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Abstract

In this study, we deal with the problem of judging the credibility of movie reviews. The problem

is challenging because even experts cannot clearly and efficiently judge the credibility of a movie

review and the number of movie reviews is very large. To tackle this problem, we propose historical

credibility that judges the credibility of reviews based on the historical ratings and textual reviews

written by each reviewer. For this, we present three kinds of criteria that can clearly classify the

reviews into trusted or distrusted ones. We validate the effectiveness of the proposed historical

credibility through extensive analysis. Specifically, we show that characteristics between the trusted

or distrusted reviews are quite distinguishable in terms of three viewpoints: 1) distribution, 2)

statistics, and 3) correlation. Then, we apply historical credibility to a weakly supervised model

to classify a given review as a trusted or distrusted one. First, we show that it is significantly

efficient because the entire data set is annotated according to the predefined criteria. Indeed, it

can annotate 6,400 movie reviews only in 0.093 seconds, which occupy only 0.55%∼1.88% of the

total learning time when we use LSTM and SVM as the learning model. Second, we show that

the historical credibility-based classification model clearly outperforms the textual review-based

classification model. Specifically, the classification accuracy of the former outperforms that of the
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latter by up to 11.7%∼13.4%. In addition, we clearly confirm that our classification model shows

higher accuracy as the data size increases.

Keywords: movie reviews, historical credibility, weakly supervised learning, fast annotation

1 Introduction

A movie review is a subjective evaluation written by a moviegoer, usually consisting of two kinds of data:

1) textual reviews and 2) ratings. Textual reviews are qualitative evaluations; ratings are quantitative

evaluations expressed by scores. Table 1 shows a sample movie review from IMDb (https://www.imdb.com/),

a leading website managing movie reviews. The example shows the rating and the textual review for

the movie. We note that these two types of information are closely related: the rating can be considered

a numerical summarization reflecting the textual review.

Table 1: Sample movie review

Textual reviews Rating User Written Date
Helpfulness votes /

Total votes

I enjoyed every second

of it. I even went to

the theater twice and

came out with a big smile

on my face each time.

10 lott**** 16 July, 2019 19 / 26

Movie reviews have a significant impact on the decision-making of potential moviegoers [1]. How-

ever, a certain group of movie reviewers may generate indistinguishable or intentionally malicious re-

views, biasing the overall movie rating. Although such groups ought to lack credibility, many well-known

existing movie review management systems including Metacritic 1 and Rotten Tomatoes 2 do not con-

sider the credibility of movie reviewers in calculating each movie’s overall rating.

To enhance the effective evaluation of movies, it is necessary to consider the credibility of movie

1https://www.metacritic.com/
2https://www.rottentomatoes.com
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reviews in calculating the movie’s rating. For this, we need a method to judge movie reviews according

to their credibility. However, this is a challenging issue because even experts cannot clearly judge the

movie review’s credibility and the number of movie reviews is very large, which requires much time and

effort for manual annotation.

In this study, we propose historical credibility that judges the credibility of reviews based on

the historical ratings and textual reviews written by each reviewer. Fig. 1 shows actual examples of

movie reviewers submitting indistinguishable reviews for multiple movies, which need to be considered

untrustworthy. Fig. 1 (a) is an example where a movie reviewer has given the maximum point to all

the movies they have reviewed. We indicate that indistinguishable overall positive reviews with similar

expressions are written regardless of the movies. Fig. 1 (b) shows another example where a movie

reviewer has given the minimum point and overall negative reviews to all the movies reviewed. Hence,

we conclude, by evaluating their historical reviews, that we can identify movie reviewers that write

indistinguishable reviews.

(a) A reviewer giving the maximum points. (b) A reviewer giving the minimum points.

Figure 1: Examples of movie reviewers who write indistinguishable reviews.
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The contributions of the paper are summarized as follows:

• We propose historical credibility that judges the credibility of movie reviews based on the historical

textual reviews and ratings written by each movie reviewer. For this, we present three kinds of

criteria based on the ratings, sentiment scores of the textual reviews, and their correlation.

• We validate the effectiveness of the proposed historical credibility through extensive analysis.

Specifically, we classify the entire reviews into the trusted and distrusted reviews by historical

credibility and show that their characteristics are quite distinguishable in terms of three viewpoints:

1) distribution, 2) statistics, and 3) correlation. As a result, we obtain evidence showing that

historical credibility is effective. Specifically, the distribution and statistical analysis show that

distrusted reviews tend to be more positive and indistinguishable than trusted reviews. Correlation

analysis shows that the trusted reviews show more consistency in the ratings and reviews than the

distrusted reviews.

