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Wybrzeże Wyspiańskiego 27, 50-370 Wroc law, Poland
{michal.wozniak;pawel.zyblewski;pawel.ksieniewicz}@pwr.edu.pl

Abstract. One of the significant problems of streaming data classifi-
cation is the occurrence of concept drift, consisting of the change of
probabilistic characteristics of the classification task. This phenomenon
destabilizes the performance of the classification model and seriously
degrades its quality. An appropriate strategy counteracting this phe-
nomenon is required to adapt the classifier to the changing probabilistic
characteristics. One of the significant problems in implementing such a
solution is the access to data labels. It is usually costly, so to minimize
the expenses related to this process, learning strategies based on semi-
supervised learning are proposed, e.g., employing active learning meth-
ods indicating which of the incoming objects are valuable to be labeled
for improving the classifier’s performance. This paper proposes a novel
chunk-based method for non-stationary data streams based on classifier
ensemble learning and an active learning strategy considering a limited
budget that can be successfully applied to any data stream classification
algorithm. The proposed method has been evaluated through computer
experiments using both real and generated data streams. The results
confirm the high quality of the proposed algorithm over state-of-the-art

methods.

Keywords: data stream · pattern classification · active learning · clas-
sifier ensemble · concept drift..

The paper focuses on constructing efficient data stream classifiers. Recently,
most processed data is characterized by a large volume that comes to be pro-
cessed as a data stream. This requires that the designed methods will take into
account the streaming nature of the data and to select for this purpose appropri-
ate processing so that the employed training algorithm can improve the recent
classification model. On the other hand, it should be noted that traditional pro-
cessing methods assume the stationarity of the classification task and thus do
not take into account that probabilistic characteristics may change during the
model lifetime. This phenomenon, called concept drift [69], generally negatively
affects the classification quality achieved by the model. Therefore, the proposed
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classifier training methods should also be able to cope with the elimination of
the impact of concept drift on the classifier quality.

The appearance of the concept drift [69] is common in many practical decision-
making tasks, as fraudsters may change the content of the e-mail to get past spam
filters. The occurrence of changes in the characteristics of a classification task
is usually unpredictable. Still, we can identify factors that influence some prob-
lems, as the current pandemic situation related to the spread of the covid-

virus very strongly influences consumer behavior. In the data classification task,
the classifier aims to predict the class label j (j ∈ M = {1, . . . ,M}, where M
is a finite set of labels). The decision is made based on the attribute values of a
given instance x (x = [x(1), . . . , x(d)]T ∈ X , where X is a d-dimensional feature
space), i.e., Ψ : X → M. We assume that x and i are observed values of a pair
of random variables (X,J) [18].

When we observe that the join distribution between two different time stamps
varies, it means that concept drift appears. The concept drift impacts the men-
tioned probability distributions [20], as either real or virtual concept drifts. The
first one means that changes will impact the shapes of decision boundaries, i.e.,
the posterior probabilities p(i|x) have been changed [56, 69]. The virtual drift
does not alter the shape of decision boundaries, but it impacts the unconditional
probability density functions [68]. Olivera et al. [49] noted that although virtual
concept drift does not affect the change in decision boundaries and has not been
the focus of much research, it is important to note that it can also affect the
usefulness of learned decision boundaries by classifiers, e.g., for unrepresentative
learning sets used to build a classifier. Therefore, in practical terms, it is not cru-
cial what type of concept drift occurs, at the end of the result in all scenarios,
the current model needs to be altered.

Another taxonomy of concept drift is based on the rapidity of change. Mainly,
we may distinguish (i) sudden (or abrupt) concept drift, when the new concept
suddenly replaces the old concept; and (ii) incremental concept drift when we
may observe a steady progression from the old concept toward a new one such
that at each time step the distance from the old concept increases and the
distance to the new one decreases [67]. Minku et al. [45] proposed that proba-
bilistic concept drift should also be considered, i.e., it occurs when there are two
alternating concepts, such that initially, one concept dominates and over time,
the other concept begins to dominate. However, many researchers, as Huang
et al. [26] do not distinguish between these two types of drift. Gradual concept
drift should also be mentioned when the two concepts may occur with different
intensities during the period of change between the old and the new concept.
An interesting phenomenon is periodic changes, referred to as recurring concept

drift [59] when previously occurring concepts return. This type of drift is typi-
cal for data streams associated with seasonal phenomena. In this case, we may
observe a variant of recurring concept drift called a cyclical concept, when a
specific number of concepts recur in a particular order [25].

Although many methods have been proposed that attempt to classify non-
stationary data streams efficiently, there is still a need for new approaches that
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are the focus of intense research. Several methods dedicated to such classifica-
tion can be found in the literature, including algorithms that continuously train
a model of the classifier, the so-called online learners. Domingos [16] formulated
the following conditions that should be satisfied by such methods: (i) each object
must be processed only once during training; (ii) the system should consume only
a limited amount of memory and processing time, regardless of the execution
time and the amount of data processed; (iii) the training process can be stopped
at any time, and its accuracy should not be lower than that of a classifier trained
on batch data collected up to a given time. These methods are generally suit-
able for stationary data streams because all learning objects are equally valid,
regardless of when they appeared. However, these methods could be applicable
if we could control the process of forgetting objects from an outdated concept.
Hence, among the methods used to classify non-stationary data streams, we
can distinguish those that incorporate a forgetting mechanism. This approach is
based on the assumption that the most relevant data have arrived recently, as
they contain features of the current concept. However, their relevance decreases
over time. Therefore, narrowing the scope of the data to those that have been
read recently can help create a dataset that embodies the actual context. Three
strategies are possible here: (i) instance selection using a sliding window that
cuts off older instances; (ii) weighting the data based on relevance; and (iii)
using bagging and boosting algorithms that focus on misclassified instances.

For a sliding window, the main question is how to adjust the window size.
On the one hand, a shorter window allows focusing on the emerging concept,
although the data may not be as representative as in the case of a longer win-
dow. On the other hand, a wider window may result in a mixture of instances
representing different concepts. Bifet and Gavalda [7] observed that although
classifiers trained on wider windows are characterized by greater stability, they
do not respond quickly enough to sudden concept drift. Examples of the re-
lationship between window size, classifier accuracy and standard deviation are
discussed in detail in [36]. Therefore, some advanced algorithms dynamically ad-
just the window size depending on the detected condition, e.g., flora [69] and
adwin [8]. Then variances are compared using F-test and chunk size increases
if the p-value is less than a predefined threshold. More advanced algorithms can
even use multiple windows [39].

