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Effective Stabilized Self-Training on Few-Labeled Graph Data

Ziang Zhou, Jieming Shi, Shengzhong Zhang, Zengfeng Huang, Qing Li

• Conduct thorough analysis on node classification over few-labeled graphs

• Propose a stabilized self-training framework to improve performance

• Evaluate the performance of proposed methods on real graph data
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Abstract

Graph neural networks (GNNs) are designed for semi-supervised node clas-
sification on graphs where only a subset of nodes have class labels. How-
ever, under extreme cases when very few labels are available (e.g., 1 labeled
node per class), GNNs suffer from severe performance degradation. Specif-
ically, we observe that existing GNNs suffer from unstable training process
on few-labeled graphs, resulting to inferior performance on node classifica-
tion. Therefore, we propose an effective framework, Stabilized Self-Training
(SST), which is applicable to existing GNNs to handle the scarcity of labeled
data, and consequently, boost classification accuracy. We conduct thorough
empirical and theoretical analysis to support our findings and motivate the
algorithmic designs in SST. We apply SST to two popular GNN models GCN
and DAGNN, to get SSTGCN and SSTDA methods respectively, and evalu-
ate the two methods against 10 competitors over 5 benchmarking datasets.
Extensive experiments show that the proposed SST framework is highly ef-
fective, especially when few labeled data are available. Our methods achieve
superior performance under almost all settings over all datasets. For in-
stance, on a Cora dataset with only 1 labeled node per class, the accuracy
of SSTGCN is 62.5%, 17.9% higher than GCN, and the accuracy of SSTDA
is 66.4%, which outperforms DAGNN by 6.6%.
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1. Introduction

A graph models the relationships between objects as the edges between
nodes. Graphs are ubiquitous with a wide range of real-world applications,
e.g., social network analysis [1, 2], traffic prediction [3], protein interface
prediction [4], and recommendation systems [5, 6]. An important task to
support these applications is node classification that aims to classify the
nodes in a graph into various classes. However, effective node classification
is challenging, especially due to the lack of sufficient labeled data that are
expensive to obtain.

To mitigate the issue, semi-supervised node classification on graphs has
attracted much attention [7, 8]. It leverages a small amount of labeled nodes
as well as the unlabeled nodes in a graph to train an accurate classification
model. There exists a collection of Graph Neural Networks (GNNs) for semi-
supervised node classification [7, 8, 9, 10]. For instance, Graph convolution
networks (GCNs) rely on a message passing scheme via graph convolution
operations to aggregate the neighborhood information of a node to generate
node representation, which can then be used in downstream classification
tasks. Despite the great success of GCNs, under the extreme cases when
very few labels are given (e.g., only 1 labeled node per class), the shallow
GCN architecture, typically with two layers, cannot effectively propagate
the training labels over the input graph, leading to inferior performance as
shown in the experiments (Tables 3, 4 and 5). Recently, several studies try to
improve classification accuracy by designing deeper GNN architectures, e.g.,
DAGNN [7]. However, deep GNNs are still not directly designed to tackle
the scarcity of labeled data.

After conducting an in-depth study, we have an interesting finding that
existing GNNs suffer from an issue of unstable training, when labeled nodes
are few. In particular, on a Cora dataset with 7 classes (see Section 5 for
dataset details), for each run, we randomly select 1 labeled node per class as
the training data (denoted as Cora-1). Then on Cora-1, we run GCN and
DAGNN 100 times with 300 epochs per run, and get the average number of
predicted labels per class with standard deviation at every epoch in percent-
age. The statistical results of GCN and DAGNN are shown in Figures 1(a)
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Figure 1: The distribution of predicted labels in different classes in Cora-1.

and 1(b) respectively, where x-axis is the epoch from 0 to 300, and y-axis is
the percentage of a class in the predicted node labels. There are 7 colored
curves representing the average percentage of the predicted labels of the re-
spective classes. The dashed straight lines are the ground-truth percentage
of every class in the Cora dataset. The shaded areas in color represent the
standard deviation. Observe that in Figure 1(a), GCN has high variance at
different runs when predicting node labels, and the variance keeps large at
late epochs, e.g., 300, which indicates that GCN is quite unstable at differ-
ent runs with 1 training label per class sampled randomly, leading to inferior
classification accuracy as illustrated in our experiments. As shown in Figure
1(b), DAGNN also suffers from the issue of unstable training. The variance
of DAGNN is relatively smaller than that of GCN, which provides a hint why
DAGNN performs better than GCN. Nevertheless, both GCN and DAGNN
yield unstable training process with large variance. Since there is only 1 la-
beled node per class for training, the randomly sampled training nodes can
heavily influence the message passing process in GCN and DAGNN, depend-
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ing on the connectivity of the training nodes to their neighborhoods over
the graph topology, which result to the unstable training process observed
above. In literature, there exists a collection of self-training techniques that
enhance the training data by using predicted labels as pseudo labels for train-
ing [11, 12]. However, as identified in our empirical analysis in Section 4.1,
these methods generate imbalanced pseudo labels, which could affect the
performance.

To address the above issues when few labeled data are available, we pro-
pose a Stabilized Self-Training (SST) framework, which is readily applicable
to existing GNNs to improve classification accuracy via stabilized training
process. We first conduct thorough empirical and theoretical analysis to
identify and explain the issues of existing methods when trained with few la-
beled nodes for classification. Motivated by the analysis, in the proposed SST
framework, we select a set of nodes with predicted labels of high confidence
as high-quality pseudo labels, and add such pseudo labels into training data
to enhance the training of next epoch, while filtering out the low-confidence
predicted labels. To tackle the unstable training issue of existing GNNs,
we develop a stabilized pseudo labeling technique to balance the importance
of different classes in training. We then design a negative sampling regu-
larization technique over pseudo labels to further improve node classification
accuracy. In experiments, we apply our SST framework to GCN and DAGNN
to get methods SSTGCN and SSTDA respectively. Figures 1(c) and 1(d) re-
port the average percentage and standard variance of the predicted labels per
class per epoch of SSTGCN and SSTDA on Cora-1 respectively. Compared
with Figure 1(a) of GCN, obviously, the variance of SSTGCN in Figure 1(c)
decreases quickly and becomes stable as epoch increases. SSTDA is also
more stable than DAGNN, as shown in Figures 1(d) and 1(b) respectively.
We conduct extensive experiments on 5 benchmarking datasets, and compare
with 10 existing solutions, to evaluate the performance of the proposed SST
framework. Experimental results demonstrate that SST is able to signifi-
cantly improve classification accuracy of existing GNNs when only few labels
are available. For instance, with the proposed SST framework, SSTGCN
achieves 62.5% node classification accuracy on Cora-1, significantly improv-
ing GCN (44.6%) by 17.9%, and SSTDA obtains 66.4% accuracy on Cora-1
and outperforms DAGNN (59.8%) by a substantial margin of 6.6%.

In summary, our main contributions are as follows:

• We conduct thorough empirical and theoretical analysis, and make im-
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portant findings that existing GNNs are unstable when training with
few-labeled graph data, and existing self-training techniques suffer from
low-quality and imbalanced pseudo labels. Our theoretical analysis pro-
vides solid explanations for the findings.

• We present a Stabilized Self-Training (SST) framework that can sig-
nificantly improve classification performance by stabilizing the training
process of GNNs. Based on our analysis, SST consists of a stabilized
pseudo labeling technique and a negative sampling regularization tech-
nique over pseudo labels.