• We apply historical credibility to a weakly supervised model to classify a given review into trusted

or distrusted one. First, it is significantly efficient because the entire data set is annotated accord-

ing to the predefined criteria. Indeed, it can annotate 6,400 movie reviews only in 0.093 seconds,

which occupies 0.55% ∼ 1.88% of the total learning time when we use LSTM and SVM as the

learning model. This is a notable result because the usual human annotation takes much time and

effort even for experts. Second, we show that the historical credibility-based classification model

outperforms the textual review-based classification model. Specifically, the classification accuracy

of the former outperforms that of the latter by up to 11.7% ∼ 13.4%. In addition, we clearly

confirm that our classification model shows higher accuracy as the data size increases.

The paper is organized as follows. In Section 2, we describe related work. In Section 3, we

propose historical credibility for judging the credibility of movie reviews. In Section 4, we validate

the effectiveness of the proposed historical credibility. In Section 5, we apply historical credibility to a

weakly supervised classification model and describe the experimental results to show its efficiency and

accuracy. In Section 6, we further discuss the proposed historical credibility and its application to the
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classification model. In Section 7, we conclude the paper.

2 Related Work

2.1 Movie review analysis

For movie reviews, most previous studies have focused on sentiment analysis of textual reviews, because

the sentiment after watching the movie is an essential factor in analyzing the movie reviews [2]. Topal

et al. [3] constructed an emotion map according to emotions expressed after watching the movie and

recommended movies to moviegoers according to this emotion map. Manek et al. [4] performed senti-

ment classification for movie reviews using a Gini index based on feature selection and a support vector

machine (SVM) classifier. Chakraborty et al. [5] compared the performance of two clustering algorithms,

namely k-means and k-means++, for emotion classification of movie reviews based on Word2Vec em-

bedding of the textual review. Alsaqer et al. [6] improved the accuracy of movie review summarization

based on sentiment analysis. He et al. [7] proposed a self-training method using labeled features ex-

tracted from the existing sentiment lexicon on movie reviews. Elmurngi et al. [8] detected fake movie

reviews based on sentiment analysis using supervised learning methods such as SVM and näıve Bayes.

Sivakumar et al. [9] presented a sentiment-based classification model on movie reviews by combining

LSTM with word embedding to extract the semantics between the neighboring words. Dashtipour et

al. [10] applied CNN and LSTM to analyze the sentiment of the movie reviews.

2.2 Credibility on online reviews

To the best of our knowledge, there have been no public methods that consider the credibility of movie

reviews. Many well-known existing movie review management systems, including Metacritic and Rotten

Tomatoes, do not consider movie review credibility in calculating the movie’s overall rating. IMDb is

known to exclude distrusted reviews in calculating the movie’s overall rating; however, since the specific

methods are not disclosed, we cannot evaluate their effectiveness.
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On the other hand, many research efforts have been invested in evaluating the credibility of online

reviews. It is well known that judging the credibility of online reviews is important because they affect

consumers’ decision-making [11, 12, 13]. Liu et al. [14] evaluated the effectiveness of reviews of travel

products based on two aspects: 1) reviewer-related information (e.g., user profiles) and 2) review-related

information (i.e., ratings and length of reviews). Ghose et al. [15] explored multiple aspects of textual

reviews, namely, subjectivity levels, readability, and spelling errors, to understand the helpfulness of

reviews in terms of economic and social outcomes. Hochmeister et al. [16] compared destination experts

(i.e., the most active members) in TripAdvisor with normal reviewers and showed that destination

experts have more influence in the TripAdvisor community. Barbado et al. [17] proposed a method for

detecting fake reviews in the domain of consumer electronics businesses (i.e., Yelp businesses), labeling

reviews as trustworthy or fake. Reyes et al. [18] studied five chosen factors on reviews that can affect

the decision-making of customers by exploring TripAdvisor reviews. Luo et al. [19] defined factors

influencing review’s helpfulness from the perspectives of both reviews and reviewers. Aghakhani et

al. [20] defined variables in terms of consistency and inconsistency of reviews and ratings to evaluate

the review’s helpfulness.

Many previous studies have shown that the helpfulness vote by other reviewers is a critical measure

for evaluating review credibility [21, 22, 23, 24, 25, 26]. Fang et al. [21] used the helpfulness vote as

the criterion for determining review credibility to explore factors affecting the credibility of reviews.

Shan et al. [22] showed that the reviewer reputation generated by peer ratings has a great influence on

credibility evaluation. Yang et al. [23] examined six factors (specifically, reviewer locations, reviewer

levels, helpfulness votes, review ratings, review lengths, and review photos) and showed that review

ratings and helpfulness votes were the most influential factors. Gang et al. [24] examined the relationship

between emotions embedded in online reviews and review helpfulness and analyzed different effects of

each emotion on perceived review helpfulness. Jabr et al. [27] measured the credibility of product reviews

based on helpfulness votes.
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2.3 Weakly supervised learning

