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Detecting Backdoor in Deep Neural Networks via
Intentional Adversarial Perturbations

Mingfu Xue, Yinghao Wu, Zhiyu Wu, Yushu Zhang, Jian Wang, and Weiqiang Liu

Abstract—Recently, the security of deep learning systems has
attracted a lot of attentions, especially when applied to safety-
critical tasks, such as autonomous driving, face recognition,
malware classification, etc. Recent researches show that deep
learning model is susceptible to backdoor attacks where the
backdoor embedded in the model will be triggered when a back-
door instance arrives. Many defenses against backdoor attacks
have been proposed. However, existing defense works require
high computational overhead or backdoor attack information
such as the trigger size, which is difficult to satisfy in realistic
scenarios. In this paper, a novel backdoor detection method
based on adversarial examples is proposed. The proposed method
leverages intentional adversarial perturbations to detect whether
an image contains a trigger, which can be applied in both the
training stage and the inference stage (sanitize the training set
in training stage and detect the backdoor instances in inference
stage). Specifically, given an untrusted image, the adversarial
perturbation is added to the image intentionally. If the prediction
of the model on the perturbed image is consistent with that on
the unperturbed image, the input image will be considered as a
backdoor instance. Compared with most existing defense works,
the proposed adversarial perturbation based method requires
low computational resources and maintains the visual quality
of the images. Experimental results show that, the backdoor
detection rate of the proposed defense method is 99.63%, 99.76%
and 99.91% on Fashion-MNIST, CIFAR-10 and GTSRB datasets,
respectively. Besides, the proposed method maintains the visual
quality of the image as the `2 norm of the added perturbation
are as low as 2.8715, 3.0513 and 2.4362 on Fashion-MNIST,
CIFAR-10 and GTSRB datasets, respectively. In addition, it is
also demonstrated that the proposed method can achieve high
defense performance against backdoor attacks under different
attack settings (trigger transparency, trigger size and trigger
pattern). Compared with the existing defense work (STRIP), the
proposed method has better detection performance on all the
three datasets, and is more efficient than STRIP.

Index Terms—Backdoor attacks, Deep neural networks, Back-
door detection, Defenses, Adversarial examples

I. INTRODUCTION

RECENT studies show that deep learning models are
vulnerable to backdoor attacks [1]–[3]. Adversaries can

embed the backdoor into deep learning model by modifying
the architectures or parameters of the model, or injecting
backdoor instances in the training set to embed the backdoor
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during training [1]–[3]. The backdoored model will behave
normally for the benign inputs, but it will output the target
label for the input image carrying the trigger.

Many defenses against backdoor attacks have been pro-
posed. However, the existing defense works require high com-
putational overhead [4]–[6], a large number of clean images
to retrain the model [7], or backdoor attack information such
as the trigger size [5], [8]. In practice, these requirements are
difficult to be satisfied.

In this paper, we propose a novel backdoor detection
method based on adversarial examples, which only requires
low computational overhead. The proposed method can be
applied in both the training stage and the inference stage.
In the training stage, the proposed method can detect and
remove the backdoor instances in the training dataset. In the
inference stage, the proposed method can determine whether
an input image contains a trigger. Specifically, the proposed
method works as follows. First, the adversarial perturbation
is generated based on the untrusted model with a small set
of clean images. Second, for an image (training image in
the training stage or input image in the inference stage), the
adversarial perturbation will be added on it. If the prediction of
the model on the perturbed image is inconsistent with that on
the unperturbed image, the image is considered to be a clean
image. Otherwise, the image is considered to be a backdoor
instance, which also implies that the model is backdoored and
the predicted label of the image is the target label.

