
lizing test-time augmentation (TTA) for anomaly detection
in tabular data have been performed. TTA involves aggregat-
ing the predictions of several synthetic versions of a given
test sample; TTA produces different points of view for a
specific test instance and might decrease its prediction bias.
We propose the Test-Time Augmentation for anomaly Detec-
tion (TTAD) technique, a TTA-based method aimed at im-
proving anomaly detection performance. TTAD augments a
test instance based on its nearest neighbors; various meth-
ods, including the k-Means centroid and SMOTE methods,
are used to produce the augmentations. Our technique uti-
lizes a Siamese network to learn an advanced distance metric
when retrieving a test instance’s neighbors. Our experiments
show that the anomaly detector that uses our TTA technique
achieved significantly higher AUC results on all datasets eval-
uated.

Introduction
Anomalies are observations that do not meet the expected
behavior concerning some context or domain. Hawkins
(Hawkins 1980) defined an anomaly as ”an observation
which deviates so much from the other observations as to
arouse suspicions that it was generated by a different mech-
anism.” There are three broad aspects that anomaly detec-
tion approaches can be characterized by: the nature of the
input data, the availability of labels, and the type of anomaly
(Chandola, Banerjee, and Kumar 2009). The labels define
whether an observation is normal or anomalous. Often, it
is challenging to obtain labels for real-world problems, be-
cause anomalies are rare (Li et al. 2007).

Data augmentation means expanding the data by adding
transformed copies of a sample. This technique is used in
order to improve a model’s performance. By creating trans-
formed copies of a sample, the model can ”imagine” al-
terations for the specific sample to increase the model’s
generalizability thus performing better on unseen instances
(Shorten and Khoshgoftaar 2019). The generalizability of a
model refers to its performance when evaluated on new and

unknown data; overfitting occurs in models with poor gen-
eralizability. Thus, data augmentation aims to close the gap
between the known data (seen in the training phase) and any
future data, by representing a comprehensive set of possi-
ble data points (Shorten and Khoshgoftaar 2019). Most data
augmentation methods are applied to image data where the
typical transformations are flipping, cropping, rotating, and
scaling (Mikołajczyk and Grochowski 2018). Usually, data
augmentation is performed when the model is being trained
(Shorten and Khoshgoftaar 2019), however it can also be
utilized during test time.

Test-time augmentation (TTA) is an application of a data
augmentation technique on the test set. TTA techniques gen-
erate multiple augmented copies for each test sample, pre-
dicting each of them and combining the results with the
original sample’s prediction. TTA is more efficient than data
augmentation in the training phase, since it does not require
retraining the model yet preserves its accuracy and robust-
ness (Shanmugam et al. 2020).

Intuitively, when focusing on image data, TTA could pro-
duce different points of view by reducing errors for a spe-
cific image. One of the advantages of using augmentation to
train convolutional neural networks is that it reduces the er-
ror without changing the network’s architecture (Perez and
Wang 2017). However, in the case of massive training sets
like ImageNet (Deng et al. 2009), it could be expensive to
train the network with the augmented data. TTA is much
more efficient than data augmentation for training, because
no retraining of the model is required. According to the in-
dependence principle of ensemble methods (Rokach 2010),
the augmented instances’ diversity is critical for error re-
duction (Melville and Mooney 2005). Several studies have
proposed test-time augmentation techniques to improve ro-
bustness and accuracy, or estimate uncertainty (Wang et al.
2019; Cohen, Rosenfeld, and Kolter 2019; Sato, Nishimura,
and Yokoi 2015).