Another approach is to use so-called concept drift detectors, i.e., algorithms
that can inform the classification system about changes occurring in the data
stream distributions. A decision is made based on incoming information about
new examples, i.e., labels or classifier performance are required to detect a con-

cept drift. Several approaches aim to detect drift from unlabeled data, but they
are more suitable for detecting virtual concept drift [59]. Additionally, many
detectors can return both a signal that drift has been unambiguously detected
and a warning level has been reached. It is a signal to start collecting new data
to update or rebuild the model soon, i.e., when the explicit detection signal is
returned.
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It is also important to realize that drift detection is a non-trivial task since
the detection should be performed as soon as possible to replace the outdated
model and thus minimize the reconstruction time. On the other hand, false
alarms are unacceptable, as they will lead to misadaptation of the model and
spending resources where there is no need to do so [24].

Many drift detection methods have been proposed, including cumulative
sum [51], which is a simple sequential analysis technique based on measuring
the average value of the input data. The Exponentially Weighted Moving Aver-

age [54] combines current and historical observations in a way that can quickly
detect changes in the mean using aggregate chart statistics. Well-known ddm

(Drift Detection Method) [22] incrementally estimates the error of the classifier
assuming convergence of the classifier training method.

eddm (Early Drift Detection Methods) [3] is an extension of ddm, where
the window size selection procedure is based on the same heuristics. Interesting
drift detectors based on Hoeffding and McDiarmid inequalities were proposed
in [10]. Also worth mentioning is adwin [6], which is based on an adaptive
sliding window, being highly suitable for handling sudden drifts. While Nishida’s
algorithm [8] assumes that the accuracy of the classifier for recent examples is
the same as the overall accuracy since the beginning of learning if the target
concept is stationary.

We also should mention combined models that combine the outputs of several
detectors and then send a signal to a learning algorithm based on an ensemble
decision. When one has an appropriate set of detectors and a good combination
rule, the resulting ensemble detection can be expected to be more accurate and
robust to noise. Maciel et al. propose a three-detector ensemble [44], based on
different default detector combinations depending on the selected ensemble sen-
sitivity. Du et al. [17] developed the ensemble pruning technique to choose the
most valuable component of the drift detector ensemble. Lapinski et al. [74] also
studied several novel models of combined drift detectors.

The last approach to classifying non-stationary data streams is ensemble
classifiers, which will be discussed in more detail in the next section. Here it
is worth noting that the appropriate mechanisms must be developed to adapt
the classification model to the changing probabilistic characteristics of the task.
These can be divided into the following approaches [34]: (i) dynamic combiners

– base classifiers are trained before the model is run, and a combination rule
(e.g., for weighted voting or aggregation by changing the weights associated with
each classifier in the ensemble) is responsible for adapting to changes [27, 41]);
(ii) updating ensemble members using recent training examples [9, 50, 66]; (iii)
modifying ensemble line-up [29].

An additional complication during the classification of non-stationary data
streams is that the delivery of labeled data is required when we train the classifier
under the changing probabilistic characteristics. This process can be difficult,
primarily due to the frequent delay in delivering the correct classification. For
example, the true label for the credit approval task for the client’s score is not
known until two years. The problem concerning the delay in accessing the label
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is significant. It should be noted that, especially in cases where the delay is
substantial, the correct label may already be delivered when the evaluated object
belongs to an outdated concept. Therefore, to the authors’ best knowledge, there
are currently no known solutions for this problem. However, the issue we want
to address in this paper is the labeling cost. The labeling itself generally involves
domain experts, so it is expensive. To reduce the expenses incurred for object
labeling, it is possible to use methods that have their origin in semi-supervised
learning methods, including those based on active learning methods [23]. Such
an approach allows the selection of valuable learning instances according to their
influence on the classifier’s quality, which should be labeled. It thus positively
influences the required budget needed for object labeling.

In a nutshell, the main contributions of this work are as follows:

– The proposal of awae (Active Weighted Aging Ensemble for Drifted Data

Stream Classification) - a new chunk-base classifier ensemble for classification
of non-stationary data streams.

– The proposition of new methods for weighting and aging (decoying) classi-
fiers in the ensemble.

– The development of a method for rejuvenating base classifiers, i.e., increas-
ing the decision impact of classifiers with above-average quality, despite the
relatively long period of time that has passed since they were trained.

– The proposition of classifier pruning procedure based on an aggregate crite-
rion that considers the influence of given base classifiers on ensemble diversity
on the one hand and accuracy on the other.

– The proposal for an active learning method with limited labeling budget
that can be applied to any chunk-based classifier ensemble.

– Carrying out the extensive experimental studies to evaluate the quality of the
proposed method, emphasizing the effect of individual parameters on learn-
ing quality and comparing classification performance with selected state-of-

the-art methods.

The structure of this article is as follows. The following section will briefly
present works related to classifier ensemble for the non-stationary data stream
and active learning. Then awae will be discussed, and the active learning pool-
based sampling technique with limited labeling budget bals for data stream
classifiers will be presented. The following section contains the experimental
results and answers to the researcher questions posed at the beginning of this
section. The last part summarizes the work and indicates directions for possible
further research.

1 Related works

The data stream can be split into into small data blocks called chunks. There-
fore learning from these portions of data are called batch-based or chunk-based
learning [32]. Choosing the proper size of the chunk is crucial because it may
significantly affect the classification [28]. Although there are methods mentioned
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earlier to adjust the size of the data chunk to changing distributions, most chunk-
based classification methods assume that the size of the data chunk is priorly
set and remains unchanged during the data processing. Instead of chunk-based
learning, the algorithm can learn incrementally (online), i.e., training examples
arrive one by one at a given time and are not kept in memory.

When processing a non-stationary data stream, we can rely on a drift detector
to point moments when data distribution has changed and take appropriate
actions. Alternatively, we may use inherent adaptation capabilities of models.
One class of such models is classifier ensemble [35].