The contributions of this paper are summarized as follows:
• This paper proposes a novel backdoor detection method

based on intentional adversarial perturbation. The adver-
sarial perturbation can fool the deep learning model, mak-
ing the model misclassify the perturbed image. However,
for the backdoor instances, the model will always classify
them as the target class even if these backdoor instances
are added with adversarial perturbation. In this way,
the backdoor instances can be detected via intentional
adversarial perturbations. Moreover, the proposed method
can be deployed in both the training stages and the
inference stage. In the training stage, for a training image,
the intentional adversarial perturbation will be added on
it. If the model’s prediction on the perturbed training
image is consistent with the prediction on the unperturbed
training image, the training image will be considered as a
backdoor instance and then be removed from the training
dataset. In the inference stage, for an input image, the
adversarial perturbation is added on it. If the model’s
prediction on the perturbed image is consistent with the
prediction on the unperturbed image, the input image will
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be considered as a backdoor instance.
• In comparison with the work [7] which requires a large

number of clean images to retrain the model to remove
the backdoor, the proposed method only requires a small
set of clean images to generate adversarial perturbation.
Besides, the existing work [4] requires training a large
number of backdoored models and clean models, which
is computationally expensive. In contrast, the proposed
method only needs to generate the adversarial perturba-
tion with negligible computational overhead. Moreover,
the proposed method does not need any backdoor attack
information, which makes the proposed method more
practical and feasible than the existing works [5], [8].

• Experimental results show that the proposed defense
method can achieve high backdoor detection rate (99.63%
99.76% and 99.91% on Fashion-MNIST [9], CIFAR-10
[10] and GTSRB [11] datasets, respectively). It is also
demonstrated that, under different attack settings (differ-
ent trigger transparency, different trigger sizes and dif-
ferent trigger patterns), the proposed method can achieve
high defense performance, as the backdoor detection rate
of the proposed approach is as high as 98.80%, 99.70%
and 99.96% on Fashion-MNIST, CIFAR-10 and GTSRB
datasets, respectively. Compared with STRIP [12], the
proposed method achieves higher backdoor detection rate
on all the three datasets. The advantages over STRIP [12]
are that the proposed method will not destroy the trigger
and only needs to predict two images (perturbed image
and unperturbed image). As a result, the proposed method
is more effective and more efficient than STRIP.

This paper is organized as follows. Background and related
works are reviewed in Section II. The proposed detection
method is elaborated in Section III. Experimental results are
presented in Section IV. This paper is concluded in Section
V.

II. BACKGROUND AND RELATED WORK

In this section, first, we review the universal adversarial
perturbation [13], which is utilized by the proposed method.
Second, we review the related works on backdoor attacks and
defenses.

A. Universarial Adversarial Perturbations [13]

It is known that deep neural networks (DNNs) are vul-
nerable to well-crafted small adversarial perturbations. When
added with adversarial perturbation, input image will be mis-
classified by the model [14]. Universal adversarial perturbation
(UAP) [13] is a kind of image-agnostic adversarial perturba-
tion. Different from image-specific adversarial perturbation,
which is specifically crafted for each image [14], UAP is
generated based on a model with a small set of clean images
[13]. As a result, the model will also misclassify other images
with the universal adversarial perturbation.

B. Backdoor Attacks

Recently, a number of researches [1]–[3] indicate that the
backdoor can be embeded into DNN models through injecting

well-crafted backdoor instances into the training set. After the
training process, the model will behave normally on clean
inputs. However, the malicious functionality hidden in the
backdoored model will be triggered by the input images
containing the trigger, and these backdoor instances will be
classified as the target class [2], [15]. Since the performance
of backdoored model is similar to the performance of clean
model on clean inputs, it is difficult for users to perceive the
existence of the backdoor. However, the attacker can trigger
the malicious behavior by inputting backdoor instances.