No studies, however, have applied TTA for anomaly de-
tection. In this paper, we propose the Test-Time Augmenta-
tion for anomaly Detection (TTAD) technique, which ad-
dresses this gap. The use of TTA in anomaly detection
could generate an augmented ”normal” sample that is out-
of-distribution and may reduce the anomaly detector’s per-
formance. There is a trade-off between diversity and gen-
erating close enough instances, i.e., in-distribution; the key
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idea of TTAD is to balance this trade-off by avoiding the
generation of out-of-distribution augmentations by learning
the test-time augmentations based on similar samples. We
use the Nearest Neighbors (NN) algorithm to retrieve the
closest neighbors of a given test sample. Most NN models
use a simple L1 distance or L2 distance, or another stan-
dard distance metric to measure and retrieve the closest data
points which are represented as vectors (Weinberger, Blitzer,
and Saul 2006). However, the above mentioned standard dis-
tance metrics are naive and cannot adequately capture the
underlying properties of the input data (Nguyen, Morell, and
De Baets 2016; Weinberger, Blitzer, and Saul 2006). Ide-
ally, NN models should be adapted to a particular problem
in terms of the distance metrics. Domeniconi (Domeniconi,
Gunopulos, and Peng 2005) showed how NN classification
performance significantly improved when a learned distance
metric was used.

In this paper we also propose an extension of the NN
algorithm for selecting the closest neighbors, utilizing a
learned distance metric in the NN model. Siamese neural
networks (Koch et al. 2015) can learn an adaptive distance
between two input samples by calculating the distance of
their learned embeddings (Lewis and Yang 2016). As a re-
sult, a trained Siamese neural network’s forward propagation
can be considered as a distance metric in an NN model. In
our case of tabular data, the input of a Siamese network ac-
cepts a pair of two tabular records. The network then com-
putes a distance metric between the pair’s embedding and
outputs a scalar representing this learned distance.

We examined different approaches for creating tabular
TTAs based on the output (the subset of data) of the NN
model. Our technique produces test-time augmentations on
a given test instance, with trained k-Means centroids as syn-
thetic augmentations, in order to produce a diverse set of
in-distribution TTAs. We also examine SMOTE as an aug-
mentation producer.

Our main contributions can be summarized as follows:
• We present TTAD, a novel TTA technique for tabular

anomaly detection tasks.
• Our technique produces diverse augmentations in a con-

trolled manner by avoiding out-of-distribution augmen-
tations, using an NN algorithm; the augmentation pro-
ducers generate the required diversity.

• Our extensive empirical experiments demonstrate that
our method outperforms the baselines.

Background & Related Work
SMOTE
In SMOTE (Chawla et al. 2002), each minority class sample
is augmented using each of the k nearest neighbors, with a
randomly selected number of neighbors. A linear interpola-
tion of existing minority class samples yields the generated
samples. Each minority class sample is oversampled as fol-
lows:

xsynthetic = x+ λ ∗ |x− xk|
where λ is a random value between {0, 1}, xk ∈ A, and
A represents the k nearest neighbors of the minority class

sample x. In our work, we utilize the SMOTE oversampling
approach to create test-time augmentations.

Isolation Forest
Liu (Liu, Ting, and Zhou 2008) proposed a method called
Isolation Forest (IF) to explicitly identify anomalies instead
of profiling normal data points. An isolation forest is built
based on decision trees, where partitions are created by ran-
domly selecting a feature and then arbitrarily splitting the
value of the selected feature. Anomalies are those instances
that have short average path lengths on the trees, because
they are less frequent than regular observations and fewer
splits are necessary. In our work, we used the Isolation For-
est method as a label propagation algorithm for Siamese net-
work training.

Autoencoder-Based Unsupervised Anomaly
Detection
Dau (Dau, Ciesielski, and Song 2014) proposed a method
that utilizes a replicator neural network, also called an au-
toencoder, for anomaly detection, which can operate both
in one-class and multi-class settings. When training the net-
work to reconstruct only ”normal” observations, the as-
sumption is that the trained network should have low re-
construction error on normal samples, because it learned
how to replicate the normal samples. In contrast, when han-
dling anomalous samples, the reconstruction error should be
higher, because the network is not trained to replicate these
samples. We used this anomaly detection strategy to evaluate
our approach.

Test-Time Augmentation
Kim (Kim, Kim, and Kim 2020) proposed a dynamic TTA
method for images, in which each transformation is adapted
to the current sample by learning the predicted loss of trans-
formed images from the training data. This method selects
the TTA transformation with the lowest predicted loss for a
given image. Thus, the final classification for a given im-
age is calculated by averaging the target network’s aver-
age classification outputs over the transformations that have
lower predicted losses. We used TTA for anomaly detection,
a novel application of TTA that was not used in prior studies.