1.1 Classifier ensemble for non-stationary data stream

Firstly, it is worth mentioning work by Krawczyk et al. [32] where a compre-
hensive overview of classifier ensemble learning from data streams is presented.
Due to processing data streams, we may employ online and chunk-based en-
semble learning. Within the first group of methods, we should first mention
Online Bagging proposed by Oza and Russel [50], which is inspired by bagging,
whereby when a new object arrives, it is used to train each base classifier. The
number of recent object presentations for each base classifier is determined by
Poisson(1) distribution. The proposed method was later developed by Lee and
Clyde [40] in the Bayesian Online Bagging algorithm. In contrast, Bifet et al.
proposed Adaptive-Size Hoeffding Trees algorithm. It ensures ensemble diversity
by learning Hoeffding trees of different sizes. Leverage Bagging [9] combines the
simplicity of bagging with adding more randomization to the input and output of
the classifiers by using Poisson(λ) distribution, where the user can determine λ.
Leverage Bagging also uses random output codes and allows training new base
classifiers when concept drift is detected using adwin.

Oza and Russell [50] also authored Online Boosting. It employs a sequence
of base models trained during the boosting procedure. When a new learning
example is received, each base classifier is updated multiple times according to
the Poisson(λ) distribution. For the first classifier in the sequence λ = 1 and
in the case of misclassification, the parameter λ is increased for the next base
classifier, and in the case of correct classification, it is decreased accordingly.

Several important modifications of the above methods are also worth men-
tioning. Santos et al. [55] proposed Adaptable Diversity-based Online Boosting

(adob), which can accelerate the update of base classifiers after concept drifts
by making the λ parameter dependent on the prediction quality of base classi-
fiers. Based on this approach, Accuracy Weighted Diversity-based Online Boost-

ing (awdob) [4] employs weighted voting according to previous base classifier
evaluations results. Baros et al. developed Boosting-like Online Learning En-

semble (bole) [5], which used a modification of the adob algorithm involving
weakening the requirements to allow the base classifier to vote and use different
concept drift detector. Also Ultra Fast Forest Tree (ufft) [21] is worth mention-
ing. It uses an ensemble of online training binary Hoeffding trees. Lan et al. [38]
proposed Ensemble of Online Extreme Learning Machines being a simple aggre-
gation of randomized neural networks trained online. Shan et al. [58] proposed an
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online active learning ensemble that composed a long-term stable classifier and
multiple dynamic classifiers. This method also used an active learning strategy
to select instances to label.

Let us move on to the second group of chunk-based stream processing meth-
ods to build classifier ensembles. Streaming Ensemble Algorithm (sea) [63] is
the classifier ensemble with changing lineup, where the individual classifiers are
trained on the following data chunks. The base classifiers with the lowest ac-
curacy are removed from the ensemble to keep the model up-to-date. Wang et
al. proposed Accuracy Weighted Ensembles (awe) [70] employing the weighted
voting rules, where weights depend on the accuracy obtained on the testing
data. Brzezinski and Stefanowski proposed Accuracy Updated Ensemble (aue),
extending awe by using online classifiers and updating them according to the
current distribution [12]. Shan et al. [58] developed an online classifier ensemble
consisting of a so-called stable classifier and multiple updating base classifiers
to better react to different concept drifts. This approach also employed active
learning to minimize the required number of labeled instances.

Cano and Krawczyk proposed Kappa Updated Ensemble (kae) [13] that com-
bines online and block-based approaches. kae uses Kappa statistic for dynamic
weighing and selection of base classifiers. It is also worth mentioning work by
Cohen and Straus [14] where the problem of maintaining time-decaying was
formulated and analyzed, and statistics of a data stream. Liu et al. [42] pro-
posed dividing data chunks in case of drift occurrence. Lu et al. [43] compared
two chunks based on classifier predictions variance calculated using the original
method called subunderbagging.

Bifet et al. [8] introduced a method for handling concept drift with varying
chunk sizes. Each incoming chunk is divided into two parts: older and new.
Empirical means of data in each subchunk are compared using Hoeffding bound.
If the difference between two means exceeds the threshold defined by confidence
value, then data in the older window is qualified as out of date and is dropped.
Later window with data for current concept grows, until next drift is detected
and data is split again. This approach allows for detecting drift inside the chunk.

1.2 Active learning methods for data stream classification

Due to the high cost of data labeling, active learning methods are gaining more
and more popularity [57], including data stream classification [2].

Žliobaitė et al. [64] discussed the theoretical framework for predictive model
learning using active learning approach and described tree labeling strategies.
Kurlej and Wozniak [37] proposed the active learning data stream classification
methods based on minimal distance classifiers. The decision about a given in-
stance labeling depends on the distance between an example and the current
decision boundary. Nguyen et al. [48] developed an incremental algorithm csl-
stream, that performs clustering and classification at the same time. Zgraja et
al. [72] developed alcc (Active Learning by Clustering for Drifted Data Stream

Classification) algorithm which employed query by clustering into new classifier
training.
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Mohamad [46] proposed a similar data stream classifier, which combines un-
certainty and density-based querying criteria. Bouguelia et al. [11] proposed a
new query strategy based on instance weighting, but the time complexity of
the weigh calculation was relatively high. Korycki and Krawczyk [31] applied
an active learning strategy to classify data streams and combine it with the
self-labeling approach.

Ksieniewicz et al. [33] focused on active learning strategy for neural net-
work classifiers. The authors implemented the forgetting mechanism using the
catastrophic forgetting phenomenon. Shan et al. [58] employed a mixed strategy
(based on active learning uncertainty sampling and random sampling) to select
incoming objects to label. This approach was inspired by [71] where the pro-
posed algorithm reacts to concept drift by using a mixed strategy to choose the
instances to be labeled.

2 Active Weighted Aging Ensemble

2.1 Preliminaries

Let’s Π denotes a pool of L base classifiers Π = {Ψ1, Ψ2, Ψk..., ΨL} to be used
by the combined classifier Ψ̂ .

In this study, we employ weighted voting, where weights are assigned to each
base classifier, i.e.,

Ψ̂(x) = arg max
i∈M

L
∑

k=1

[Ψk(x) = i]w(Ψk) (1)

where wk is the weight that is assigned to the kth individual and [ ] denotes
Iverson’s bracket.