Weakly supervised learning allows us to annotate large-scale data at a very fast rate, at the cost of

potentially incurring some inaccurate annotation [28]. Typical annotation methods for weakly supervised

learning can be classified into three categories [29]: 1) crowdsourcing, 2) distant supervision, and 3)

labeling functions. Crowdsourcing is a form of supervised learning, but annotation of data is performed

by several annotators who are not experts [30]. Distant supervision extracts the structure from a data

set using large-scale existing databases; the extracted structure is used for annotation [31]. Labeling

functions are constructed from defined rules for annotating data [32, 33]. Recently, weakly supervised

learning has been adopted in many studies to resolve the difficulty of data annotation. For instance, Lee

et al. [34] applied weakly supervised learning to identify keywords for classifying positive and negative

sentences. Lin et al. [35] used weakly supervised learning for understanding the users’ sentiments from

social media contents containing different types of data such as texts and images. Taher et al. [36]

labeled a data set with weakly supervised sentiment tags using a sentiment vocabulary network. In this

study, we also apply the predefined criteria defined based on historical credibility for weakly supervised

learning, showing the fast annotation and effectiveness.

3 Historical Credibility

In this section, we propose new criteria for judging the credibility of the movie reviewers based on

their historical reviews. In Section 3.1, we explain the motivation for devising historical credibility. In

Section 3.2, we define historical credibility based on three kinds of features: 1) ratings, 2) sentiment

scores, and 3) their correlation.

3.1 Motivation

In this section, we discuss the necessity of devising new criteria to determine the credibility of the movie

review. To evaluate the credibility of reviews, Weng et al. [37] identified the differences between the

7



reviews on fraud items and those on normal items on the e-commerce by comparing the distribution

according to sentiment analysis. Fig. 2 (a) shows that the distribution of sentiment scores for fraud

items and that of normal items on e-commerce are quite different. That is, the sentiment distribution

of the reviews on fraud items is long-tailed, with very few negative sentiment reviews and an extremely

positive tendency while normal items have a relatively uniform distribution.

(a) Fraud and normal items’ comments on e-commerce

[37].

(b) Trusted and distrusted movie reviews classified by

helpfulness votes.

Figure 2: Comparison of sentiment distribution between comments on e-commerce and movie reviews.

The helpfulness vote has been used as a meaningful measure for evaluating the reviews. Shan

et al. [22] and Yang et al. [23] showed that the helpfulness vote has a great influence on credibility

evaluation. Fang et al. [21] also used the helpfulness vote as a criterion to evaluate the influence of

various factors on review credibility. We also consider the helpfulness vote as an effective criterion

to judge the credibility of movie reviews. We define each movie review as trusted when the number

of helpfulness votes for the review exceeds the number of unhelpfulness votes. Fig. 2 (b) shows the

sentiment distribution of trusted and distrusted reviews classified by the helpfulness vote with the same

approach in Fig. 2 (a). However, we indicate that the overall distribution of Fig. 2 (b) is quite different

from Fig. 2 (a). Hence, the positive tendency of the distrusted reviews in Fig. 2 (b) is not high as

in Fig. 2 (a). In addition, the proportion of the distrusted reviews with low sentiment scores is much

higher than that in Fig. 2 (a). Therefore, we conclude that the helpfulness vote is not that effective to

evaluate the credibility of the movie reviews.
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3.2 Three Criteria for Historical Credibility

In this study, we define criteria that can classify movie reviews according to their credibility by utilizing

the historical reviews of movie reviewers. Our basic idea is to identify trusted or distrusted movie

reviewers according to the discrimination of historical reviews written by them. Chen et al. [39] showed

that online reviewers with high reputations discriminate against the objects, indicating that the standard

deviation of the overall rating increases. In this respect, we focus on the fact that credible reviewers write

distinguishable reviews and ratings depending on the movie, i.e., their distribution becomes variable.

For this, we define two different kinds of criteria to measure the reviewer’s credibility according to the

degree of divergence of the historical reviews: 1) historical rating and 2) historical sentiment. Last, we

define a criterion according to the coincidence between them: historical correlation.

Definition 1 (Historical Rating-based Credibility). We use the standard deviation of the historical

ratings of each reviewer to measure the credibility. We define the upper ranked reviewers according

to the standard deviation of written ratings as trusted reviewers and the reviews written by them as

trusted reviews; We define the remaining reviewers as distrusted reviewers and reviews written by them

as distrusted reviews.

Definition 2 (Historical Sentiment-based Credibility). We use the standard deviation of the historical

sentiment scores of the textual reviews of each reviewer to measure the credibility. We define the upper

ranked reviewers according to the standard deviation of sentiment scores of written reviews as trusted

reviewers and the reviews written by them as trusted reviews; We define the remaining reviewers as

distrusted reviewers and reviews written by them as distrusted reviews.

Definition 3 (Historical Correlation-based Credibility). We use Spearman’s Correlation Coefficient to

measure the relevance of a set of historical sentiment scores of the textual reviews and a set of historical

ratings of each reviewer. We define the upper ranked reviewers according to the correlation coefficient as

trusted reviewers and the reviews written by them as trusted reviews; We define the remaining reviewers

as distrusted reviewers and reviews written by them as distrusted reviews.