• We apply SST to popular GNNs, and conduct extensive experiments
on 5 datasets to compare against 10 existing methods. The experi-
mental results demonstrate the superior performance of our proposed
techniques.

The rest of the paper is organized as follows. We review the related
work in Section 2. In Section 3, we present the problem formulation of semi-
supervised node classification on few-labeled graph data. We present our
analysis and method in Section 4. In particular, we present the empirical
analysis in Section 4.1, conduct theoretical analysis in Section 4.2, and then
develop the SST framework in Section 4.3. Extensive experiments are re-
ported in Section 5. Finally, we conclude the paper in Section 6. All proofs
are in Appendix A.

2. Related Work

In literature, there are two directions to address the scarcity of labeled
data for semi-supervised node classification: (i) explore multi-hop graph
topological features to propagate the training labels over the input graph
[9, 7]; (ii) enhance the labeled data by self-training and pseudo labeling
[11, 13]. Note that these two directions are not mutually exclusive, and
they can be applied together on few-labeled graph data. Here we review the
existing studies that are most relevant to this paper.

There exist a large collection of GNNs [7, 8, 9, 14, 15, 16, 17, 18]. We
introduce the details of GCN [9] and DAGNN [7] here. GCN learns the rep-
resentation of each node by iteratively aggregating the representations of its
neighbors. Specifically, GCN consists of k layers, each with the same propa-
gation rule defined as follows. At the `-th layer, the hidden representations
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H(`−1) of previous layer are aggregated to get H(`),

H(`) = σ(ÂH(`−1)W(`)), ` = 1, 2, ..., k. (1)

Â = D̃−
1
2 ÃD̃−

1
2 is the graph laplacian, where Ã = A + I is the adjacency

matrix of G after adding self-loops (I is the identity matrix) and D̃ is a diag-
onal matrix with D̃ii =

∑
j Ãij. W(`) is a trainable weight matrix of the `-th

layer, and σ is a nonlinear activation function. Initially, H(0) = X, where
X is the input feature matrix, describing the node features of all nodes in
the input graph. Note that GCN usually achieves superior performance with
1 layer or 2 layers. When applying many layers to explore large receptive
fields, GCN yields degraded performance, due to the over-smoothing issue
[11, 19, 20]. DAGNN addresses the over-smoothing issue by decoupling rep-
resentation transformation and propagation in GNNs [7]. Then it utilizes an
adaptive adjustment mechanism to balance the information from local and
global neighborhoods of every node. Specifically, the mathematical expres-
sion of DAGNN is as follows. DAGNN uses a learnable parameter s ∈ Rc×1

to adjust the weight of embeddings at different propagation level (from 1 to
k).

Z =MLP(X) ∈ Rn×c

H` =Â` · Z ∈ Rn×c, ` = 1, 2, ..., k

S` =H` · s ∈ Rn×1, ` = 1, 2, ..., k

Ŝ` =[S`,S`, ...,S`] ∈ Rn×c, ` = 1, 2, ..., k

Xout =softmax(
k∑
`=1

H` � Ŝ`),

where Â` is the `-th power of matrix Â, � is the Hadamard product, · is dot
product, MLP is the Multilayer Perceptron and softmax operation is on the
second dimension.

Apart from GCN and DAGNN, initial GNN studies apply convolution
operation in the spectral domain, where the eigenvectors of the graph Lapla-
cian are considered as the Fourier basis [21, 22]. Then GAT [14] assigns
different weights to nodes in the same neighborhood via attention mecha-
nisms. Monti et al. [15] define convolutions directly in the spatial domain
using mixture model CNNs. APPNP [8] adopts a propagation rule based on
personalized PageRank [23], so as to gather both local and global informa-
tion on graphs. GpLCN [18] utilizes the manifold structure information by
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p-Laplacian matrix to extract abundant features for classification. As evalu-
ated in experiments, existing methods yield inferior performance [7, 8, 9, 14],
since they are not directly designed to tackle the scarcity of labeled data.

As previously mentioned, another way to address the situation of limited
labeled data is to add pseudo labels to training dataset by self-training [11].
Self-training is a general methodology [24] used in various applications. Zhou
et al. [25] suggest that selecting informative unlabeled data using a guided
search algorithm can significantly improve performance over standard self-
training framework. Buchnik and Cohen [26] mainly consider self-training for
diffusion-based techniques. Recently, self-training has been adopted for semi-
supervised tasks on graphs. For instance, Li et al. [11] propose self-training
and co-training techniques for GCN. This self-training work selects the top-k
confident predicted labels as pseudo labels. Co-training technique co-trains
a GCN with a random walk model to handle few-labeled data [11, 27]. Sun
et al. [12] utilize a DeepCluster technique to refine the selected pseudo labels.
Compared with existing self-training methods, our framework is different. In
particular, our framework has a different strategy to select pseudo labels and
also has a stabilizer to address the deficiencies of existing GNNs. Moreover,
we propose a negative sampling regularization technique to further boost
accuracy. Besides, in existing work, if a node is selected as a pseudo label, it
will never be moved out even if the pseudo label becomes obviously wrong in
later epochs. On the other hand, in our framework, we update pseudo labels
in each epoch to avoid such an issue. A recent work [28] further takes node
informativeness into account for pseudo-label selection.

Further, there are extensive studies on network embedding in recent years,
which aims to learn a low-dimensional embedding vector per node in an unsu-
pervised manner [29, 30, 31, 32]. The learned embedding vectors can be then
used in downstream tasks, including node classification. Perozzi et al. [29]
use truncated random walks to learn latent representations, with the assump-
tion that nodes are similar if they are close by random walks. Tang et al.
[30] propose to preserve and concatenate the first-order and second-order
proximity representations between nodes. G2G [31] embeds each node as a
Gaussian distribution according to a ranking similarity based on the shortest
path distances between nodes. DGI [32] is an embedding method based on
GCNs with unsupervised objective that is to maximize mutual information
between patch representations and corresponding high-level summaries of
graphs. However, these unsupervised methods do not leverage labeled data,
and thus are not as accurate as our methods in experiments.
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3. Preliminaries

Let G = (V , E ,X) be a graph consisting of a node set V with cardinality
n, a set of edges E of size m, and a feature matrix X ∈ Rn×d, where d is
the number of features. An edge in E connects two nodes in V . Every node
vi ∈ V has a feature vector Xi that is the i-th row of X. Let scalar c be the
number of classes, and C be the set of class labels (c = |C|). We use L to
denote the set of labeled nodes, and obviously L ⊆ V . Let U be the set of
unlabeled nodes and U = V \ L. Each labeled node vi ∈ L has a one-hot
vector Yi ∈ {0, 1}c, indicating the class label of vi. Under the few-labeled
setting, |L| � |U|. The definition of the semi-supervised node classification
problem is as follows.

Definition 1. Given a graph G = (V , E ,X), a set of labeled nodes L ⊆ V,
and a ground-truth class label Yi ∈ {0, 1}c per node vi ∈ L, assuming that
each node belongs to exactly one class, Semi-Supervised Node Classification
predicts the labels of the unlabeled nodes.