Method
Figure 1 shows the proposed TTAD technique, including the
entire test phase. TTAD produces diverse augmentations for
the test set and combines a balance subset of augmentations
for each instance. Then it predicts the augmentations using
the anomaly detector. TTAD is based on two main compo-
nents. (1) The data selector component, which aims to se-
lect a subset of the data to learn the augmentation for each
instance in the test set. It enforces similarity between the
selected neighbors; and (2) the augmentation producer com-
ponent, which generates the test-time augmentations and en-
sures diversity in a controlled manner.

The trade-off between diversity and generating in-
distribution instances is balanced by the two components,
as shown in Algorithm 1.



Figure 1: An overview of the TTAD technique. a - The test set. b - An isolation forest is used to pseudo-label the test set. c - A
custom distance metric for the nearest neighbor data selector is learned using a Siamese network. d - TTAD is applied for each
instance in the test set. e - The data selector component selects a subset of instances for each instance in the test set to serve
as a training set for generating augmented instances. f - The augmentation producer component generates diverse augmented
instances. g - The instances are scored using an anomaly detector, and the anomaly score is aggregated by the mean.

For each instance in Xtest, the data selector component
(lines 1-5) selects a Subsetinstance of k points in (Xtrain ∪
Xtest). The augmentation producer component (line 6) gen-
erates T augmentations usingP as an augmentation method,
based on the Subsetinstance. Then the predictions of the
instance and the augmentations, which are obtained by the
anomaly detector AD, are aggregated (lines 7-8) to produce
the final prediction.

The TTAD technique, as presented, is a training-free algo-
rithm, which can easily be extended to a more general setting
and achieve computational efficiency. We also propose an
extension for the TTAD technique, which utilizes a learned
distance metric in the data selector component, as illustrated
in Figure 1 and described in the Component 1 section.

A detailed description of TTAD’s two components is pro-
vided below.

Component 1 - Neighbor-Based Data Selector
This component aims to select a training subset of the data
to learn the augmentation for each instance in the test set,
based on the k closest instances. We used an NN model
to choose the k closest ones. The data selector component
affects the trade-off between diversity and in-distribution
by avoiding the generation of out-of-distribution augmen-
tations. The subset of data (the nearest neighbors) selected
during this phase is used to generate in-distribution synthetic
samples. As a result, the neighbors selected have an impact
on the augmentation producer component.

We utilize an NN model that is fitted on both the training
and test set data. Given a sample s, the NN model retrieves
its closest neighbors {n1, n2, ..., nk} based on a predefined
distance metric, where k is the number of nearest neighbors
retrieved, as presented in Figure 2, where k = 3.

Learned Distance Metric The basic version of TTAD uti-
lizes the Euclidean distance as the distance metric for identi-

Algorithm 1: TTAD
Input:
k-Number of neighbors; T -Number of augmentations; P-
TTA producer;AD-Anomaly detector; Xtrain-Training set;
Xtest-Test set; d-Distance metric

1: Predictions← ∅
2: X ← Xtrain ∪Xtest

3: for instance in Xtest do
4: Compute distance d(instance,X)

5: Subsetinstance ← select set of k points with the
smallest distances d(instance,X)

6: TTA ← Produce t augmentations based on
Subsetinstance using P

7: Obtain ŷinstance and ŷTTA using AD
8: ŷaggregated ← ŷinstance∪ŷTTA

T+1

9: Predictions← Predictions ∪ ŷaggregated
return Predictions

fying the closest neighbors. However, the Euclidean distance
is considered naive, because it does not attempt to learn the
data manifold (Nguyen, Morell, and De Baets 2016; Wein-
berger, Blitzer, and Saul 2006).

Therefore, we propose an extension for TTAD’s data se-
lector component, utilizing a learned distance metric to over-
come the noted limitations of the Euclidean distance.