We elaborate on the value of the proposed historical credibility in terms of two viewpoints. First, it
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is inherently difficult to separate trusted and distrusted reviews only from the reviews consisting of short

texts. Historical credibility provides clear criteria to classify them. As a result, we can apply these clear

criteria to a classification model based on weakly supervised learning in Section 5. Second, historical

credibility provides an efficient and automatic evaluation of helpfulness to the reviews compared to the

helpfulness vote. Although the helpfulness vote is considered an effective way to judge the credibility

of the reviews, it has the following limitations: 1) it needs to be performed manually and 2) it requires

enough time to label them, and hence, recent reviews cannot be labeled.

4 Validation

In this section, we validate the proposed historical credibility compared to the helpfulness vote. In

Section 4.1, we present the overall framework for the validation. For trusted or distributed reviews

classified by historical credibility, we show distribution analysis, statistical analysis, and correlation

analysis in Sections 4.2, 4.3, and 4.4, respectively.

4.1 Overall Framework

In this study, we validate the effectiveness of the proposed historical credibility. Fig. 3 shows a framework

for validating the effectiveness of historical credibility. First, from the historical reviews of the reviewers,

we classify the entire reviews according to three criteria for historical credibility to trusted or distrusted

reviews. Then, we perform distribution, statistical, and correlation analyses for trusted and distrusted

reviews. For this validation, we used movie review data sets collected from Naver Movie, the largest

Korean movie review website, and released them at Mendeley Data3. Table 2 shows their statistics by

the movie. It shows the number of total reviews, that of trusted and distrusted reviews classified by

helpfulness votes. For the analysis of historical reviews for each reviewer, we only consider reviewers

with three or more past reviews. In addition, for the fair comparison with the helpfulness vote, we

define the same number of trusted and distrusted reviews for each proposed criterion with that of the

3http://dx.doi.org/10.17632/jb5knzh8yv.6
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helpfulness vote by the movie.

Figure 3: A framework for validating the effectiveness of historical credibility.

4.2 Distribution Analysis

We adopt the approach in Weng et al. [37] that analyzes the distribution based on sentiment analysis

to the three definitions proposed in this paper: 1) ratings, 2) sentiment score for the textual reviews,

and 3) correlation coefficient between them. For each definition, we classify the entire review into two

groups, i.e., trusted and distrusted reviews according to historical credibility, and conduct distribution

analysis for each group. To measure the sentiment score of the movie review, we extract the top 200

tokens with the high frequency using KoNLPy4 and NLTK5 libraries and create a pre-trained emotional

model through the count vectorization. For the training data set, we used Naver movie review data

sets6 and, for the testing data set, we used seven movie reviews in Table 2, to completely separate both

of them. We define reviews less than 4 points as the negative reviews and reviews higher than 7 points

as the positive reviews according to the existing data annotation method [38].

4https://konlpy.org/en/latest/
5https://www.nltk.org/
6https://github.com/e9t/nsmc/
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Table 2: Movie review data sets for the validation.

Movies Genre Total reviews Trusted / distrusted reviews

Assassination
Action,

Drama

11,298 6,821 / 4,477

Confidential

Assignment
Action 11,526 6,504 / 5,022

1987 Drama 15,416 11,926 / 3,490

A taxi driver
Drama,

Family

19,905 14,976 / 4,929

Intimate

strangers

Drama,

Comedy

9,456 4,571 / 4,885

The Spy

Gone North
Drama 12,464 6,703 / 5,761

The outlaws Action 16,327 14,582 / 1,745

Total 96,392 66,083 / 30,309
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Fig. 4 compares the distribution of reviews’ sentiment scores for the trusted and distrusted reviews

defined by historical credibility and helpfulness vote. We normalize the sentiment score as the value

from 0 to 1 where negative reviews are close to 0 and positive reviews are to 1. As shown in Fig. 4,

our historical credibility shows similar trends to the results presented in Weng et al. [37]. That is, the

extremely positive tendency increases and the extremely negative tendency decreases in the case of dis-

trusted reviews while relatively even distribution is observed in the case of trusted reviews. Specifically,

Definition 1 shows that the portion between 0.95 and 1.0 in the sentiment score for distrusted reviews

is greater than that for trusted reviews by 55.99%; the portion between 0.0 and 0.05 in the sentiment

score for distrusted reviews is lower than that for trusted reviews by 77.11%. Definition 2 shows the

overall similar trends to Definition 1. In the case of Definition 3, the extremely negative tendency does

also decrease in the case of distrusted reviews. However, we indicate that the portion of the extremely

positive sentiments in the distrusted reviews is smaller than that of trusted reviews unlike in Definitions

1 and 2. Here, we analyze that, unlike Definitions 1 and 2 considering the ratings and sentiment scores

separately, when we consider both of them together, they are highly consistent in the trusted reviews

in both extremely positive and negative cases, which has a greater influence on the results.