In particular, the aim is to leverage a graph G with the labeled nodes in L
to train a classification model/function f(G, θ). The model f with trainable
parameters θ outputs a matrix F ∈ Rn×c. The i-th row Fi ∈ [0, 1]c represents
the probability vector of node vi ∈ V . We adopt the popular cross-entropy
loss to train the model. Given a node vi, its loss L(Yi,Fi) of Fi with respect
to its true class label Yi is

L(Yi,Fi) = −
c∑
j=1

Yi,j ln(Fi,j),

where Yi,j is the j-th value in Yi and Fi,j is the j-th value in Fi.
During the training process, at a certain epoch, given the matrix F, let

Ỹi,j satisfying Eq. (2) be the predicted label of node vi at the epoch. In
particular, if Fi,j is the largest element in vector Fi, Ỹi,j is 1, otherwise, 0.
We say that, with confidence Fi,j, node vi has class label Cj.

Ỹi,j =

{
1 if j = arg maxj′ Fi,j′ ,

0 otherwise,
(2)

4. Our Method and Analysis

We first conduct empirical analysis in Section 4.1 to identify the issues
of existing techniques, and then perform theoretical analysis in Section 4.2
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Figure 2: Training GCN on Cora with 1 labeled node per class (Cora-1)

to reveal the latent reasons of the empirical findings. Lastly, we present our
technical designs of Stabilized Self-Training (SST) in Section 4.3.

4.1. Empirical Analysis

We conduct empirical analysis to reveal that existing techniques suffer
from imbalanced and low-confidence pseudo labels during the training stage.
We first verify that during the training process, nodes with higher confidence
tend to be predicted more accurately. On the Cora dataset with 7 classes,
each with 1 labeled node for training, Figure 2a exhibits the positive corre-
lation between the confidence and the accuracy scores of GCN at the 100-th
training epoch with confidence interval 0.1. In particular, for each confi-
dence interval (x-axis), we report the percentage of unlabeled nodes with
predicted labels matching their ground-truth labels (i.e., accuracy in y-axis).
Obviously, as the confidence becomes higher, the accuracy increases. On
the other hand, if a method generates predictions with low confidence, its
performance tends to be inferior.

Then in Figure 3, we provide empirical evidence that most nodes are
with low confidence, especially at the early epochs of the training, which will
hamper the performance. Specifically, in Figures 3a, 3b, and 3c, we illustrate
the distributions of the confidence scores of all nodes in unlabeled set U on
Cora, at early (20-th), middle (100-th), and late (500-th) epochs, respectively.
Observe that at the early epoch in Figure 3a, 95.4% of the unlabeled nodes
are with very low confidence (< 0.2). If pseudo labels are generated based on
the low confidences at early epochs, then such pseudo labels are inaccurate as
verified above. Subsequently, they will severely influence the training of later
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Figure 3: Confidence distributions of GCN Training on Cora-1.

epochs, resulting to unstable training process and unexpected performance
degradation. Further, low-confidence nodes are still the majority during
middle epochs, e.g., 100-th epoch in Figure 3b. The number of low-confidence
nodes decreases significantly at very late epochs, e.g., 500-th epoch in Figure
3c. These observations indicate that the low-confidence nodes keep exposing
significant influence during the major part of the whole training process.

Further, Figure 2b shows the distribution of the predicted labels of the
nodes in U at the 20-th epoch on Cora in a single run. Obviously, the
distribution of the labels is highly imbalanced, i.e., 92.4% of the nodes are
with class 1 and 6.6% are with class 4. The imbalanced class labels (i.e.,
class 1 in Figure 2b) will heavily affect the direction of gradient descent
during the training process, imposing the model to learn weights resulting to
imbalanced predictions, which is often not the ground-truth case. If too many
low-confidence nodes are wrongly assigned to a single class at early epochs,
existing GNNs, such as GCN, which rely on propagation and transformation
over graph topology, will suffer from unstable performance as reported in
Figure 1.

4.2. Theoretical Analysis

The semi-supervised node classification problem studied in this paper
naturally fits the transductive learning setting, since all labeled and unlabeled
data in the input graph G are known, and no more new data will be added
[33]. In the following, we analyze the problem from the perspective of gradient
descent, to theoretically explain the findings made in Section 4.1.

Under the ideal case where we have the labels of all nodes in V (the
population), given a classifier f(G, θ) with output probability vectors Fi for

10



all nodes vi in V , the population loss Lpop is computed as follows. Ideally,
the objective is to minimize Lpop by evaluating population gradient ∇θLpop,
and find optimal parameters θ∗.

Lpop = Evi∼U(V)L(Yi,Fi),

where U(V) is the uniform distribution over node set V .
However, in practice, due to the scarcity of labeled data (i.e., |L| � |V|),

it is impossible to directly evaluate∇θLpop. Therefore, as explained in Section
2, self-training method considers both the labeled nodes and the predicted
labels of unlabeled nodes (as pseudo labels) for training. In particular, during
a training epoch, the predicted labels of unlabeled nodes in Eq. (2) are
regarded as the pseudo labels of the nodes. Then a pseudo loss Lpse is used
to approximate the population loss Lpop. Also, pseudo gradient ∇θLpse is
used to approximate ∇θLpop, in order to minimize the loss [34, 35]. Usually
the self-training loss Lpse and its gradient ∇θLpse can be written as

Lpse =Evi∼U(L)L(Yi,Fi) + λ · Evi∼U(U)L(Ỹi,Fi), (3)

∇θLpse =Evi∼U(L)∇θL(Yi,Fi) + λ · Evi∼U(U)∇θL(Ỹi,Fi), (4)

where U(L) and U(U) are the uniform distributions over labeled node set L
and unlabeled node set U , respectively.

We rewrite the population gradient∇θLpop in a similar format by breaking
V into L and U ,

∇θLpop =Evi∼U(V)∇θL(Yi,Fi)

=
|L|
|V|

Evi∼U(L)∇θL(Yi,Fi) +
|U|
|V|

Evi∼U(U)∇θL(Yi,Fi).

Then we derive a bound on the difference between ∇θLpop and ∇θLpse in

Eq. (5) with proof in Appendix A.1. Specifically, let λ = |U|
|L| , and assume

that any gradient satisfies a bounded norm (i.e., ‖∇θL‖ ≤ Θ, for any loss
L), which is a common assumption [36]. Then the difference between ∇θLpop
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and ∇θLpse is bounded by∥∥∥∥∇θLpse − |V||L|∇θLpop
∥∥∥∥

=
|U|
|L|
·
∥∥∥Evi∼U(U)

[
∇θL(Ỹi,Fi)−∇θL(Yi,Fi)

]∥∥∥
≤
|U| ·Pvi∼U(U)(Ỹi 6= Yi)

|L|
· Evi∼U(U)

[∥∥∥∇θL(Ỹi,Fi)−∇θL(Yi,Fi)
∥∥∥ ∣∣∣Ỹi 6= Yi

]
≤2Θ|U|
|L|

·Pvi∼U(U)(Ỹi 6= Yi),

(5)

where Pvi∼U(U)(Ỹi 6= Yi) is the probability that a randomly sampled node
vi ∈ U has a wrongly predicted label.

Obviously, Pvi∼U(U)(Ỹi 6= Yi) is the classification error on unlabeled set
U . Observe that the bound at the last line in Eq. (5) mainly relies on the
quality of pseudo labels Ỹi of nodes vi in U . In other words, if we have
low-quality pseudo labels from U , then Pvi∼U(U)(Ỹi 6= Yi) tends to be large,
leading to a large difference between ∇θLpop and ∇θLpse and consequently
resulting to sub-optimal performance. This situation is likely to happen at
early epochs when most nodes have low confidence but are still selected as
pseudo labels for training as illustrated in Figure 3a of Section 4.1.