We use a Siamese network (Koch et al. 2015) to learn an
adapted distance metric between two samples in the context
of the given data distribution (Lewis and Yang 2016). The
input of the Siamese network is a pair of samples, and for-
ward propagation on two identical neural networks produces
the latent representation of each sample in the pair. The final
layer between these two vector representations outputs the



Figure 2: A subset of comparable data is selected for each
test instance by the NN model in the data selector compo-
nent.

Figure 3: The architecture of the Siamese network: xi and xj
are the input samples. Their embeddings are obtained by two
identical neural networks. The last layer outputs the distance
between the input pair embeddings.

distance between the input pair of samples where a distance
of zero denotes the closest similarity, and the larger the de-
viation, the greater the dissimilarity between them. The fol-
lowing is a more formal definition:

fθ(xi, xj) = d(fθ(xi)− fθ(xj))

where fθ is the network, parameterized by the model
weights θ, d is a distance metric (e.g., Euclidean distance),
and xi and xj are the input samples in a specific pair. Fig-
ure 3 shows how the final distance between two samples is
calculated. First, the two latent representations are obtained
by propagating each sample on an identical neural network.
Then the distance layer computes the difference between the
two representations.

Training a Siamese network requires input of similar and
dissimilar pairs, i.e., pairs of inputs from the same class and
pairs of inputs from different classes (normal or anomalous
in our task). The loss function is then adjusted to a binary
classification problem.

However, since TTAD is an unsupervised technique, we
cannot use labels to determine if a sample is anomalous
or not. Li (Li, Wang, and Guan 2019) proposed a pseudo-
labeling technique for anomaly detection called Outlier
Score Propagation (OSP) which uses an IF. We used the
same idea to assign a class, i.e., anomalous or normal, for
each sample, to create the pairs needed to train the Siamese
network.

Figure 4: Generation of diverse augmentations using the k-
Means model’s centroids on data selected in component 1.

We assume that using a learned distance metric obtained
from the forward propagation of a trained Siamese network
will help retrieve more suitable neighbors and thus will pro-
duce better test-time augmentations and yield better perfor-
mance.

The output of this component is data that will be fed to
the augmentation producer.

Component 2 - Augmentation Producer
This component generates the test-time augmentations
based on the selected data from component 1. We present
and compare several ways to augment a given test sample
using nearest neighbors, including the use of k-Means cen-
troids as synthetic augmentations and SMOTE.

K-Means TTA Producer The centroids of a trained k-
Means model can be considered as TTAs. During each it-
eration of a k-Means algorithm, new coordinates are cal-
culated for each cluster’s centroid. Finally, after the algo-
rithm’s convergence, the centroids represent the middle po-
sitions of the clusters that represent the given training data.
Thus, by fitting a k-Means model with a given test sample’s
nearest neighbors, we take the centroids of the clusters as
TTAs. Figure 4 presents the aforementioned procedure.

This approach introduces diversity in the augmentations.
The centroids created by the k-Means algorithm enforce k
diverse data points, representing the properties of k subsets
of the given data to the greatest extent possible. Such diver-
sity enforcement might improve the generalization, which
often leads to error reduction (Melville and Mooney 2005).

Using trained k-Means centroids as synthetic samples is
quite similar to using SMOTE. Both methods use the feature
space to produce new samples and consider the k nearest
neighbors. Trained k-Means centroids are data points com-
puted using all of the cluster samples, while in SMOTE, the
new data points are obtained using a random neighbor, with
an arbitrary gap in the distance between the random neigh-
bor and the oversampled point.

Oversampling TTA Producer We also chose the SMOTE
oversampling method as a TTA producer. Usually, oversam-
pling is applied to cope with imbalance between classes in
the dataset and reduce overfitting. However, we are are not
interested in balancing the data but rather in the synthetic
data generated for balancing. Thus, we only apply the rel-
evant part of the SMOTE algorithm - the part that creates



Figure 5: Producing synthetic samples with SMOTE by ran-
domly interpolating new points from existing instances.1

a synthetic sample. SMOTE creates new instances by ran-
domly interpolating new data points from existing ones. In
our case, the existing instances are the given test sample’s
nearest neighbors. SMOTE can create new synthetic sam-
ples which will be the test-time augmentations.