On the other hand, the helpfulness vote in Fig. 4 (d) shows a completely different trend to historical

credibility. That is, distrusted reviews show a larger portion for the negative reviews and a smaller

portion for the positive reviews compared to the trusted reviews.

Fig. 5 compares the distribution of reviews’ ratings for the trusted and distrusted reviews defined

by the historical credibility and helpfulness vote. The overall trends are similar to the results in 4 and all

the definitions for the historical credibility show the consistent results. Specifically, Definition 1, shows

that the portion between 9 and 10 in the rating for distrusted reviews is greater than that for trusted

reviews by 23.29%; the portion between 0 and 1 in the rating for distrusted reviews is lower than that

for trusted reviews by 93.93%. Both Definitions 2 and 3 also show similar trends to Definition 1. On

the other hand, the helpfulness vote in Fig. 5 (d) shows the opposite result in both extremely positive

and negative cases, similar to Fig. 4 (d).
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(a) Definition 1. (b) Definition 2.

(c) Definition 3. (d) Helpfulness votes.

Figure 4: Distribution of textual reviews’ sentiment scores defined by historical credibility and helpful-

ness vote.

4.3 Statistical Analysis

Fig. 6 compares the mean and standard deviation of the sentiment scores for trusted and distrusted

reviews defined by historical credibility and the helpfulness vote. The result indicates that the trusted

reviews show a lower mean and higher standard deviation compared to the distrusted reviews, which

shows that trusted reviews write more distinguishable reviews than distrusted reviewers. This shows a

consistent result with the claim by Chen et al. [39]. Specifically, the mean of the trusted reviews defined

by Definition 1 is 0.6126 and that of distrusted reviews is 0.7048; the mean of the trusted reviews by

Definition 2 is 0.6267 and that of distrusted reviews is 0.6742. In contrast, in the case of Definition 3, the

mean of the trusted reviews is similar to that of distrusted reviewers. Here again, extremely consistent
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(a) Definition 1 (b) Definition 2

(c) Definition 3 (d) Helpfulness votes

Figure 5: Distribution of reviews’ ratings for the reviews defined by historical credibility and helpfulness

vote.

tendency of the trusted reviews for positive reviews by Definition 3 in Fig. 4 (c) also affects the results.

In addition, the standard deviation of trusted reviews defined by Definition 1 is 0.3117 and that of

distrusted reviews is 0.2804; the standard deviation of trusted reviews by Definition 2 is 0.3160 and

that of distrusted reviews is 0.2774; the standard deviation of trusted reviews by Definition 3 is 0.3098

and that of distrusted reviews is 0.2948. In contrast, Fig. 6 (d) shows that the reviews classified by the

helpfulness vote do not show clear trends on overall mean and standard deviation of the trusted and

distrusted reviews.

Fig. 7 compares the mean and standard deviation of the ratings for trusted and distrusted reviews

defined by historical credibility and the helpfulness vote. It also demonstrates the consistent result that

the trusted reviews have a lower mean and higher standard deviation compared to the distrusted reviews

15



(a) Definition 1. (b) Definition 2.

(c) Definition 3. (d) Helpfulness votes.

Figure 6: Statistical analysis of reviews’ sentiment scores for trusted and distrusted reviews defined by

historical credibility and helpfulness vote.

in all the definitions for historical credibility. Similar to Fig. 6 (d), the trusted and distrusted reviews

classified by the helpfulness vote do not reveal a clear trend in the mean and standard deviation of the

ratings.

4.4 Correlation Analysis

In this section, we compare the difference between trusted and distrusted reviews through correlation

analysis between the sentiment scores of the reviews and the ratings. To measure the correlation

between two sets of each reviewer, we use Spearman’s Correlation Coefficient. It allows us to measure

the statistical dependence of ranking between two sets and to determine the strength and direction of
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(a) Definition 1. (b) Definition 2.

(c) Definition 3. (d) Helpfulness votes.

Figure 7: Statistical analysis of ratings for trusted and distrusted reviews defined by historical credibility

and helpfulness vote.

the association. Fig. 8 compares the results of Spearman’s correlation analysis for the reviews defined by

historical credibility and the helpfulness vote. Here, we averaged the correlation coefficient of reviewers

in the trusted or distrusted reviewers classified by each criterion. The result indicates that the trusted

reviews show a much higher correlation between the reviews and ratings than the distrusted reviews.