Moreover, at the early epochs when many nodes are with low confidence,
the imbalanced predicted labels (e.g., Figure 2b) may make Pvi∼U(U)(Ỹi 6=
Yi) even larger. In the following, we prove that if we use imbalanced pre-
dicted labels as pseudo labels, this will lead to inferior performance. To
facilitate the analysis, we define that the distribution of ground-truth labels
is ρ-balanced as follows. Specifically, for any two distinct classes a, b ∈ C, the
balance ratio between them is upper bounded by ρ, if and only if

max
a,b∈C

Pvi∼U(U)(Yi = a)

Pvi∼U(U)(Yi = b)
≤ ρ. (6)

Let c′ = arg maxc∈C Pvi∼U(U)(Ỹi = c) be the class with the max predicted
probability. We define that the predicted labels are η-imbalanced if and only
if

max
b∈C,b 6=c′

Pvi∼U(U)(Ỹi = c′)

Pvi∼U(U)(Ỹi = b)
≥ η. (7)

Then we present Lemma 1 that provides a lower bound of the classification
error Pvi∼U(U)(Ỹi 6= Yi).
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Lemma 1. If the ground-truth label distribution is ρ-balanced and the pre-
dicted label distribution is η-imbalanced, we can get the lower bound of the
classification error as follows,

Pvi∼U(U)(Ỹi 6= Yi) ≥
η

η + |C| − 1
− ρ

ρ+ |C| − 1
. (8)

Proof. The proof of Lemma 1 is in Appendix A.2.

Lemma 1 indicates that if the predicted labels are highly imbalanced
compared with ground-truth labels (i.e., η is large while ρ is small), the clas-
sification error is large. In practice, the imbalance ratio η can be arbitrarily
large, particularly at the early training epochs. For instance, as shown in
Figure 2b, the imbalance ratio η is up to 14 when using GCN on Cora. How-
ever, the ground-truth balance ratio ρ of Cora is just 4.8. Based on Lemma
1, the large discrepancy between η and ρ indicates a large classification error
Pvi∼U(U)(Ỹi 6= Yi), as demonstrated in Figure 1(a) when training with GCN.
Further, considering Eq. (5), this will result in an inaccurate approximation
of gradient ∇θLpse and lead to ineffective and unstable gradient descent pro-
cess to train the classification model.

4.3. Stabilized Self-Training (SST) Framework

Motivated by the analysis above, in what follows, we develop the SST
framework that not only augments training data with high-quality pseudo
labels but also stabilizes the training process, in order to achieve superior
performance.

4.3.1. Stabilized Pseudo Labeling

We first explain how to choose pseudo labels and then introduce the loss
function of stabilized pseudo labeling. In particular, in a training epoch, for
every unlabeled node vi ∈ U , we first get Ni, the number of nodes with the
same predicted label as vi,

Ni =
∣∣∣{vj ∈ U∣∣∣Ỹi = Ỹj

}∣∣∣ (9)

As shown in Figure 1, in existing GCN and DAGNN, the distribution of
the predicted labels is unstable with large variance during the training pro-
cess. We also observe that during the early epochs, most predicted labels are
with low confidence (Figure 3), low confidence indicates low accuracy (Figure
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2a), and the predicted labels are imbalanced (Figure 2b). If we select too
many low-confidence predicted labels as the pseudo labels of the same class,
this will hamper the training process and result to inferior performance. To
reduce such unstable situation, we propose to use Ni as a stabilizer for pseudo
labeling. In particular, in our loss function, we assign weights inversely pro-
portional to Ni, to mitigate the imbalance issue. If a class is with a larger Ni,
its importance will be lower, and vice versa. For an unlabeled node vi ∈ U ,
its predicted label may have low confidence score. We do not want to add
such low-confidence labels into the training of subsequent epochs. Instead,
we only choose those unlabeled nodes with high-confidence predicted labels
as pseudo labels to be augmented into the training data. In particular, an
unlabeled node vi is selected to be a node with pseudo label in next epoch, if
its confidence is beyond a threshold β, as shown below. We use U ′ to denote
all unlabeled nodes selected with pseudo labels,

U ′ =
{
vi ∈ U

∣∣∣max
j

Fi,j > β
}

(10)

where β ∈ [0, 1] is a threshold controlling the extent of cautious selection for
self-training. A larger threshold means stricter selection of pseudo labels.

Then we present the loss of the stabilized pseudo labeling technique in
Eq. (11). Specifically, we design 1

Ni+1
as the stabilizer of the training process,

to overcome the deficiencies of existing GNNs illustrated in Figure 1. The
intuition is that, if an unlabeled node vi is predicted to be in a class with
many pseudo labels, its importance in the loss function should be reduced.
In other words, our stabilized self-training loss reduces the impact of classes
with many pseudo labeled nodes, which is especially useful to rectify the
training process when the predictions in the early epochs are incorrect or
less confident, compared with ground truth. Further, Lsp only considers
high-confident nodes in U ′ defined in Eq. (10), and filter out low-confidence
nodes in the training epochs.

Lsp =
∑
∀vi∈U ′

1

Ni + 1
· L(Ỹi,Fi) (11)

Compared with existing techniques [11], our stabilized pseudo labeling
technique has major differences. First, we develop the stabilizer to re-weight
the importance of pseudo labels in the loss function, so as to address the
unstable issue of existing GNNs. Second, we select only those nodes with
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high-confidence pseudo labels satisfying β threshold, and adaptively update
the pseudo labels per epoch, meaning that a pseudo label in previous epoch
will be removed in the next epoch if its confidence becomes low. On the
other hand, existing methods keep a pseudo label once it is selected and
never remove it in later epochs, which may harm the training quality if the
pseudo label is wrong compared with ground truth.

4.3.2. Negative Sampling Regularization

Under extreme cases when labeled nodes are very few (e.g., 1 labeled node
per class), we further design a negative sampling regularization technique to
improve performance. Existing studies mainly use negative sampling to get
embeddings in an unsupervised manner [32, 37, 38]. On the contrary, we
customize negative sampling for the semi-supervised node classification task,
and apply it over labels instead of embeddings. Intuitively, the label of a
node v should be distant to the label of another node u if these two nodes
are faraway on the input graph G. Specifically, a positive sample is a node
vi in L or U ′. We sample a set I of positive samples from L ∪ U ′ uniformly
at random. The negative samples of a positive sample vi are the nodes that
are not directly connected to vi in graph G. For each positive sample vi in I,
we sample a fixed-size set Ji of negative samples uniformly at random. For
a positive-negative pair (vi, vj), compared with the Ỹi of vi ∈ L ∪ U ′, the
intention is to let the output vector Fj of vj to be as different as possible.
Without ambiguity, here we use the symbol Ỹi to represent the pseudo label
for node vi in U ′ or ground-truth label of node vi in L. Denote 1 as the
all-one vector in Rc. Then the total loss of all positive-negative pairs is

Lneg =
∑
∀vi∈I

∑
∀vj∈Ji

1

|I| · |Ji|
L(Ỹi,1− Fj). (12)

4.3.3. Overall Objective Function

The overall loss Ltotal combines the stabilized pseudo labeling loss and
the negative sampling loss in Eq. (11) and Eq. (12) by

Ltotal =
1

|L|
·
∑
∀vi∈L

L(Yi,Fi) + λ1Lsp + λ2Lneg, (13)

where λ1 and λ2 are factors controlling the impact of these two losses.
Algorithm 1 shows the pseudo-code of the SST framework over GNNs,

and it takes as input a graph G with labeled nodes L and unlabeled nodes
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Algorithm 1: SST Framework Over GNNs

1 Input: Graph G = (V , E ,X) with labeled node set L and unlabeled
node set U Output: the learned classifier f(·, θ). Generate initial
parameter θ for model f(·, ·).