2.2 Algorithm decsription

In this section, we will discuss a novel awae algorithm (Active Weighted Aging

Ensemble), which can adapt the model to changes caused by the appearance
of concept drit. On the other hand, it reduces the cost of labeling the data in
each data chunk by using an active learning strategy with a maximum labeling
budget assumed. It is worth noting here that the proposed algorithm is inspired
by previous works of the team related to the wae algorithm [70], among others.
However, the presented version has a number of modifications in terms of reduc-
ing the label demand and proposes new mechanisms for calculating weights for
base classifiers and ensemble pruning.

We will first briefly introduce the most critical components of the awae

algorithm, propose their implementation, and then present a run-time analysis
of the proposed method.

Instead of drift detection, awae tries to construct a self-adapting classifier
ensemble that can adapt to the changes in a data stream. We assume that the
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classified data stream is given in the form of data chunks denoted as DSk, where
k is the chunk index. The concept drift could appear in the incoming data chunks.
Therefore based on each chunk, one individual is trained and we check if it could
form a valuable ensemble with the previously trained models.

If the pool size of L classifiers is exceeded, then the least valuable classifier
must be removed from the pool (we choose L out of L + 1 individuals). This
choice (ensemble pruning) is made based on a proposed criterion that is either
the chosen diversity measure (in the case of pre pruning, i.e., before the weights
are computed) or a linear combination of diversity measure and accuracy (in the
case of post pruning after the weights of the base classifiers are calculated). Three
procedures are used to calculate the weights. The weight calculating procedure

calculates weights according to the importance of a given classifier for ensemble
quality. The rejuvenating procedure artificially reduces the residence counter of
classifiers with a high impact on the quality of the ensemble classifier, i.e., it
weakens the forgetting effect associated with the selected classifiers. In contrast,
aging procedure reduces the weights of the base classifiers depending on the value
of the residence index. The detailed description of the awae is presented in Alg.
1.

2.3 Ensemble pruning

awae has built-in mechanisms to ensure a maximum ensemble size. If this is
exceeded, a pool of L base classifiers with the best evaluation function value is
selected. Pruning is possible either as soon as a classifier is added to the en-
semble or only after determining its weight used by the combination rule. In
the first case, pruning is performed if the variable pre pruning == 1 and the
selected diversity measure (GeneralizedDiversity proposed by Partridge and
Krzanowski [52] was selected in the experiments) is used for evaluation [35].
When post pruning is selected (variable post pruning == 1), the following cri-
terion is used

criterionp(Π) = αPa(Π) + (1 − α)diversity(Π) (2)

where Pa(Π) stands for the accuracy of the classifier ensemble, diversity(Π)
denotes its diversity, while α ∈ [0, 1] is user-defined parameter used for the
linear combination of accuracy and diversity. Both metrics are calculated on the
basis of incoming data chunk.

2.4 Weight calculation

We propose the following methods of weight calculation:
The same weights for each classifier in the pool, i.e., majority vote is use
as the combination rule

w(Ψi) =
1

|Π |
(3)
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Algorithm 1 Active Weighted Aging Ensemble algorithm

Input:

data stream DS = {DS1, DS2, ...},
data chunk size,
train — classifier training function using active learning stategy;
L – maximal ensemble size;
pruning – pruning procedure;
pre pruning – pre pruning procedure on/off;
post pruning – post pruning procedure on/off;
criterion p – pruning criterion;
diversity – diversity measure;
weighting - weight calculating procedure;
aging – aging procedure;
reindex - reindexing of classifier identifiers starting from 1;
reju – rejuvenating procedure.

1: k := 0
2: Π = ∅
3: while new data chunk DSk do

4: Ψk ← train(DSk)
5: Π := Π ∪ {Ψk}
6: if pre pruning then

7: Π ← pruning(Π,L, diversity)
8: end if

9: reindex(Π)
10: w := 0
11: weighting(Π,DSk)
12: reju(Π,DSk)
13: aging(Π,DSk)
14: for j := 1 to |Π | do
15: if w(Ψj) == 0 then

16: Π = Π \ {Ψj}
17: end if

18: w := w + w(Ψj)
19: end for

20: reindex(Π)
21: if post pruning then

22: Π ← pruning(Π,L, criterionp)
23: reindex(Π)
24: for j := 1 to |Π | do
25: w := w + w(Ψj)
26: end for

27: end if

28: for j := 1 to |Π | do

29: w(Ψj) :=
w(Ψj )

w

30: end for

31: k := k + 1
32: end while
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Kuncheva’s weights - suggested by Kuncheva [35]

w(Ψi) =
Pa(Ψi)

1 − Pa(Ψi)
(4)

Weights proportional to accuracy related to the whole ensemble ac-

curacy

w(Ψi) =
Pa(Ψi)

Pa(Π)
(5)

if w(Ψi) < θ then w(Ψi) = 0, where θ ∈ [0, 1] is the parameter which responsible
for the removing less important classifiers.

Weights proportional to accuracy related to the whole ensemble ac-

curacy using bell curve

w(Ψi) =
1

2π
exp

(Pa(Π) − (Pa(Π) − Ψi))

2
(6)

if w(Ψi) < θ then w(Ψi) = 0, where θ ∈ [0, 1] as previously stands for the
parameter responsible for the removing less important classifiers.

2.5 Aging

We propose the following aging methods:

Weight aging proportional to classifier accuracy

w(Ψi) =
Pa(Ψi)

√

itter(Ψi)
(7)

where itter(Ψ) stands for the residence counter of the classifier Ψ in Π), i.e.,
how many iterations have elapsed since a given base classifier was trained.

Constant aging

w(Ψi) = w(Ψi) = w(Ψi) − δ (8)

if w(Ψi) < θ then w(Ψi) = 0, where θ ∈ [0, 1] as previously stands for the
parameter responsible for the removing less important (old enough) classifiers
and δ is user-defined parameter responsible for the aging rate.

Gaussian aging

w(Ψi) =
1

2π
exp

itter(Ψi)ξ

2
(9)

if w(Ψi) < θ then w(Ψi) = 0, where θ ∈ [0, 1] as previously stands for the
parameter responsible for the removing less important (old enough) classifiers
and ξ is user-defined parameter responsible for the aging rate.
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Algorithm 2 Rejuvenating

Input:

r p – power of rejuvenating (r p > 1),
{w(Ψ1), w(Ψ2)...} – weights assigned to the individuals in Π .