Using k-Means centroids as augmentations produces con-
trolled diversity but may generate augmentations that do
not lie in good areas of the data manifold. As a result, we
found SMOTE a suitable augmentation producer, because it
directly interpolates between two samples to produce aug-
mentations. A visual illustration of SMOTE’s procedure is
shown in Figure 5.

TTAD’s output is then fed to an anomaly detector which
produces the predictions. Then these predictions are aggre-
gated with the prediction of the input test instance.

Experiments

We conduct several experiments to assess TTAD’s ability to
improve anomaly detection. We examined the basic (Eucle-
dean distance) and advanced (Siamese network) similarity
metrics for the data selector component and two augmen-
tation methods for the augmentation producer component:
k-Means, SMOTE.

The experiments are performed on eight benchmark tab-
ular anomaly detection datasets, using the proposed TTAD
technique on all data selector and data producer combina-
tions, namely:

- Euclidean-NN selector with all producers: (i) Euclidean-
NN with SMOTE producer (TTAD-ES), (ii) Euclidean-NN
with k-Means producer (TTAD-EkM)

- Siamese-NN selector with all producers: (iiii) Siamese-
NN with SMOTE producer (TTAD-SS), (iv) Siamese-NN
with k-Means producer (TTAD-SkM). All of the proposed
combinations above are compared with two baselines, which
are described below.

1https://github.com/minoue-xx/Oversampling-Imbalanced-
Data.

Datasets
All datasets are available at the Outlier Detection Data Sets
repository (ODDS2) (Rayana 2016). The ODDS is a public
repository of benchmark tabular datasets for anomaly detec-
tion. The specific details about each dataset are presented in
Table 1. The ODDS collection aims at providing datasets
from different domains, and we are interested in evaluat-
ing the domain generalizability of TTAD, so it is a suitable
choice.

Table 1: Description of the ODDS datasets

Dataset #Samples #Dim Outliers(%)

Yeast 1364 8 4.7

Seismic 2584 11 6.5

Vowels 1456 12 3.4

Annthyroid 7200 6 7.42

Satellite 6435 36 32

Cardiotocography 1831 21 9.6

Mammography 11183 6 2.32

Thyroid 3772 6 2.5

Baselines
We compare the TTAD technique to two baselines - a vanilla
test phase, i.e., without any augmentations (w/o TTA), and a
TTA method that creates augmentations with random Gaus-
sian noise (GN-TTA) (Kim, Kim, and Kim 2020).

Since no existing studies applied TTA to anomaly detec-
tion, we could not compare our suggested methods to any
methods proposed in previous research.

Experimental Setup
Estimator The base estimator used to detect anomalies is
an autoencoder trained only on normal data. At test time,
we can easily calculate a given test sample’s reconstruction
error and predict whether it is anomalous or not. The recon-
struction error output from the autoencoder is the anomaly
score of the input test sample. We utilize an autoencoder
with mirrored encoder and decoder architectures. The au-
toencoder has the same architecture for all experiments and
is tuned to have one hidden layer with 64 neurons, where
the latent space dimension is 16. The input and output di-
mensions are dependent on the dataset (number of features).
The activation function in all hidden layers is ReLU, and for
the output layer, we use sigmoid.

Siamese Network The architecture of the Siamese net-
work used in our experiments is slightly different from the
standard Siamese CNN. We deal with tabular data, and
therefore we replace the convolutional layers with fully con-
nected ones. We use an architecture of two hidden layers

2http://odds.cs.stonybrook.edu/

https://github.com/minoue-xx/Oversampling-Imbalanced-Data
https://github.com/minoue-xx/Oversampling-Imbalanced-Data


Table 2: AUC results on the evaluated datasets and methods. All of the TTAD’s combinations are set with k = 10 and T = 7.
The first two rows are the baselines.