2 for each epoch t = 0, 1, 2, ..., T do
3 Use GNN to compute prediction F← f(G, θ)
4 Get high confidence set U ′ and its stabilizing factor 1

Ni+1
per

node vi(Section 4.3.1)
5 Get positive samples and corresponding negative samples using

L ∪ U ′ and G (Section 4.3.2)
6 Get Ltotal of current epoch by Eq. (13) (Section 4.3.3)
7 Update model parameters by

θ ← Adam Optimizer(θ, gradient = ∇θLtotal).
8 if Convergence then
9 Break

10 end

11 end

U . Note that SST can be instantiated over either a shallow or a deep GNN,
e.g., GCN and DAGNN introduced in Section 2. The output of Algorithm 1
is the learned classification model f with trainable parameters θ. At Line 3,
SST initializes the trainable parameters θ by Xavier [39]. Then from Lines
4 to 13, SST trains the classification model per epoch t iteratively, until
convergence or the max number T of epochs is reached. We adopt a widely-
used early-stopping technique for convergence [7, 40]. Specifically, after half
of the max number of epochs (half of T = 1000 epochs in experiments),
given a tolerance duration (100 epochs), if the validation loss of the current
epoch is higher than the smallest validation loss of the past 100 epochs in the
tolerance duration, the model converges and terminates. The result of the
model with the smallest validation loss in the tolerance duration is returned
as the final result. At Line 5, SST first uses a GNN to obtain the forward
prediction output F. Then at Line 6, SST detects the pseudo-labeled set U ′
and obtains the stabilizer 1

Ni+1
of each node vi in U ′, after which, at Line

7 we perform negative sampling to obtain positive samples I and negative
samples Ji. At Line 8, SST computes loss Ltotal of current epoch according
to Eq. (13). And at Line 9, SST updates model parameters θ for next epoch
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Table 1: Dataset Statistics

Dataset Cora Citeseer PubMed Cora-full Ogbn-arxiv

# of Nodes 2708 3327 19717 19793 169343
# of Edges 5429 4732 44338 65311 1166243
# of Features 1433 3703 500 8710 128
# of Classes 7 6 3 67 40

by Adam optimizer [41].

5. Experiments

We evaluate SST against 10 competitors for semi-supervised node clas-
sification on 5 benchmark graph datasets. All experiments are conducted
on a machine powered by an Intel(R) Xeon(R) E5-2603 v4 @ 1.70GHz CPU,
131GB RAM, 16.04.1-Ubuntu, and 4 Nvidia Geforce 1080ti Cards with Cuda
version 10.2. Source codes of all competitors are obtained from the respec-
tive authors. Our SST framework is implemented in Python, using libraries
including PyTorch [42] and PyTorch Geometric [43].

5.1. Implementation Details

We instantiate our SST framework over a 2-layer GCN and a deep DAGNN
to demonstrate the effectiveness and applicability of SST. The instantiation
of SST over GCN and DAGNN are dubbed as SSTGCN and SSTDA respec-
tively. SSTGCN and SSTDA have parameters (i) inherited from GCN and
DAGNN and (ii) developed in SST. Hence, we first tune the best parameters
of the base models under each classification task setting on each dataset and
report this result for them for a fair comparison.

Base models (GCN and DAGNN). In the base models, we tune param-
eters, including L2 regularization rate with search space in {1e-2, 5e-3, 1e-3,
5e-4, 1e-4, 5e-5, 0} and dropout rate in {0.5, 0.8}. For DAGNN, the level k
of propagation after MLP is searched in {10, 15, 20}. The number of hidden
units of GCN and MLP (in DAGNN) is 64 units without bias. The number of
layers of GCN and MLP (in DAGNN) is 2 layers. The learning rate of Adam
Optimizer is 0.01. The activation function is RELU. The maximum num-
ber of training epochs is 1000. Moreover, early stopping is triggered when
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the validation loss is smaller than the average validation loss of previous 100
epochs, and the current epoch is beyond 500 epochs.

SSTGCN and SSTDA. After finding the best hyper parameters of the
base models, we then tune the parameters in SST. λ1 is searched in {0.1, 1}
and λ2 is searched in {0, 0.1, 1}. Stabilizing enabler searches in {True, False}.
The number of positive and negative samples (|I|, |Ji|) is searched in {(1, 10),
(2, 5), (5, 2), (10, 1)}. For instance, (2, 5) means that we sample 2 positive
nodes and then for each positive node, we sample 5 negative nodes.

5.2. Datasets and Competitors

Datasets. Table 1 shows the statistics of the 5 real-world graphs used in
our experiments. We list the number of nodes, edges, features and classes
in every dataset. Specifically, the 5 datasets are Cora [44], Citeseer [44],
Pubmed [44], Core-full [31], and Obgn-arxiv [45], all of which are widely
used in existing studies [7, 11].

Competitors. We compare with 10 existing solutions, including LP (La-
bel Propagation) [46], G2G [31], DGI [32], GCN [9], GAT [14], APPNP [8],
DAGNN [7], STs [11], LCGCN and LCGAT in [47]. In particular, GCN,
GAT, APPNP, and DAGNN are GNNs. DGI and G2G are unsupervised
network embedding methods. STs represents the four variants in [11], in-
cluding Self-Training, Co-Training, Union, and Intersection; we summarize
the best results among them as the results of STs. We use the parameters
suggested in the original papers of the competitors to tune their models,
and report the best results of the competitors. Notice that for unsuper-
vised network embedding methods, including DGI and G2G, after obtaining
the embeddings, we use logistic regression to train a node classifier over the
embedding [32].

5.3. Experimental Settings

We evaluate our framework and the competitors on semi-supervised node
classification tasks with various settings. In particular, for each graph dataset,
we repeat experiments on 100 random data splits as suggested in [7, 11] and
report the average performance. For each graph dataset, we vary the number
of labeled nodes per class in {1, 3, 5, 10, 20}, where 1, 3, 5 represent the very
few-labeled settings. Following convention in existing work [7], we explain
what a random data split is, as follows. For example, when the number of
labeled nodes per class on Cora is 3 (denoted as Cora-3), since Cora has 7
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Table 2: Absolute accuracy improvements (in percentage) of SST (i.e., SSTGCN and
SSTDA) over base models GCN and DAGNN on 4 datasets, averaged over 100 random
data splits.