1: w := 0
2: for j := 1 to |Π | do
3: w := w + w(Ψj)
4: end for

5: w := w

Π

6: for j := 1 to |Π | do
7: if w(Ψj) > w then

8: itter(Ψj) := itter(Ψj)−
max(1, [r p ∗ (w(Ψj)])

9: end if

10: end for

2.6 Rejuvenating

We propose to rejuvenate an individual classifier if it has a big impact on the
classifier ensemble, i.e., if its weight is bigger than average weight of base clas-
sifiers. Then the residence counter of a base classifier in the ensemble (itter) is
decreased. The idea is presented in Alg. 2, where [] stands for entier.

2.7 Budget Active Labeling Strategy

The training algorithm train used by awae algorithm also takes into account
the possibility of limited label access, in which the Budget Active Labeling Strat-

egy (bals) algorithm [73] – based on the random budget and active learning
paradigm – is employed. The decision about the object labeling in each consec-
utive data chunk depends on two parameters:

– threshold t – which is responsible for choosing the ”interesting” examples,
i.e., if support function related with the decision is lower than a given thresh-
old the object seems to be interesting and algorithm is asking for its label.

– budget b – which defines the percent of instances in each data chunk, for
which a label will be randomly obtained.

The addition of the randomly chosen budget to the instances selected using
the threshold-based active learning method aims at increasing the generaliza-
tion ability of a classifier while reducing the possibility of overfitting. The exact
procedure of the processing performed by the bals algorithm is presented in the
Alg. 3, and below is a brief description of the functions used in it:

– update classifier() – Updates the classification model using the labeled in-
stances from a given data chunk, or with whole data chunk in case of the
first iteration.
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– active learning() – Selects instances for labeling from a given data chunk
based on the support function threshold, which can be interpreted as a dis-
tance from the decision boundary in the case of binary classification prob-
lems.

– random budget() – Selects a random percent of samples from a given data
chunk for labeling.

– get labels() – Obtains the labels for the selected instances.

Algorithm 3 Budget Active Labeling Strategy

Input:

input data stream,
data chunk size
Ψ – classification algorithm,
t – threshold value,
b – budget value.

1: k := 0
2: while new data chunk DSk do

3: if k == 0 then

4: Ψ ← update classifier(Ψ,DSk)
5: else

6: Xk = active learning(t,DSk)
7: Xk ← random budget(b,DSk)
8: LSk = get labels(Xk)
9: Ψ ← update classifier(Ψ,LSk)

10: end if

11: k := k + 1
12: end while

2.8 Run-time analysis

The awae algorithm can be decomposed into a few stages. First, for each data
chunk, a new base classifier is trained. Training time depends on the type of
classification algorithm but is constant for each instance. This results in com-
putational complexity of O(|DSi|) for each new classifier training. Then, the
rejuvenation process is performed for each base model, with the computational
complexity of O(|Π |). If the maximal ensemble size L is exceeded, the pruning
process is performed. By limiting the possible combinations of base classifiers in
the pool only to those containing |Π | − 1 elements, the computational complex-
ity of pruning is O(L). Next, the weight calculation and aging are performed for
each base model with a complexity of O(|Π |) and finally, all weights are updated
with the same computational complexity (O(|Π ||)).

The active learning bals algorithm is composed of two stages. First, it cal-
culates each sample’s distance from the decision boundary (which is an absolute
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difference of obtained support and .5), which has the complexity of O(|DS i|).
Then the objects are sorted according to the obtained distance and only those
whose distance values do not exceed the set threshold t are used. This operation
has the computational complexity of O(|DSi| log |DSi|). In the second stage,
bals uses a simple sampling without replacement in order to choose the ran-
dom budget b of instances from each data chunk DKi. This operation has the
computational complexity of O(b log b).

3 Experimental study

In this section, we will describe the details of a conducted experimental study
that can assess the usefulness of awae

The experiments are designed to answer the following research questions:

RQ1. What is the best parameter setting for awae and how it impact the behaviour
of the proposed algorithm as its ability to classify data streams with concept
drift?

RQ2. How flexible is awae to be used with the different classifiers?
RQ3. How does awae behave when there is limited access to the labels?
RQ4. How does the awae compare to the state-of-the-art algorithms,explicitly

designed for the drifting data streams classification tasks?
RQ5. How do the selected state-of-the-art algorithms behave when using the pro-

posed bals active learning strategy?

3.1 Set-up

Data streams. In order to perform the experimental evaluation of the awae,
data streams – both synthetic and based on real concepts – with various char-
acteristics were used.

Synthetic data streams were generated using the Python stream-learn li-
brary1. Three balanced streams were prepared, differing in the concept drift
type, and replicated five times based on a random state value to stabilize the
results and enable statistical analysis. The following parameters characterized
these streams:

– data chunks number – 200,
– chunk size – 250,
– global label noise – 1%,
– concept drift type – sudden, gradual, and incremental,
– drifts number – 10,
– number of features – 8.

The second data source was a generator, which enabled the creation of
data streams based on static concepts originating from known benchmark static

1 https://github.com/w4k2/stream-learn
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datasets available in data repositories such as uci [19] or keel [1]. The datasets
used in the stream generation process are presented in Table 1. The genera-
tion procedure is based on the temporal interpolation of normalized random
projections of original data set into a given subspace, which, depending on the
interpolation, may generate sudden drifts (nearest-neighbor interpolation) and
incremental drifts (cubic interpolation) [30].

Table 1. Static datasets used for data stream generation.

dataset samples features classes

banknote 1372 4 2
heart 270 13 2
liver 345 6 2
monkone 556 6 2
sonar 208 60 2
soybean 47 35 2
wisconsin 683 9 2

Finally, the experiments were also carried out using 9 real benchmark data
streams [13,60] and presented in Table 2. Multiclass streams have been binarized
and the longest possible fragments have been cut from them, ensuring both
classes are present in data chunks containing 250 instances.