C. Existing Backdoor Defenses

To date, some defense methods have been proposed to detect
and mitigate the backdoor attacks. Liu et al. [7] adopted a pre-
trained auto-encoder to preprocess the input image in order to
disable the trigger. They also retrain the backdoored model
with clean images so as to remove the hidden backdoor. Xu
et al. [5] generates a set of backdoor instances as the query
set. Then, they inputs the query set into backdoored models
and clean models to extract representation vectors from those
models. They use the resulting vectors as input to train a meta-
classifier which can predict whether a model is backdoored [5].
However, the method needs the knowledge of the trigger size
to craft those backdoor instances. Liu et al. [16] demonstrated
that the functionality of the backdoor depends on some specific
neurons in the model. These specific neurons are usually
dormant when the model is queried with clean images [16].
Defenders can find these neurons by inputting clean images
into the model. Then these malicious neurons can be pruned
so as to remove the backdoor. However, the pruned model
suffers from the degradation in classification accuracy on clean
inputs due to the pruning [16]. Zhang et al. [4] training a large
number of backdoored models and clean models to generate
corresponding universal perturbations [13]. Then they use the
UAPs [13] as the input to train a two-class classifier as the
Trojan detector. However, the computational cost to generate
those large number of backdoored models and clean models
is high, which is unaffordable to most users. Chen et al. [17]
analyze the neuron activations to the training data to determine
whether it has backdoor instances. It separates the activations
of all training data into two clusters by applying 2-means
clustering. The high silhouette score means that this cluster
corresponds to the backdoor instances [17]. Gao et al. [12]
add a set of other images from different classes to the input
image separately so as to generate a set of blended images.
Then, the entropy of the predicted results on these blended
images is calculated. The lower the entropy, the input image
is more likely to carry a trigger [12]. However, the trigger in
the blended image may be destroyed. As a result, the backdoor
instance will be incorrectly considered to be a clean one by
STRIP. Wang et al. [18] proposed a defense method named
Neural Cleanse (NC) to reverse engineer the trigger from the
backoored model. For each class, NC computes the minimized
amount of modification to make the model predict images from
different classes as this class. Among these modifications, if
a modification is substantially smaller than the others, NC
will consider it as a trigger [18]. However, this method is
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computationally expensive considering the reverse-engineering
process, especially when the model has a large number of
output classes. Moreover, the reversed trigger is just similar
to the true trigger. In addition, when the true trigger is big or
discrete, the reversed trigger even will not be similar to the
true trigger. Qiao et al. [8] proposed a max-entropy staircase
approximator (MESA) algorithm to reverse a set of candidate
triggers. Then, backdoor instances are generated by separately
adding these candidate triggers to clean images. The model
is fine-tuned on these backdoor instances with correct labels
to remove the backdoor [8]. However, the MESA algorithm
requires the information of the trigger size, which is difficult to
obtain by the defender in realistic scenarios. Chen et al. [19]
proposed a GAN-based defense method called DeepInspect.
DeepInspect reconstructs the potential trigger and generates
the backdoor instances by patching these reconstructed trigger
to the clean images with ground truth labels. Then, the
backdoored model is fine-tuned on these generated backdoor
instances to remove the backdoor [19].

The main advantages of the proposed approach over the
existing defenses are summarized as follows.

• Compared with [5], [8], which both need to know the
trigger size, the proposed method does not require any
backdoor attack information. Moreover, Liu et al. [7]
requires a large number of trusted images to remove
the backdoor (10,000 ∼ 60,000 images for MNIST). In
comparison, the proposed method only requires a small
set of clean images (300 clean images) to generate the
universal adversarial perturbation.

• The detection process of the work [4] requires training
a large number of shadow models (backdoored mod-
els and clean models). Nevertheless, the computational
resources for training such a large number of shadow
models are unaffordable for most of the users. In contrast,
the proposed method only needs to generate one single
universal perturbation and only needs the model to make
predictions on the unperturbed image and the perturbed
image, which requires low computational overhead.

• STRIP [12] directly superimposes a number of images
from different classes to the input image. This will not
only destroy the main content of the input image, but
may also accidentally break the trigger. Once the trigger
is destroyed, the entropy of this backdoor instance will
be similar to the entropy of a clean image. Hence STRIP
[12] will fail to detect this backdoor instance. In contrast,
the proposed method perturbs the untrusted image with
universal adversarial perturbation (UAP) [13]. This will
not destroy the trigger and ensures that the predicted
label of the backdoor instance keeps unchanged even
after perturbation. Moreover, for each input image, STRIP
[12] needs to predict a set of blended images in order
to estimate the entropy of the predicted labels of those
blended images. In comparison, for each image, the
proposed method only needs to predict two images (the
perturbed image and the unperturbed image). Therefore,
the backdoor detection efficiency of the proposed method
is higher than that of STRIP.

III. THE PROPOSED METHOD

In this section, first, the overall procedure of the proposed
backdoor detection method is presented in Section III-A. The
proposed method can be divided into two steps, which are
elaborated in Section III-B and Section III-C, respectively.
Finally, the reason why choosing universal adversarial pertur-
bation [13] for adversarial perturbation generation is discussed
in Section III-D.