Specifically, the mean of the correlation coefficients for the trusted reviews defined by Definition 1 is

0.4386, and that for the distrusted reviews is 0.2676; the mean of the correlation coefficients for the

trusted review by Definition 2 is 0.4691, and that for the distrusted reviews is 0.2068; the mean of

the correlation coefficients for the trusted reviews defined by Definition 3 is 0.4411, and that for the

distrusted reviews is 0.2741. This result indicates a significantly improved consistency between reviews

and ratings of the trusted reviewers compared to the distrusted reviewers by the proposed historical

17



credibility, providing evidence to show its effectiveness.

(a) Definition 1 (b) Definition 2

(c) Definition 3 (d) Helpfulness votes

Figure 8: Correlation analysis for trusted and distrusted reviews defined by historical credibility and

helpfulness vote.

5 Weakly Supervised Classification based on Historical Credi-

bility

In this section, we apply the proposed historical credibility to classify a given review as a trusted or

distrusted one. For this, we aim to utilize the strength of historical credibility: 1) it can directly

determine the review credibility based on the ratings and reviews, instead of accumulating the records

such as the helpfulness vote, and 2) it utilizes criteria based on distinguishable statistics obtained from

ratings and sentiment scores rather than ambiguous short textual reviews. We apply historical credibility

to the weakly supervised classification model. It allows 1) fast annotation by the clear criteria and 2)
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improvement of the classification accuracy compared to the case using textual reviews.

We define 1) ratings, 2) sentiment scores, and 3) the correlation coefficients between them as

the features to learn the classification model, which are essential statistics used for defining historical

credibility. Then, we annotate the entire movie review as “trusted” or “distrusted” based on each

criterion of historical credibility. Here, we note that the annotation of the entire data set is performed

at a very fast speed because we can annotate them using a clear criterion without manual effort. Finally,

we build a classification model based on two machine learning models: LSTM and SVM. In the inference

phase, we judge the credibility of new movie reviews using the classification model. This implies that

we can even judge the credibility of movie reviews that are written by first-time reviewers.

5.1 Experimental Methods

We collect reviews from six movies having ratings and textual reviews. We also collect historical textual

reviews and ratings for each reviewer. The textual reviews are described in up to 140 characters. Table 3

shows the characteristics of the movie reviews collected, which are publicly available at Mendeley Data7.

We collected 38,400 movie reviews, 6,400 for each movie. Here, 30,720 reviews are used for training

and 7,680 are used for testing. Here, to avoid the data imbalance problem between the trusted and

distrusted reviews, we used the same number of trusted and distrusted reviews.

In the experiments, we measure the elapsed learning time to check the efficiency of annotation in

the proposed learning model. In addition, we measure the accuracy of the proposed classification model

based on the features in historical credibility and that of the textual review-based learning model.

5.2 Learning time

Table 4 shows the average elapsed learning time of the proposed learning method for the six movies by

the machine learning model. Here, to measure the elapsed time, we use 6,400 movie reviews for each

movie. We note that annotation of 6,400 movie reviews requires only 0.093 seconds on average, which

7https://data.mendeley.com/datasets/jb5knzh8yv/4
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Table 3: Movie review data sets for the classification model.

Movies Release date
Training

data

Testing

data

Intimate Strangers 31 Oct. 2018 5,120 1,280

A Taxi Driver 02 Aug. 2017 5,120 1,280

Assassination 22 Jul. 2015 5,120 1,280

The Spy Gone North 08 Aug. 2018 5,120 1,280

1987 27 Dec. 2017 5,120 1,280

Confidential Assignment 18 Jan. 2017 5,120 1,280

Total 30,720 7,680

only occupies 0.55% and 1.88% of the total learning time for LSTM and SVM, respectively.

Table 4: Elapsed learning time for movie reviews (seconds).

Model LSTM SVM

Annotation 0.093

Training 14.043 3.532

Testing 2.621 1.317

Total 16.757 4.942

5.3 Accuracy

Fig. 9 compares the accuracy between the historical credibility-based LSTM and textual review-based

LSTM. The results indicate that the proposed classification model clearly outperforms the textual

review-based model for all the definitions. Specifically, the former outperforms the latter by up to

11.4% in the case of Definition 1.

Fig. 10 compares the accuracy between the historical credibility-based SVM and textual review-
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(a) Definition 1. (b) Definition 2. (c) Definition 3.

Figure 9: Accuracy comparison between historical credibility-based LSTM and textual review-based

LSTM.

based SVM. Similar to Fig. 9, the results indicate that the proposed classification model outperforms

the textual review-based classification model for all the definitions. Specifically, the former outperforms

the latter by up to 13.7% in the case of Definition 1.

(a) Definition 1 (b) Definition 2 (c) Definition 3

Figure 10: Accuracy comparison between the historical credibility-based SVM and textual review-SVM.