Table 2. Real data streams characteristics.

data stream samples features classes

INSECTS-abrupt 48 500 33 194
INSECTS-gradual 21 250 33 85
INSECTS-incremental-
abrupt

46 500 33 186

INSECTS-incremental-
reoccurring

42 500 33 170

INSECTS-incremental 50 000 33 200
airlines 50 000 7 200
covtype 99 750 54 399
electricity 42 500 8 170
poker-lsn 43 250 10 173

Reference methods. Throughout the conducted experiments the proposed
method was compared with a selection of state-of-the-art data stream classifica-
tion algorithms:

– Streaming Ensemble Algorithm (sea) [62] – which trains a new base classifier
on each incoming data chunks, and adds it to the maintained classifier pool.
In case of exceeding the set maximum pool size, the worst model is removed.

– Accuracy Weighted Ensemble (awe) [65] – which gives individual base clas-
sifiers a weight on the basis of mean squared error.
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– Accuracy Updated Ensemble (aue) [12] – which modifies the awe algorithm
in order to allow updating of base models.

– Learn++ for Non Stationary Environments (nse) [15] – which combines
base classifiers using dynamically weighted majority voting, where weights
are calculated based on classifiers’ errors.

– Online Active Learning Ensemble (oale) [58] – which employs a long-term
stable classifier and multiple dynamic models, supplemented by a hybrid
labeling strategy.

Each ensemble method contained a base classifier pool with maximum size equal
to 10 model. The following parameters were selected for base classifiers:

– Gaussian Näıve Bayes (gnb) – where the portion of the largest feature
variance that is added to variances for calculation stability is equal to 1e−9,

– Hoeffding Tree (ht) – where the number of instances that should be observed
before leaf split attempts is equal to 200 and Hellinger distance is used as a
split criterion,

– Multilayer Perceptron (mlp) – with a single hidden layer containing 100 arti-
ficial neurons, ReLU activation function, adam optimizer, constant learning
rate, and 200 maximum iterations.

Experimental protocol. All experiments were conducted using the stream-

learn library and based on the Test-Than-Train [32] evaluation protocol.
Statistical analysis. It was performed using the t-test [61] during all of the
conducted pairwise comparisons. The results of all of the performed tests were
reported at a significance level α = 0.05.
Reproducibility. All experiments were conducted using the stream-learn li-
brary and based on the Test-Than-Train [32] evaluation protocol. As we men-
tioned above all ensemble methods have been tested for three types of base
classifiers, namely, Gaussian Naive Bayes (gnb), Hoeffding Tree (ht), and Mul-

tilayer Perceptron (mlp) according to scikit-learn and scikit-multiflow imple-
mentations [47, 53]. In the case of synthetic streams, accuracy score values are
reported, while in experiments containing streams based on real concepts – in
order to eliminate the impact of possible data imbalance – a balanced accuracy

score was used. The experiments presented in this article can be replicated using
the code available in the GitHub repository2.

3.2 Experiment scenarios

We proposed three groups of experiments to answer the formulated research
questions.
Experiment 1 – Hyperparametrization. As part of the first experiment,
the impact of the values of individual awae parameter pairs on the quality
of classification is analyzed in the event of a given type of concept drift on
the examples of generated synthetic streams. The result of the experiment is

2 https://github.com/w4k2/AWAE

https://github.com/w4k2/AWAE
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the selection of pseudo-optimal (within the framework of the conducted review)
hyperparameter values for awae in scenarios with full label access and with
limited labeling.

For all experiments carried out in the restricted access to labels scenario, the
following values of the bals algorithm hyperparameters were adopted:

– threshold t – 0.2,
– budget b – 5%.

The above values were selected on the basis of previous research results on the
bals algorithm.
Experiment 2 – Comparison with state-of-the-art on synthetic streams

The second experiment presents a comparative analysis of the awae method
(in the default and optimized configuration) with state-of-the-art methods de-
pending on the type of concept drift and the base classifier used, measuring their
performance on the examples of synthetic data streams. The presented results
have been extended by statistical analysis using the t-student test. The study
covers both scenarios with full and limited labeling.

The oale algorithm in the second experiment was deprived of the active

learning module to ensure a reliable comparison.
Experiment 3 – Comparison with state-of-the-art on real streams

The third experiment expands the research from the second one by analyzing
real streams with real concepts based on the same pool of comparative meth-
ods and identical assumptions. Here, the oale algorithm is used together with
described bals approach, which is similar to the active learning technique used
originally by the authors of the Online Active Learning Ensemble.

3.3 Experiment 1 – Finding the best parameter setting

Active Weighted Aging Ensemble is characterized by a reasonably strong hyper-
parameterization, allowing for the adaptation of the modeling procedure individ-
ually to each problem under consideration. Unfortunately, such an approach –
due to evident data peeking coming from fine-tuning – would hinder the proper
comparative assessment of the recognition effectiveness against the state-of-the-

art methods. Therefore, a preliminary experiment was designed and carried out
to select global strategies for scenarios with full and limited labeling. The con-
ducted review indicated, however, that for both of these strategies, the best
hyperparameterization is consistent – showing the same values – differing in
the other terms, like drift type, base classifier, pruning approach and classifier
weighting method, therefore this chapter presents only the results for the full
labeling scenario.

Even the reduced analysis leads to many tables with the statistical analysis
of individual configurations. Therefore the article has been extender with supple-
mentary materials3 in which there is a full set of reference results. This chapter
has been limited to the visualization of statistical relationships of models with

3 https://github.com/w4k2/AWAE/blob/master/supplementary/supplementary.pdf

https://github.com/w4k2/AWAE/blob/master/supplementary/supplementary.pdf
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different configurations (Fig. 1) and table with the selected hyperparameteri-
zation for the particular scenarios (Table 3). The initial phase of the analysis
eliminated the rejuvenation parameter. It combined pruning criterion (Section
II.A.3) as essential for processing, leaving four factors tested in six pairs using
sudden, gradual and incremental drift using three classification algorithms. The
analyzed factors were:

– pruning location – post- or pre-pruning (2 values),
– aging – proportional, constant and gaussian (3 values),
– weight calculation – same, kuncheva, proportional to accuracy and bell curve

(4 values),
– θ – range from 0 to 10% (5 values).

When comparing pruning location with the aging, a significant advantage of
proportional aging was visible, with slight differences between pre- and post-
pruning, in some cases showing a statistically insignificant advantage of post-
pruning. These relations were not dependent on the drift nature or the base
classifier used.