Method Cardio Mammography Satellite Seismic Annthyroid Thyroid Vowels Yeast

w/o TTA 0.956±0.020 0.815±0.040 0.835±0.017 0.721±0.041 0.762±0.058 0.975±0.019 0.743±0.139 0.735±0.125

GN-TTA 0.618±0.257 0.554±0.081 0.702±0.044 0.406±0.138 0.564±0.055 0.637±0.096 0.556±0.305 0.522±0.168

TTAD-ES 0.963±0.018 0.820±0.044 0.863±0.020 0.724±0.041 0.711±0.060 0.960±0.044 0.595±0.148 0.805±0.110

TTAD-SS 0.956±0.020 0.837±0.042 0.855±0.022 0.725±0.029 0.756±0.063 0.974±0.026 0.692±0.120 0.787±0.093

TTAD-EkM 0.972±0.016 0.828±0.042 0.859±0.020 0.729±0.041 0.720±0.065 0.971±0.030 0.693±0.140 0.814±0.096

TTAD-SkM 0.966±0.018 0.840±0.043 0.853±0.022 0.726±0.038 0.763±0.061 0.977±0.025 0.750±0.123 0.823±0.081

where the first layer has 32 neurons and the second has 64.
The activation function used in the hidden layers is ReLU,
while for the output layer, we use sigmoid. For training, the
final distance layer between the two latent representations is
performed using the L1 distance. Eventually, when using the
trained Siamese network as a distance metric, we replace the
distance metric with the cosine similarity (Lee et al. 2021):

similarity(x, y) =

∑k
i=1 xiyi√∑k

i=1 xi

√∑k
i=1 yi

where x and y are vectors with k dimensions.
The isolation forest, used for pseudo-labeling to create

the training set for the Siamese network as described in the
Method section, is built using 200 trees and without boot-
strapping.

Evaluation Metric We evaluate the performance of the
compared methods using the area under the receiving op-
erator curve (AUC) metric, which is agnostic to the anomaly
score threshold and is commonly used in anomaly detection
(Li, Wang, and Guan 2019; Lim et al. 2018).

We perform 10-fold cross-validation, and therefore the
mean and standard deviation on all splits are reported for
each dataset and method. As a result, the stated results are
more robust and reliable.

Experimental configurations and hyperparameters In
our experiments, we use the same anomaly detection estima-
tor for all of the datasets and methods evaluated. We train the
autoencoder for 300 epochs with a batch size of 32. We use
the Adam (Kingma and Ba 2014) optimizer with an initial
learning rate of 10−3, while the other parameters remained
unchanged. The loss function used is the mean squared error
(MSE) which was also used in (Sakurada and Yairi 2014). In
our case, when using an autoencoder, the MSE is the recon-
struction error minimized during training.

L(x, x̂) =MSE =
1

m

m∑
i=1

(x(i) − x̂(i))2

where m is the number of samples, xi is sample i, and x̂i is
the reconstructed sample i produced by the autoencoder.

The Siamese network is trained with an equal number of
pairs from the same and different classes, i.e., 50% of the
training pairs are pairs of samples considered by the iso-
lation forest as being in the same class and 50% that are
pairs from different classes. For each dataset, the Siamese
network is trained for 10 epochs with a batch size of 64. For
training, the Adam optimizer is used with an initial learn-
ing rate of 10−3, while the other parameters remained un-
changed, and binary cross-entropy is used as the loss func-
tion:

L(y, ŷ) = − 1

m

m∑
i=1

y(i)logŷ(i) + (1− y(1))log(1− ŷ(i))

where m is the number of pairs; yi is the label of pair i,
taking the isolation forest predictions as the ground truth;
and ŷi is the prediction of pair i produced by the Siamese
network, i.e., same or different class.

Our proposed technique and experiments are imple-
mented using TensorFlow3 2.x and RAPIDS4 with CUDA
10.1. The experiments are run utilizing Nvidia GeForce RTX
2080 Ti with 11G memory and 32G RAM on a CentOS ma-
chine.

The benchmark datasets, the anomaly detector, and
TTAD’s reproducible source code are available online.