To check the effectiveness of the proposed classification model, we validate its accuracy as the data

set size increases. Fig. 11 shows the accuracy of the proposed classification model by the definition as

the data size increases from 1,400 to 11,400. We confirm that the accuracy for all the definitions in

both SVM and LSTM clearly becomes higher as the data size increases. Specifically, in Definition 1,

the model’s accuracy increases by up to 7.08% in LSTM and by up to 3.1% in SVM; in Definition 2, the

model’s accuracy increases by up to 10.3% in LSTM and by up to 3.67% in SVM; in Definition 3, the

model’s accuracy increases by up to 2.16% in LSTM and by up to 5.05% in SVM. This result clearly

indicates the effectiveness of our classification model because it becomes accurate as the data set is
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accumulated.

(a) Definition 1 (b) Definition 2 (c) Definition 3

Figure 11: The accuracy of the proposed learning model as data size increases.

6 Discussions

Accuracy of the classification model: In this study, we focus on proposing simple, but effective

criteria, resulting in that we can apply the criteria to the weakly supervised classification model. With

the strengths of weakly supervised learning, we can annotate the movie reviews at a very fast speed and

effectively classify the movie reviews using a very simple rule. Naturally, the purpose of our classification

model is not to show its high accuracy, but to show the possibility of its improvement for efficiency and

accuracy as the data size increases compared to the textual reviews, which are inherently difficult to

judge their credibility only considering the textual reviews.

Language-independent method: In this paper, we use movie reviews collected from the largest

Korean movie review website, Naver Movie, because it satisfies two requirements to show the effectiveness

of the proposed method: 1) it maintains all the historical movie reviews written by each user, as required

for the proposed historical credibility; 2) it maintains helpfulness and unhelpfulness votes for each review,

as required for the comparison method. We can apply the proposed method to movie reviews collected

from other websites only if they satisfy the two requirements above. We note that the proposed method

is language-independent. The accuracy of the classification model might vary according to the languages

in movie reviews. In this paper, we have focused on the relative accuracy difference between methods,

not on the absolute value of the accuracy depending on the target language. This relative difference
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should be maintained in other languages.

Machine learning techniques: In this paper, we aim to show the effectiveness of the proposed

classification model, rather than the superiority of a specific machine learning technique. For this

reason, we choose two representative machine learning techniques. However, we can easily apply any

other machine learning techniques to the proposed framework.

7 Conclusions

In this study, we have proposed simple and effective criteria for judging the credibility of movie re-

views, which we call historical credibility. We have validated its effectiveness through extensive analysis.

Specifically, we have classified the entire review into the trusted and distrusted reviews by historical cred-

ibility and have shown that their characteristics are quite distinguishable in terms of three viewpoints:

1) distribution, 2) statistics, and 3) correlation. The analysis has provided the evidence showing that

historical credibility is effective. Specifically, the distribution and statistical analysis have shown that

distrusted reviews tend to be more positive and indistinguishable regardless of the movies than trusted

reviews. Correlation analysis has shown that the trusted reviews are significantly more consistent in

ratings and reviews’ sentiment scores than the distrusted reviews.

We have then applied historical credibility to classify a given movie review as a trusted or distrusted

one based on weakly supervised learning. We have shown that the proposed learning method is quite

fast because it can annotate 6,400 movie reviews in only 0.093 seconds, which occupies only about

0.55% ∼ 1.88% of the total learning time. We have shown that the proposed classification model based

on historical credibility outperforms the textual review-based model. Specifically, the classification

accuracy of the former outperforms that of the latter by up to 11.7% ∼ 13.4%. We have also shown

that the proposed classification model gradually improves the accuracy when the data size increases.

23



References

[1] Chintagunta PK, Gopinath S, Venkataraman S. The effects of online user reviews on movie box office

performance: Accounting for sequential rollout and aggregation across local markets. Marketing

Science. 2010;29(5):944–957.

[2] Serrano-Guerrero J, Olivas JA, Romero FP, Herrera-Viedma E. Sentiment analysis: A review and

comparative analysis of web services. Information Sciences. 2015;311:18–38.

[3] Topal K, Ozsoyoglu G. Movie review analysis: Emotion analysis of IMDb movie reviews. In:

Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks

Analysis and Mining. IEEE Press; 2016. p. 1170–1176.

[4] Manek AS, Shenoy PD, Mohan MC, Venugopal K. Aspect term extraction for sentiment analysis

in large movie reviews using Gini Index feature selection method and SVM classifier. World wide

web. 2017;20(2):135–154.

[5] Chakraborty K, Bhattacharyya S, Bag R, Hassanien AE. Comparative sentiment analysis on a set

of movie reviews using deep learning approach. In: International Conference on Advanced Machine

Learning Technologies and Applications. Springer; 2018. p. 311–318.

[6] Alsaqer AF, Sasi S. Movie review summarization and sentiment analysis using rapidminer. In:

2017 International Conference on Networks & Advances in Computational Technologies (NetACT).

IEEE; 2017. p. 329–335.

[7] He Y, Zhou D. Self-training from labeled features for sentiment analysis. Information Processing

& Management. 2011;47(4):606–616.