In the juxtaposition of the weight calculation with the aging, the high sta-
bility of the proportional strategy was also evident. Still, it turned out to be
slightly inferior, without a significant statistical difference, to the constant strat-
egy paired with the Kuncheva weight calculation method for each case except for
gradual drifts using mlp as a base classifier. On the other hand, the comparison
of the weight calculation with the pruning location showed a significant advan-
tage of Kuncheva weight over all other strategies, especially with the application
of post-pruning.

Comparing the value of θ parameter with the aging would theoretically sug-
gest the selection of a constant strategy – leading to the highest results –, but
it also shows a strong dependence of this parameter on theta value, building a
relatively narrow window in which it is possible to achieve the local optimum. A
minimally worse but statistically dependent result, already desensitized to theta
value, is achieved with proportional aging, which seems to be a more universal
choice of default awae hyperparameterization.

The comparison of the value of θ parameter with the pruning location shows
that, up to a certain range, there is a robust and proportional dependence of
the model quality on θ parameter, especially enhanced by post-pruning, which,
however, is interrupted suddenly around 0.1 of theta parameter, leading to a
significant decrease in predictive ability of a system.

The last comparison between the θ parameter and the weight calculation

is the only one that shows the differences in the hyperparameterization of the
methods for different drift dynamics. It is clearly visible here that the bell method
of weight calculation – which was not apparent in previous analyzes – works best
for streams with gradual and incremental characteristics, when the Kuncheva
method promotes streams with sudden drift.

As can be seen from the above analysis, the available parameterization of the
awae method allows for its strong adaptation to the problems. Nevertheless, the
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Fig. 1. Experiment 1 — Graphs of p-values achieved by various configurations of
hyperparameter optimization.

quality adjustments introduced by the changes does not always lead to statisti-
cally significant changes. Therefore, an attempt was made to select the default
configuration, carried out on the review of all 120 combinations, among which
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the most common among the solutions statistically dependent on the best, for
scenarios with full labeling, were the following settings:

– θ – 5%,
– weight calculation – bell,
– aging – constant.
– pruning – both pre- and post-pruning were dependent to the best solution.

In the case of the active learning scenarios, this hyperparameterization only
changed when Hoeffding Trees was used as the base classifier. Such configuration
is presented in Table 3.

Table 3. Experiment 1 — awae optimization for active learning.

Drift type Accuracy Pruning θ wcm Aging

g
n
b

sudden 0.806 pre/post 5% bell const

gradual 0.788 pre/post 5% bell const

incremental 0.821 pre/post 5% bell const

h
t

sudden 0.791 post 5% pta const

gradual 0.778 pre 7.5% same const

incremental 0.812 post 7.5% same const

m
l
p

sudden 0.871 pre/post 5% bell const

gradual 0.859 pre/post 5% bell const

incremental 0.887 pre/post 5% bell const

3.4 Experiment 2 – Comparison with state-of-the-art methods on

sythetic streams

The evaluation of data stream classification methods with the use of synthetic
streams, thanks to the possibility of replication of many streams sharing the
same characteristics, allows for clear identification of their basic properties, de-
sensitized to the observations of outliers of detailed parameters of the detailed
concept. The relevant analysis was carried out in the second experiment for
scenarios with full labeling (Table 4) and using active learning (Table 5).

In the case of the full labeled synthetic streams, mlp clearly turns out to
be the best classification algorithm, which allows for the highest classification
quality for each type of drift. Additionally, it is the algorithm that works best
when paired with the proposed awae algorithm. Both in the case of sudden,
gradual, and incremental drifts, it achieves a significant statistical advantage over
any of the state-of-the-art methods. Relatively the worst is the match between
ht-awae, where the statistical advantage is achieved only over the sea, and
awe methods, and the ht-aue match is the best, which is still statistically
significantly worse than the mlp-awae. The gnb-awae pair allows obtaining
results dependent on nse, with which together it is the best choice when using
the Gaussian Naive Bayes classifier.

The results for the active learning strategy are similar. Here also globally the
best combination is mlp-awae.
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Table 4. Experiment 2 — final results on synthetic problems for regular scenar-
ios. Small numbers indicates the indexes of methods from which the examined one is
statistically better.

Sudden drift Gradual drift Incremental drift

gnb ht mlp gnb ht mlp gnb ht mlp

sea 0.801 0.802 0.859 0.813 0.813 0.904 0.843 0.843 0.896
(1) − − 5 − − 5 − − 5

awe 0.802 0.803 0.860 0.813 0.813 0.904 0.843 0.840 0.896
(2) − − 5 − − 5 − − 5

aue 0.832 0.872 0.874 0.833 0.858 0.909 0.865 0.892 0.904
(3) 1,2 all 1,2,5 1,2,5 1,2,4,6 5 1,2,5 all 5

nse 0.860 0.860 0.922 0.841 0.841 0.920 0.872 0.871 0.929
(4) 1,2,3,5 1,2 1,2,3,5 1,2,5 1,2 1,2,3,5 1,2,5 1,2 1,2,3,5

oale 0.827 0.861 0.703 0.817 0.854 0.722 0.850 0.874 0.712
(5) 1,2 1,2 − − 1,2,4,6 − − 1,2 −

awae 0.858 0.858 0.934 0.843 0.841 0.928 0.876 0.873 0.944
(6) 1,2,3,5 1,2 all 1,2,3,5 1,2 all 1,2,3,5 1,2 all

Table 5. Experiment 2 — final results on synthetic problems for active learning
scenarios. Small numbers indicates the indexes of methods from which the examined
one is statistically better.