A. Overall flow

As shown in Fig. 1, the proposed defense method consists of
two steps. The first step is to generate the universal adversarial
perturbation [13] from the backdoored model with a small set
of clean images.

The second step is backdoor detection, which is summarized
as follows. As shown in Fig. 1, given an untrusted image, the
universal perturbation generated in previous step is added to
this image. Then, both the perturbed image and corresponding
unperturbed image are input into the untrusted model. If
the untrusted model is backdoored, the backdoor instance
without perturbation will be misclassified as the target label.
When added with universal adversarial perturbation [13], the
backdoor instance which carries a trigger will still be classified
as the target label. However, given a clean image, its predicted
label will change to another label when added with perturba-
tion. Hence, if the backdoored model always predicts an image
as the same label with or without universal perturbation, the
image is considered to be a backdoor instance. Meanwhile,
the predicted label is considered to be the target label. For
instance, the label Stop in Fig. 1 is the target label, and the
corresponding image carries a trigger.

B
ack

d
o
o

red
 M

o
d

el

Stop (incorrect)

Stop (incorrect)

Pedestrian (incorrect)

Caution (correct)

Untrusted

Images

Perturbed Image

Add

Perturbation
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Perturbation
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generate
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Fig. 1. The overall flow of the proposed method: adversarial perturbation
generation (Step 1); backdoor detection (Step 2).

The overall flow of the proposed method is outlined in
Algorithm 1 and is described as follows:

1) Given an untrusted model funt, the universal adversarial
perturbation [13] η is generated based on the untrusted model
funt with a small set of clean images X (only 300 images).
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2) Dunt = {d1, . . . , dn} denotes the untrusted images
(in the training stage, it represents the training data; in the
inference stage, it represents a single input image with n = 1).
The perturbation η is then added to the image di ∈ Dunt to
generate the perturbed image d̂i = di + η.

3) Both unperturbed image di and perturbed image d̂i are
input into the untrusted model. The predictions of the model
on the unperturbed image and the perturbed image are yi =
funt(di) and ŷi = funt(d̂i), respectively. If yi = ŷi, the input
image di will be regarded as a backdoor instance. Otherwise,
the input image will be regarded as a clean one.

Algorithm 1 The Proposed Backdoor Detection Method
Input: a clean image set X , backdoored model funt, untrusted
image set Dunt = {d1, . . . , dn}
Output: the backdoor instances Dbd

1: Dbd ← ∅;
2: η ← FUAP (funt, X);
3: for i = 1, . . . , n do
4: yi ← funt(di);
5: d̂i ← di + η;
6: ŷi ← funt(d̂i);
7: if yi = ŷi then
8: add(di, Dbd);
9: end if

10: end for
11: return Dbd

In the following sections, the perturbation generation pro-
cess and the backdoor detection process of the proposed
method, are elaborated respectively.

B. Perturbation Generation

The adversarial perturbation generation method used in
this paper is universal adversarial perturbation (UAP) [13].
Formally, X = {x1, . . . , x300} denotes the clean image set
and funt represents the backdoored model, which outputs the
corresponding label funt(x) for each image xi ∈ X . Different
from the UAP generation method in [13] where the `2 norm
is used to constrain the intensity of UAP, in this paper, we use
`∞ norm to constrain the intensity of the perturbation. The `∞
norm represents the maximum value of the perturbation. The
perturbation generated under the constraint of `∞ norm is the
minimal necessary perturbation, which is smaller than the one
generated under the constraint of `2 norm. In the process of
generating adversarial perturbation, the universal perturbation
η is generated by solving the following optimization problem
[13]:

argmin
η
‖η‖∞ s.t. funt (xi + η) 6= funt (xi) , xi ∈ X (1)

As shown in Eq. (1), in each iteration, for the clean image
xi from X , the `∞ norm of the perturbation η is calculated in
order to find the desired perturbation with minimal `∞ norm
[13].

C. Backdoor Detection

The proposed method can be applied in two scenarios,
working in the training stage, and working in the inference
stage. In the training stage, the proposed method aims to detect
whether the training dataset contains backdoor instances and
then remove the backdoor instances. In the inference stage,
the goal of the proposed method is to detect whether an input
image contains a trigger. The backdoor detection procedure is
presented in Fig. 2.