Results
The results for all of the evaluated datasets and methods
are summarized in Table 2. The results show that our pro-
posed technique, TTAD, outperforms the two baselines on
all datasets. It can also be seen that the GN-TTA base-
line achieves the worst results by a large margin. Com-
pared to the SMOTE TTA producer, the k-Means TTA pro-
ducer achieved the best results. Furthermore, the experi-
ments show that the use of the learned distance metric by
the TTAD data selectors often yielded better results, where
k-Means with the learned distance metric outperformed the
baselines on all datasets.

3https://www.tensorflow.org/
4https://rapids.ai/



Table 3: The AUC score of the TTAD combinations on the
Mammography dataset with T = 7 and different numbers
of neighbors - k.

k 10 20 30 40 50

TTAD-ES 0.820±0.044 0.818±0.053 0.830±0.051 0.803±0.066 0.849±0.040

TTAD-SS 0.837±0.042 0.832±0.049 0.844±0.056 0.820±0.057 0.863±0.034

TTAD-EkM 0.828±0.042 0.821±0.050 0.829±0.051 0.799±0.066 0.842±0.041

TTAD-SkM 0.840±0.043 0.842±0.048 0.849±0.052 0.821±0.064 0.866±0.033

Table 4: The AUC score of the TTAD combinations on the
Mammography dataset with k = 20 and different numbers
of augmentations - T .

T 4 5 6 7 8

TTAD-ES 0.831±0.050 0.838±0.061 0.816±0.058 0.818±0.052 0.814±0.053

TTAD-SS 0.846±0.046 0.849±0.064 0.834±0.060 0.831±0.049 0.835±0.041

TTAD-EkM 0.832±0.048 0.841±0.062 0.822±0.056 0.821±0.050 0.824±0.049

TTAD-SkM 0.847±0.046 0.851±0.062 0.842±0.059 0.841±0.047 0.844±0.050

Sensitivity Analysis
Two important hyperparameters in our method are: (1) in
the data selector component, the number of neighbors k as
a subset of the data for generating the augmentations in
the augmentation producer component, and (2) in the aug-
mentation producer component, the number of augmenta-
tions T , i.e., the number of synthetic samples, to gener-
ate from a given test sample’s nearest neighbors retrieved
by the data selector component. We run multiple experi-
ments with different values for the number of neighbors k ∈
{10, 20, 30, 40, 50} and augmentations T ∈ {4, 5, 6, 7, 8}
on the Mammography dataset.

Sensitivity to Number of Neighbors In Table 3, the AUC
results are presented when varying k between 10 and 50 in
increments of 10, while T is set at seven. We can see that
using 50 neighbors results in the best performance for all of
the TTAD producers we examined. The experiments show
that increasing the number of neighbors does not always re-
sult in a better AUC, except for Siamese k-Means, whose
AUC increases as k increases.

Sensitivity to Number of Augmentations In Table 4, the
AUC results are presented when changing T between four
and eight in increments of one, while k is set at 20. We can
observe that the best results are obtained when T = 5. Note
that this only applies when using the Mammography dataset
with 20 neighbors.

Discussion
Our results demonstrate that using tabular TTA can help in
the detection of tabular data anomalies. Furthermore, the use
of a learned distance metric to retrieve the nearest neighbors
and producing TTAs from them often helps boost perfor-
mance.

We can infer that the GN-TTA baseline achieved such
poor results because of the trade-off between diversity and
in-distribution augmentations. The GN-TTA method likely
generated out-of-distribution samples, which scored normal
instances as anomalous, dramatically decreasing the AUC
score.

The k-Means TTA achieved the best results. The k-Means
TTA produced more diverse augmentations, because the
centroids are taken from different clusters and may lie in
better areas of the data manifold.

Conclusion
In this paper, we introduced TTAD, an unsupervised TTA
technique for improving performance on tabular anomaly
detection tasks. Our technique manages the trade-off be-
tween creating in-distribution test-time augmentations and
their diversity. We also presented an adaptive distance met-
ric to retrieve the nearest neighbors for data selector and
several approaches for generating augmentations based on
the selected data, including SMOTE and k-Means centroids.
Comparisons on various tabular anomaly detection bench-
marks demonstrate that our proposed TTAD technique per-
forms better than an inference without TTA and a Gaussian
noise TTA baseline.
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