# Labels Cora CiteSeer
per class 1 3 5 10 20 1 3 5 10 20

GCN 44.6 63.8 71.3 77.2 81.4 40.4 53.5 61.0 65.8 69.5
SSTGCN 62.5 72.8 75.8 80.7 82.5 56.2 66.4 68.0 70.2 72.1
Improvement +17.9+9.0+4.5+3.5+1.1 +14.2+12.9+7.0+4.4+2.6

DAGNN 59.8 72.4 76.7 80.8 83.7 46.5 58.8 63.6 67.9 71.2
SSTDA 66.4 77.6 79.8 82.2 84.1 48.5 65.9 67.9 69.8 72.1
Improvement +6.6 +5.2+3.1+1.4+0.4 +2.0 +7.1 +4.3+1.9+0.9

# Labels PubMed Cora-Full
per class 1 3 5 10 20 1 3 5 10 20

GCN 55.5 66.0 70.4 74.6 78.7 24.5 41.4 48.1 55.8 60.2
SSTGCN 60.8 67.8 71.6 76.1 79.4 30.8 44.9 49.4 56.6 60.9
Improvement +5.3 +1.8 +1.2 +1.5 +0.7 +6.3 +3.5 +1.3 +0.8 +0.7

DAGNN 59.4 69.5 72.0 76.8 80.1 27.3 43.2 49.8 55.8 60.4
SSTDA 61.0 72.1 74.9 78.2 80.6 27.6 44.4 51.1 56.8 61.2
Improvement +1.6 +2.6 +2.9 +1.4 +0.5 +0.3 +1.2 +1.3 +1.0 +0.8

classes, we randomly pick 3 nodes per class, combining together as a training
set of size 21 (i.e., the labeled node set L), and then, among the remaining
nodes, we randomly select 500 nodes as a validation set, and 1000 nodes as
a test set. Every data split consists of a training set, a validation set, and a
test set. Classification accuracy is defined as the fraction of the testing nodes
with class labels correctly predicted by the learned classifier.

5.4. Overall Experimental Results

In Table 2, we first report the absolute improvements of our SST applied
over base models GCN and DAGNN, when varying the number of labeled
nodes per class in {1, 3, 5, 10, 20}. The accuracy performance of SSTGCN
(resp. GCN) and SSTDA (resp. DAGNN) on each of the 4 datasets are
obtained by averaging over 100 random data splits. The overall observa-
tion is that SSTGCN and SSTDA consistently achieve superior performance
compared with their respective base models GCN and DAGNN, often by a
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Table 3: Accuracy results (in percentage) on PubMed and Cora-full respectively, averaged
over 100 random data splits. (The best accuracy is in bold.)

# Labels PubMed Cora-full
per class 1 3 5 10 20 1 3 5 10 20

SSTGCN 60.8 67.8 71.6 76.1 79.4 30.8 44.9 49.4 56.6 60.9
SSTDA 61.0 72.1 74.9 78.2 80.6 27.6 44.4 51.1 56.8 61.2

LP 55.7 61.9 63.5 65.2 66.4 26.3 32.4 35.1 38.0 41.0
G2G 55.2 64.5 67.4 72.0 74.3 25.8 36.4 43.3 49.3 54.3
DGI 55.1 63.4 65.3 71.8 73.9 26.2 37.9 46.5 55.3 59.8
STs 55.1 65.4 69.7 74.0 78.5 29.2 43.6 48.9 53.4 60.8
GCN 55.5 66.0 70.4 74.6 78.7 24.5 41.4 48.1 55.8 60.2
DAGNN 59.4 69.5 72.0 76.8 80.1 27.3 43.2 49.8 55.8 60.4
APPNP 54.8 66.9 70.8 76.0 79.4 24.3 41.5 48.5 55.3 60.1
GAT 52.7 64.4 69.4 73.7 73.5 24.8 41.0 47.5 54.7 59.9
LCGCN 56.6 69.2 72.6 74.6 80.0 26.7 43.9 49.2 55.9 60.5
LCGAT 49.5 59.2 62.3 70.2 65.3 27.4 43.2 48.4 55.0 60.1

significant margin, which validates the power of the proposed SST frame-
work, to be readily applicable to boost the performance of existing GNNs.
For instance, on Cora-1, SSTGCN has accuracy 62.5%, while the accuracy of
GCN is 44.6%, which indicates that SST improves GCN by 17.9%. Also, on
Cora-1, SSTDA improves DAGNN by 6.6%. Moreover, observe that when
labels are sufficient (e.g., Cora-20 and CiteSeer-20 in Table 2), our methods
SSTGCN and SSTDA are still better than GCN and DAGNN respectively,
further validating the effectiveness of the proposed SST, by stabilizing the
training process as shown in Figures 1(c) and 1(d) of Section 1.

Table 3 reports the classification accuracy (in percentage) of all methods
on PubMed and Cora-full when varying the number of labeled nodes per class
in {1, 3, 5, 10, 20}. The first two rows are the performance of SSTGCN and
SSTDA, while the remaining rows are the performance of the 10 competi-
tors. On PubMed, SSTDA consistently achieves the highest accuracy among
all methods under all settings in {1, 3, 5, 10, 20}. For instance, on PubMed-
3, SSTDA has accuracy 72.1%, while the best competitor’s performance is
69.5%. Further, on Cora-full in Table 3, SSTGCN and SSTDA achieve the
highest accuracy under the settings {1, 3} and {5, 10, 20} respectively (in
bold), compared with all competitors. The results in Table 3 demonstrate
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Table 4: Accuracy results (in percentage) on Cora and CiteSeer respectively, averaged
over 100 random data splits. (The best accuracy is in bold.)

# Labels Cora CiteSeer
per class 1 3 5 10 20 1 3 5 10 20

SSTGCN 62.5 72.8 75.8 80.7 82.5 56.2 66.4 68.0 70.2 72.1
SSTDA 66.4 77.6 79.8 82.2 84.1 48.5 65.9 67.9 69.8 72.1

LP 51.5 60.5 62.5 64.2 67.3 30.1 37.0 39.3 41.9 44.8
G2G 54.5 68.1 70.9 73.8 75.8 45.1 56.4 60.3 63.1 65.7
DGI 55.3 70.9 72.6 76.4 77.9 46.1 59.2 64.1 67.6 68.7
STs 53.1 67.3 72.5 76.2 79.8 37.2 51.8 60.7 67.4 70.2
GCN 44.6 63.8 71.3 77.2 81.4 40.4 53.5 61.0 65.8 69.5
DAGNN 59.8 72.4 76.7 80.8 83.7 46.5 58.8 63.6 67.9 71.2
APPNP 44.7 66.3 74.1 79.0 81.9 34.6 52.2 59.4 66.0 71.8
GAT 41.8 61.7 71.1 76.0 79.6 32.8 48.6 54.9 60.8 68.2
LCGCN 63.6 74.4 77.5 80.4 82.4 55.3 59.0 68.4 70.3 72.1
LCGAT 58.7 74.5 77.5 79.7 82.6 50.9 66.3 68.5 70.9 71.5

the effectiveness of our SST framework to boost classification performance
over existing methods. Table 4 reports the classification results of all meth-
ods on Cora and CiteSeer under all settings in {1, 3, 5, 10, 20}. On Cora,
observe that SSTDA obtains the highest accuracy under all settings. For
instance, on Cora-1, SSTDA has accuracy 66.4%, while that of the best com-
petitor LCGCN is 63.6%. On CiteSeer in Table 4, SSTGCN has the best
performance on CiteSeer-1 and CiteSeer-3 and CiteSeer-20, while achieving
similar performance compared with LCGCN and LCGAT on CiteSeer-5 and
CiteSeer-10. Summing up, the proposed SST framework is effective to boost
classification accuracy as validated in Tables 3 and 4, especially under the
situation when very few labeled nodes are available.

Table 5 reports the classification accuracy (in percentage) of all meth-
ods on Ogbn-arxiv, when varying the number of labeled nodes per class in
{1, 3, 5, 10, 20}. The first two rows are the performance of SSTGCN and
SSTDA, while the remaining rows are the performance of the competitors.
SSTDA consistently achieves the highest accuracy among all methods under
all settings. For instance, on Obgn-arxiv-3, SSTDA has accuracy 42.66%,
while the best competitor’s performance is 40.72%. Further, comparing with
the corresponding base models, SSTGCN (resp. SSTDA) is consistently bet-
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Table 5: Accuracy results (in percentage) on Ogbn-arxiv, averaged over 100 random data
splits. (The best accuracy is in bold.)