No

Yes

Backdoor Instance Clean Image

          Untrusted Model untf

Perturbed Image

d̂ d  

 Add Perturbation Untrusted Image d

ˆ ?y y

( )unty f d ˆˆ ( )unty f d

Fig. 2. The workflow of the backdoor detection process of the proposed
method

Backdoor Detection in the Training Stage: In this sce-
nario, the training data is obtained from untrusted sources.
The defender attempts to figure out whether the training
dataset contains backdoor instances. If the training dataset
contains backdoor instances, the defender aims to remove the
backdoor instances injected in the training dataset. For each
image in the training set, it will be added with the universal
perturbation [13], and then input into the untrusted model.
The unperturbed image will also be input into the untrusted
model. If the predictions of the model on the perturbed image
and unperturbed image are consistent, this image will be
considered as a backdoor instance. Meanwhile, the untrusted
model is considered to be backdoored. This backdoor detection
procedure will be applied for each image in the training set.
Once the backdoor instances are removed, a clean model can
be trained on the sanitized training dataset.

Backdoor Detection in the Inference Stage: In the in-
ference stage, the well-trained model is deployed to provide
prediction services. The goal of the defender in this scenario
is to detect whether an input image carries a trigger. Given
an input image d, after being added with perturbation η, the
perturbed image d̂ and the unperturbed image d will be input
into the model. If the predicted labels of the perturbed image
is consistent with that of the unperturbed image, the input
image is considered to be a backdoor instance. Meanwhile,
the model is considered to be a backdoored model, and the
predicted label is considered to be the target label.
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D. Why choose UAP [13] for adversarial perturbation gener-
ation?

In this paper, we exploit adversarial perturbation to perturb
the main content of the backdoor instance other than the
trigger. However, not all kinds of adversarial perturbation
generation methods are suitable to use in the proposed method.
We evaluate four different adversarial perturbation generation
methods [13], [20]–[22] in Section IV-D. The experimental
results show that when the image is perturbed by universal
adversarial perturbation [13], the detection performance of the
proposed method is the highest among the four adversarial
perturbation generation methods.

The reason is as follows. The existing adversarial example
attacks can be divided into two categories, image-specific
adversarial attack and image-agnostic adversarial attack [23].
For image-specific adversarial attack, one perturbation can
only fool the model for one specific image [24]. The ground-
truth label of the specific image is required in order to generate
the image-specific perturbation which can cause the perturbed
image to be misclassified from its ground-truth label to other
label [24]. However, for backdoor instance, the label used
to generate the image-specific perturbation is the target label
rather than the ground-truth label. In other words, for backdoor
instances, the image-specific perturbation is generated in order
to change the predicted result of perturbed backdoor instance
from the target label to other one. Under this circumstance,
the generated image-specific perturbation will strongly affect
the trigger, as the trigger contributes heavily to the predicted
result and the predicted result is the target label. Once the
trigger is strongly affected by the image-specific perturbation,
the predicted label of the backdoor instance after perturba-
tion will change. Then the detection method will incorrectly
consider this backdoor instance as a clean one. For image-
agnostic adversarial attack, it only needs to generate one
single perturbation, which can cause misclassification for all
images when the perturbation is added to those images [13].
This single perturbation is generated based on a small set of
clean images [13]. Therefore, the trigger stamped in backdoor
instance will only be slightly affected by the generated image-
agnostic perturbation.

In summary, UAP [13], as a kind of image-agnostic per-
turbation, has much less influence on the trigger than the
image-specific perturbation, so the label of backdoor instance
will keep unchanged even after being perturbed by UAP [13].
Therefore, we choose UAP [13] as the perturbation generation
method used in the proposed method.

IV. EXPERIMENTAL RESULTS

In this section, first, we introduce the datasets, the cor-
responding DNN models, and the metrics used to evaluate
the proposed approach. Second, the experimental results are
analyzed. Third, we evaluate the defense performance of
the proposed method against backdoor attacks with different
settings (trigger transparency, trigger size and trigger pattern).
Last, performance comparisons between the proposed method
and the existing backdoor detection technique is presented.