[8] Elmurngi E, Gherbi A. Fake Reviews Detection on Movie Reviews through Sentiment Analysis

Using Supervised Learning Techniques. International Journal on Advances in Systems and Mea-

surements. 2018;11(1 & 2):196–207.

[9] Sivakumar S, Rajalakshmi R. Analysis of sentiment on movie reviews using word embedding

24



self-attentive LSTM. International Journal of Ambient Computing and Intelligence (IJACI).

2021;12(2):33–52.

[10] Dashtipour K, Gogate M, Adeel A, Larijani H, Hussain A. Sentiment analysis of persian movie

reviews using deep learning. Entropy. 2021;23(5):596.

[11] Lee H, Law R, Murphy J. Helpful reviewers in TripAdvisor, an online travel community. Journal

of Travel & Tourism Marketing. 2011;28(7):675–688.

[12] Mudambi S, Schuff D. What Makes a Helpful Review? A Study of Customer Reviews on Amazon.

com (SSRN Scholarly Paper No. ID 2175066). Social Science Research Network, Rochester, NY.

2010;.

[13] Ham J, Lee K, Kim T, Koo C. Subjective perception patterns of online reviews: A comparison of

utilitarian and hedonic values. Information Processing & Management. 2019;56(4):1439–1456.

[14] Liu Z, Park S. What makes a useful online review? Implication for travel product websites. Tourism

Management. 2015;47:140–151.

[15] Ghose A, Ipeirotis PG. Estimating the helpfulness and economic impact of product reviews: Min-

ing text and reviewer characteristics. IEEE Transactions on Knowledge and Data Engineering.

2010;23(10):1498–1512.

[16] Hochmeister M, Gretzel U, Werthner H. Destination expertise in online travel communities. In:

Information and Communication Technologies in Tourism 2013. Springer; 2013. p. 218–229.

[17] Barbado R, Araque O, Iglesias CA. A framework for fake review detection in online consumer

electronics retailers. Information Processing & Management. 2019;56(4):1234–1244.

[18] Reyes-Menendez A, Saura JR, Martinez-Navalon JG. The impact of e-WOM on hotels manage-

ment reputation: exploring tripadvisor review credibility with the ELM model. IEEE Access.

2019;7:68868–68877.

[19] Luo L, Duan S, Shang S, Pan Y. What makes a helpful online review? Empirical evidence on the

effects of review and reviewer characteristics. Online Information Review. 2021;.

25



[20] Aghakhani N, Oh O, Gregg DG, Karimi J. Online review consistency matters: An elaboration

likelihood model perspective. Information Systems Frontiers. 2021;23(5):1287–1301.

[21] Fang B, Ye Q, Kucukusta D, Law R. Analysis of the perceived value of online tourism reviews:

Influence of readability and reviewer characteristics. Tourism Management. 2016;52:498–506.

[22] Shan Y. How credible are online product reviews? The effects of self-generated and system-

generated cues on source credibility evaluation. Computers in Human Behavior. 2016;55:633–641.

[23] Yang SB, Shin SH, Joun Y, Koo C. Exploring the comparative importance of online hotel reviews’

heuristic attributes in review helpfulness: a conjoint analysis approach. Journal of Travel & Tourism

Marketing. 2017;34(7):963–985.

[24] Ren G, Hong T. Examining the relationship between specific negative emotions and the perceived

helpfulness of online reviews. Information Processing & Management. 2019;56(4):1425–1438.

[25] Ahmad SN, Laroche M. How do expressed emotions affect the helpfulness of a product review? Ev-

idence from reviews using latent semantic analysis. International Journal of Electronic Commerce.

2015;20(1):76–111.

[26] Hong H, Xu D, Wang GA, Fan W. Understanding the determinants of online review helpfulness:

A meta-analytic investigation. Decision Support Systems. 2017;102:1–11.

[27] Jabr W. Review credibility as a safeguard against fakery: the case of Amazon. European Journal

of Information Systems. 2021; p. 1–21.

[28] Zhou ZH. A brief introduction to weakly supervised learning. National Science Review.

2018;5(1):44–53.

[29] Dong XL, Rekatsinas T. Data integration and machine learning: A natural synergy. In: Proceedings

of the 2018 International Conference on Management of Data. ACM; 2018. p. 1645–1650.

[30] Raykar VC, Yu S, Zhao LH, Valadez GH, Florin C, Bogoni L, et al. Learning from crowds. Journal

of Machine Learning Research. 2010;11(Apr):1297–1322.

26



[31] Mintz M, Bills S, Snow R, Jurafsky D. Distant supervision for relation extraction without labeled

data. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th

International Joint Conference on Natural Language Processing of the AFNLP: Volume 2-Volume

2. Association for Computational Linguistics; 2009. p. 1003–1011.

[32] Ratner A, Bach SH, Ehrenberg H, Fries J, Wu S, Ré C. Snorkel: Rapid training data creation with
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