Sudden drift Gradual drift Incremental drift

gnb ht mlp gnb ht mlp gnb ht mlp

sea 0.842 0.843 0.871 0.856 0.855 0.909 0.886 0.885 0.920
(1) 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5

awe 0.841 0.842 0.870 0.855 0.854 0.908 0.885 0.886 0.919
(2) 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5

aue 0.874 0.884 0.871 0.863 0.873 0.909 0.898 0.903 0.920
(3) 1,2,4,5 all 4,5 4,5 1,2,4,5 4,5 1,2,4,5 1,2,4,5 4,5

nse 0.536 0.540 0.586 0.540 0.550 0.595 0.539 0.541 0.598
(4) − − − − − − − − −

oale 0.788 0.789 0.604 0.773 0.780 0.608 0.812 0.814 0.608
(5) 4 4 − 4 4 − 4 4 −

awae 0.866 0.868 0.912 0.866 0.866 0.923 0.896 0.896 0.941
(6) 1,2,4,5 1,2,4,5 all 4,5 4,5 all 2,4,5 4,5 all

3.5 Experiment 3 – Comparison with state-of-the-art on real

streams

The presentation of the processing efficiency of classification algorithms in the
case of real streams is optimal when visualizing the accumulative sums of the flow
efficiency, thanks to which both the dynamics of learning new concepts and the
possible tendency to reduce the discriminative abilities of the recognition system
in the course of neutralization to successive drifts are clearly visible. Therefore,
the experimental evaluation of the awae algorithm on streams with real concepts
(Figure 2) and real streams (Figure 3) was carried out using appropriate plots.

In the case of the classification of streams with real concepts, the observations
from Experiment 2 are replicated, where the mlp-awae combination turned out
to be the best match. In the case of learning with full labeling, mlp-nse is
highly competitive with it, and ht-aue is equal competition in the case of active
learning scenarios. This is visible in both cubic and nearest drift.
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Fig. 2. Experiment 3 — final results on selected streams with real concepts for (top
two) regular and (bottom two) active learning scenarios.

The only cases in which the mlp-awae combination do not turn out to be
the optimal or optimal-dependent processing strategy is a part of real streams,
in particular from the insects group, where it differs significantly from other
comparative methods. It probably results from the different characteristics of
the concept, where the default parameterization defined by the outcome of Ex-
periment 1 turns out to be a wrong strategy.

3.6 Lessons learned

It can be seen that awae establishes similar parameters when dealing with the
full labeled data stream. The preference is constant aging with θ = 5% and
the method of weight calculating consistent with Eq. 6. For the active learning
scenario, we may observe that similar parameter values are determined when
mlp and gnb are chosen as base classifiers. The situation is different when ht

is selected when the suggested parameters strongly depend on the drift type
present (RQ1 answered). awae can work with any type of base classifier, but in
the experiments, it was limited to only three methods, of which the best quality
is obtained by combining awae with mlp (RQ2 answered).

The same combination also performs best when compared to state-of-the-art

methods. For synthetic streams, for all drift types, we observe statistically signif-
icantly better quality of mlp-awae classification compared to reference methods
using mlp as base classifier. In the case of using gnb, awae is statistically signif-
icantly better than all methods except nse, which also for this classifier achieves
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Fig. 3. Experiment 3 — final results on selected real streams for regular (left) and
active learning scenarios (right).

better quality than the other methods. When ht is used, aue is by far the best
method, especially in the case of sudden drift. However, it should be noted that
a similar relationship can be observed for real data streams (RQ3 and RQ4 an-
swered). Similar observations can be made for real data streams when the active
learning strategy bals is applied, the mlp-awae performs best. The exceptions
are selected streams from the insects group, where awae performs quite aver-
age, while the best quality is mainly characterized by aue and awe. For all real
data streams, olae and nse perform the worst for scenarios with bals. However,
it should be noted here that olae has its own built-in active learning method
that bals replaced for the experiments, which did not perform well for it and
making a general conclusion about olae quality in the case of its modification
would be unfair (RQ5 answered).

To summarize, the awae algorithm can be recommended as an effective tool
for data stream processing, emphasizing, however, that this method is quite
sensitive to configuration and requires special attention when used for a partic-
ular task. It is visible for some real data streams, where a lack of appropriate
parameter settings may deteriorate the predictive performance.

4 Conclusion

This study aimed to develop a novel, effective framework for a drifted data
stream classification task. We proposed the Active Weighted Aging Ensemble

algorithm that utilizes the changing ensemble lineup to appropriately react to
concept drift and active learning strategy to reduce the budget required for up-
coming instance labeling. The research conducted on benchmark data streams
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confirmed the effectiveness of the proposed solution. It highlighted its strengths
in comparison with state-of-the-art methods. It is also worth mentioning that
estimated computational complexity is acceptable and comparable to the bench-
mark algorithms. This work is a step forward towards using active and ensemble
learning to design effective classification models for drifted data streams. The ob-
tained results encourage us to continue working on this concept. Future research
may include:

– Application of the proposed method to imbalanced data stream classifica-
tion, especially considering the application of data preprocessing for data
balancing.

– Employing a drift detection techniques to speed-up the reaction to the con-

cept drift, especially in the case of abrupt changes.
– Evaluation of how awae is robust to different distributions of the label and

feature noise.
– Using awae on massive and high-speed data streams requires a deeper study

on the effective ways of its parallelization.
– Proposing an effective active learning strategy for multi-modal data stream

processing, especially for possible label propagation among modalities.
– Application of awae to a real-world data stream susceptible to the presence

of data stream, i.e., medical or banking data.
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28 M. Woźniak et al.

57. Settles, B.: Active Learning. Synthesis Lectures on Artificial In-
telligence and Machine Learning, Morgan & Claypool Publish-
ers (2012). https://doi.org/10.2200/S00429ED1V01Y201207AIM018,
https://doi.org/10.2200/S00429ED1V01Y201207AIM018

58. Shan, J., Zhang, H., Liu, W., Liu, Q.: Online active learning ensemble framework
for drifted data streams. IEEE Transactions on Neural Networks and Learning
Systems 30(2), 486–498 (2019). https://doi.org/10.1109/TNNLS.2018.2844332

59. Sobolewski, P., Wozniak, M.: Concept drift detection and model selection with
simulated recurrence and ensembles of statistical detectors. Journal of Universal
Computer Science 19(4), 462–483 (feb 2013)

60. Souza, V.M.A., Reis, D.M., Maletzke, A.G., Batista, G.E.A.P.A.: Chal-
lenges in benchmarking stream learning algorithms with real-world
data. Data Mining and Knowledge Discovery 34, 1805–1858 (2020).
https://doi.org/10.1007/s10618-020-00698-5
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74.  Lapiński, A., Krawczyk, B., Ksicnicwicz, P., Woźniak, M.: An empir-
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