# Labels Ogbn-arxiv
per class 1 3 5 10 20

SSTGCN 25.57 41.12 44.42 50.66 53.99
SSTDA 27.20 42.66 47.29 53.76 57.13

DGI 15.25 24.35 31.89 38.55 43.34
STs 22.49 34.44 40.57 49.14 52.23
GCN 25.11 36.32 40.90 48.42 53.76
DAGNN 25.18 40.72 46.66 52.57 56.07
APPNP 25.21 39.74 45.58 49.51 53.50
GAT 25.86 38.52 45.58 50.83 53.53
LCGCN 25.96 38.62 44.68 52.06 57.09
LCGAT 26.93 37.31 43.09 47.72 55.05

Table 6: Total training time in seconds (s) and training time per epoch in milliseconds
(ms) on Ogbn-arxiv.

# Labels Total training time (s) Training time per epoch (ms)
per class 1 3 5 10 20 1 3 5 10 20

SSTGCN 87.4 90.8 105.7 92.8 107.3 158.7 171.6 219.7 180.8 205.7
SSTDA 144.1 218.7 134.7 119.3 159.1 257.1 256.7 234.6 156.6 187.4

DGI 95.0 95.0 96.8 94.1 94.3 190.7 189.9 190.4 190.6 190.4
STs 46.1 45.4 51.3 52.6 30.0 55.0 55.1 55.3 55.5 55.4
GCN 32.4 54.5 56.3 56.3 56.5 53.0 53.4 53.0 53.1 53.4
DAGNN 83.3 110.3 122.2 158.2 156.6 150.9 150.8 150.7 151.8 148.3
APPNP 61.1 71.3 107.8 120.0 119.6 113.6 113.1 113.3 113.5 113.2
GAT 93.8 94.1 94.0 93.7 94.5 89.9 90.3 90.1 89.7 90.5
LCGCN 83.5 84.1 84.6 84.9 85.0 80.61 80.5 80.6 80.7 80.9
LCGAT 96.7 97.2 97.3 97.3 97.4 93.1 93.5 93.6 93.5 93.1

ter than GCN (resp. DAGNN). The results in Table 5 demonstrate the
effectiveness of our SST framework to improve classification performance.

Note that our SST framework is integrated into existing GNN models
(GCN and DAGNN). Therefore, SSTGCN and SSTDA inherit the efficiency
of their corresponding base models, with moderate extra overheads to per-
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Figure 4: Ablation study of SST on Cora.

form the stabilized self-training techniques proposed in this paper. We report
the total training time and training time per epoch of all methods on Obgn-
arxiv in Table 6, to show that the methods are able to scale to large graphs.
Since different models converge at different epochs, their total training time
varies. The total training time of all models are affordable (within 4 min-
utes). For instance, on Ogbn-arxiv-10, SSTDA converges in 119.3 seconds,
while DAGNN costs 158.2 seconds and APPNP needs 120.0 seconds. On
Ogbn-arxiv-1, SSTGCN converges in 87.4 seconds, while GAT and LCGAT
need 93.8 and 96.7 seconds respectively. In terms of training time per epoch,
compared with base models (e.g., DAGNN), SSTDA has similar training
time per epoch with moderate extra overheads. In summary, our methods
consistently achieve the highest effectiveness, while having similar efficiency
and scalability performance compared with existing methods.

5.5. Ablation Study

We conduct ablation study to evaluate the contributions of the techniques
of SST presented in Section 4.3. In particular, let base models be either GCN
or DAGNN. Then denote base+SST as the method with the whole SST
framework enabled (i.e., SSTGCN or SSTDA), base+S as the method with
only stabilized pseudo labeling loss in Eq. (11) enabled, and base+N as the
method with only negative sampling loss in Eq. (12) enabled. Figures 4a and
4b report the ablation results of SSTGCN and SSTDA respectively, on Cora
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Figure 5: Vary β. Results are averaged over 20 runs.

when varying the number of labels per class in {1, 3, 5, 10, 20}. Observe that
the accuracy of base+S and base+N are always better than the base models,
i.e., GCN and DAGNN, indicating the effectiveness of the proposed pseudo
labeling and negative sampling techniques in SST. Further, the accuracy of
base+SST is always the highest under almost all settings. The ablation study
demonstrates the power of our proposed techniques to improve classification
accuracy.

We further vary β from 0.1 to 0.9, and report the performance of SST-
GCN in Figure 5a, for node classification on Cora-5, CiteSeer-3, PubMed-1,
and Cora-full-3. The corresponding number of pseudo labels when vary-
ing β in SSTGCN is reported in Table 7. As β increases, the number of
pseudo labels decreases (Table 7). For SSTGCN, the best result is achieved
at β = 0.6, 0.2, 0.5, 0.3 for Cora-5, CiteSeer-3, PubMed-1, and Cora-full-3 re-
spectively as shown in Figure 5a, which exhibits the trade off between the con-
fidence and the number of pseudo labels decided by Eq. (10). Figure 5b and
Table 8 report the accuracy of SSTDA and the number of pseudo labels re-
spectively when varying β. The best result is achieved at β = 0.6, 0.4, 0.3, 0.3
for node classification on Cora-5, CiteSeer-3, PubMed-1, and Cora-full-3 re-
spectively. In Table 8, the number of pseudo labels decreases as β increases.

6. Conclusion

This paper presents Stabilized Self-Training (SST), an effective framework
for semi-supervised node classification on few-labeled graph data. We iden-
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Table 7: The number of pseudo labels when varying β in SSTGCN, averaged over 20 runs.

Task
β

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Cora-5 2708 2707 2630 2368 2013 1714 1235 855 369
CiteSeer-3 3327 3327 3325 3307 3247 3118 2907 2436 1535
PubMed-1 19717 19717 19717 19250 16463 12349 9246 5307 1871
Cora-full-3 19789 19704 19366 18879 18006 17041 15553 13616 10233

Table 8: The number of pseudo labels when varying β in SSTDA, averaged over 20 runs.

Task
β

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Cora-5 2707 2707 2675 2535 2233 1994 1678 1346 817
CiteSeer-3 3326 3327 3290 3092 2721 2305 1843 1244 575
PubMed-1 19717 19717 19717 19691 19472 18674 17733 16219 13843
Cora-full-3 19741 18892 16976 14678 12235 9914 7475 5258 2914

tify that existing GNNs are with unstable performance under few-labeled
settings. We also conduct extensive empirical and theoretical analysis to
provide solid explanations for the observations. SST is designed with the
consideration of the analysis, and achieves superior performance on graphs
with extremely few labeled nodes. SST consists of a stabilized pseudo label-
ing technique and a negative sampling regularizer over pseudo labels. The
effectiveness of SST is evaluated via extensive experiments. In the future, we
plan to enhance SST by investigating other unsupervised techniques, and also
implement SST on top of more GNN architectures to further demonstrate
its applicability.

Appendix A. Proof

Appendix A.1. Proof of Eq. (5)

Proof. The first inequality of Eq. (5) is from the property of conditional ex-
pectation. Specifically, for a random variableX = ∇θL(Ỹi,Fi)−∇θL(Yi,Fi)
and a partition of sampling space into two parts:

A = {vi ∼ U(U)|Ỹi 6= Yi}

B = {vi ∼ U(U)|Ỹi = Yi}
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Then the following holds since E[X|B] = 0:

E[X] =E[X|A]P(A) + E[X|B]P(B)

=E[X|A]P(A)

Based on Jensen’s inequality, the first inequality of Eq. (5) holds.

E[X] = ‖E[X|A]P(A)‖
≤P(A)E[‖X‖ |A].

The second inequality is from the bounded gradient norm assumption and
the triangle property of the norm, such that∥∥∥∇θL(Ỹi,Fi)−∇θL(Yi,Fi)

∥∥∥ ≤∥∥∥∇θL(Ỹi,Fi)
∥∥∥+ ‖∇θL(Yi,Fi)‖

≤2Θ

Then we have

|U| ·P(A)

|L|
· E [‖X‖ |B] ≤2Θ|U|

|L|
·P(A)

=
2Θ|U|
|L|

·Pvi∼U(U)(Ỹi 6= Yi)

Thus Eq. (5) holds.

Appendix A.2. Proof of Lemma 1

The proof of Lemma 1 needs Lemma 2 and 3 that are presented and
proved as follows.

Lemma 2. If the ground-truth distribution of labels is ρ-balanced, the maxi-
mal probability of a class will be bounded as

max
y∈C

Pvi∼U(U)(Yi = y) ≤ ρ

ρ+ |C| − 1
.

Proof of Lemma 2. One can easily derive from Eq. (6) that for any y ∈ C,
we have

Pvi∼U(U)(Yi = y) ≥ 1

ρ
Pvi∼U(U)(Yi = y′′).
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By the property of probability, denote y′′ = arg maxy∈C Pvi∼U(U)(Yi = y)

1 =
∑
y∈C

Pvi∼U(U)(Yi = y)

=Pvi∼U(U)(Yi = y′′) +
∑

y∈C,y 6=y′′
Pvi∼U(U)(Yi = y)

≥Pvi∼U(U)(Yi = y′′) +
1

ρ

∑
y∈C,y 6=y′′

Pvi∼U(U)(Yi = y′′)

=(1 +
|C| − 1

ρ
) ·Pvi∼U(U)(Yi = y′′).

Then we have
max
y∈C

Pvi∼U(U)(Yi = y) ≤ ρ

ρ+ |C| − 1
.

Lemma 3. If the distribution of pseudo labels is η-imbalanced, we have the
lower bound of the maximal probability of a class as

max
y∈C

Pvi∼U(U)(Ỹi = y) ≥ η

η + |C| − 1
.

Proof of lemma 3. One can easily get from Eq.(7) that for any y ∈ C,

Pvi∼U(U)(Ỹi = y) ≤ 1

η
Pvi∼U(U)(Ỹi = y′).

Due to the property of probability,

1 =
∑
y∈C

Pvi∼U(U)(Ỹi = y)

=Pvi∼U(U)(Ỹi = y′) +
∑

y∈C,y 6=y′
Pvi∼U(U)(Ỹi = y)

≤Pvi∼U(U)(Ỹi = y′) +
|C| − 1

η
Pvi∼U(U)(Ỹi = y′).

Thus Pvi∼U(U)(Ỹi = y′) = maxy∈C Pvi∼U(U)(Ỹi = y) ≥ η
η+|C|−1 .

After getting Lemma 2 and 3, in the following, we prove Lemma 1.
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Proof of lemma 1. We expand the classification error by the pseudo labels

Pvi∼U(U)(Ỹi 6= Yi) =
∑
y∈C

[Pvi∼U(U)(Ỹi 6= Yi, Ỹi = y)]. (A.1)

Let y′ = arg maxy∈C Pvi∼U(U)(Ỹi = y), we have

∑
y∈C

[Pvi∼U(U)(Ỹi 6= Yi, Ỹi = y)] ≥ Pvi∼U(U)(Ỹi 6= Yi, Ỹi = y′)

=
∑

y∈C,y 6=y′
Pvi∼U(U)(Yi = y, Ỹi = y′)

≥
∑

y∈C,y 6=y′
[Pvi∼U(U)(Yi = y) ·Pvi∼U(U)(Ỹi = y′)]

= [1−Pvi∼U(U)(Yi = y′)] ·Pvi∼U(U)(Ỹi = y′).

We are interested in the max and min values of Pvi∼U(U)(Ỹi = y′) and
Pvi∼U(U)(Yi = y′) respectively. From Lemma 2, we have

Pvi∼U(U)(Yi = y′) ≤max
y∈C

Pvi∼U(U)(Yi = y)

≤ ρ

ρ+ |C| − 1
.

From Lemma 3, we can directly derive

Pvi∼U(U)(Ỹi = y′) ≥ η

η + |C| − 1
.

Thus we can get

Pvi∼U(U)(Ỹi = y′)−Pvi∼U(U)(Yi = y′) ≥ η

η + |C| − 1
(1− ρ

ρ+ |C| − 1
)

≥ η

η + |C| − 1
− ρ

ρ+ |C| − 1
.

Combining all above, we have the lower bound of classification error

Pvi∼U(U)(Ỹi 6= Yi) ≥
η

η + |C| − 1
− ρ

ρ+ |C| − 1
.
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E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, S. Chintala, Pytorch: An imperative style, high-
performance deep learning library, in: Conference on Neural Information
Processing Systems, 2019, pp. 8024–8035.

[43] M. Fey, J. E. Lenssen, Fast graph representation learning with pytorch
geometric, arXiv preprint arXiv:1903.02428 (2019).

[44] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, T. Eliassi-Rad,
Collective classification in network data, AI Magazine (2008) 93–106.
doi:10.1609/aimag.v29i3.2157.

[45] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta,
J. Leskovec, Open graph benchmark: Datasets for machine learning

33

http://dx.doi.org/10.1145/3394486.3403218
http://dx.doi.org/https://doi.org/10.1016/j.ins.2022.09.024
http://dx.doi.org/https://doi.org/10.1016/j.ins.2022.09.024
http://dx.doi.org/https://doi.org/10.1007/s00365-006-0663-2
http://dx.doi.org/10.1609/aimag.v29i3.2157


on graphs, in: Conference on Neural Information Processing Systems,
2020.

[46] X. Wu, Z. Li, A. M. So, J. Wright, S. Chang, Learning with partially ab-
sorbing random walks, in: Conference on Neural Information Processing
Systems, 2012, pp. 3086–3094.

[47] B. Xu, J. Huang, L. Hou, H. Shen, J. Gao, X. Cheng, Label-consistency
based graph neural networks for semi-supervised node classification, in:
International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2020. doi:10.1145/3397271.3401308.

34

http://dx.doi.org/10.1145/3397271.3401308

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Our Method and Analysis
	4.1 Empirical Analysis
	4.2 Theoretical Analysis
	4.3 Stabilized Self-Training (SST) Framework
	4.3.1 Stabilized Pseudo Labeling
	4.3.2 Negative Sampling Regularization
	4.3.3 Overall Objective Function


	5 Experiments
	5.1 Implementation Details
	5.2 Datasets and Competitors
	5.3 Experimental Settings
	5.4 Overall Experimental Results
	5.5 Ablation Study

	6 Conclusion
	Appendix  A Proof
	Appendix  A.1 Proof of Eq. (5)
	Appendix  A.2 Proof of Lemma 1