A. Experimental Setup

1) Datasets: We evaluate the proposed method on three
benchmark datasets: Fashion-MNIST [9], CIFAR-10 [10] and
GTSRB [11] datasets.
• Fashion-MNIST [9] is a dataset consists of a training set

with 60,000 images and a test set with 10,000 images.
Each image is a 28× 28 grayscale image, assigned with
a label from 10 classes [9]. In the experiment, the model
trained on this dataset is DenseNet [25].

• CIFAR-10 [10] consists of a training set with 50,000
images and a test set with 10,000 images. Each image is
a 32× 32 colored image, belonging to one of 10 classes
[10]. In the experiment, the model trained on this dataset
is ResNet [26].

• GTSRB [11] is a dataset containing 39,209 labeled
images, which are categorized into 43 classes. GTSRB
has 35,209 training images, 4,000 validation images and
12,630 test images [11]. In the experiment, the model
trained on this dataset is AlexNet [27].

2) Experimental Settings of Backdoor Attack: The trigger
used in Fashion-MNIST [9] images is four 1× 10 rectangles
placed at the corners (four corners in total) of the image,
and the intensity of the trigger is 0.15. The trigger used in
CIFAR-10 [10] and GTSRB [11] images is a 4 × 4 square.
The intensities of triggers in CIFAR-10 and GTSRB are set
to be 0.5 and 0.2 respectively. Some backdoor instances used
in the experiments are illustrated in Fig. 3.

(a) (c)(b)

Fig. 3. Examples of backdoor instances: (a) Fashion-MNIST images; (b)
CIFAR-10 images; (c) GTSRB images.

3) Metrics: Backdoor Attack Success Rate (BASR).
Backdoor Attack Success Rate is defined as the percentage
of backdoor instances that are successfully classified as the
target class among all backdoor instances [1].

Backdoor Detection Rate (BDR). Backdoor Detection
Rate is defined as the percentage of backdoor instances that
are successfully detected by the proposed method among all
backdoor instances.

Clean Image Identification Rate (CIIR). Clean Image
Identification Rate is defined as the percentage of clean images
that are correctly classified as clean ones among all clean
images.

B. Effectiveness of the Proposed Method

In this section, the defense performances of the proposed
method on Fashion-MNIST [9], CIFAR-10 [10] and GTSRB
[11] datasets are presented.

Table I shows the backdoor attack success rate of the back-
door attack on the Fashion-MNIST, CIFAR-10 and GTSRB
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datasets and the corresponding classification accuracy of the
backdoored model. For each dataset, all test images are in-
jected with trigger to evaluate the backdoor attack success rate.
The classification accuracy is evaluated on all the clean test
images for each dataset. As shown in Table I, the classification
accuracy on clean images of the backdoored model is 92.19%,
92.77% and 95.16% on Fashion-MNIST [9], CIFAR-10 [10]
and GTSRB [11] respectively. Without the proposed defense
method, the backdoor attack success rate (BASR) is 99.47%,
99.77% and 97.89% on Fashion-MNIST [9], CIFAR-10 [10]
and GTSRB [11] respectively.

TABLE I
CLASSIFICATION ACCURACY AND BACKDOOR ATTACK SUCCESS RATE ON

THREE DIFFERENT CLASSIFICATION TASKS WITHOUT THE PROPOSED
APPROACH

Benchmark dataset Accuracy BASR

Fashion-MNIST (DenseNet) 92.19% 99.47%
CIFAR-10 (ResNet) 92.77% 99.77%
GTSRB (AlexNet) 95.16% 97.89%

Table II shows the clean image identification rate, the
backdoor detection rate and the intensity of universal pertur-
bation on three datasets after the proposed method is applied.
In this paper, after the proposed method is deployed, the
clean image identification rate is calculated on a set of 2,000
clean images randomly selected from the test images for each
dataset. Similarly, in this paper, the backdoor detection rate
is calculated on a set of 2,000 backdoor instances generated
by adding trigger to 2,000 images randomly selected from the
test images for each dataset. As shown in Table II, after the
proposed defense method is deployed, the backdoor detection
rate is 99.63%, 99.76% and 99.91% on Fashion-MNIST [9],
CIFAR-10 [10] and GTSRB [11] respectively. Meanwhile,
the clean image identification rate (CIIR) of the proposed
method is 90.66%, 89.82% and 98.85% on Fashion-MNIST
[9], CIFAR-10 [10] and GTSRB [11] respectively.

TABLE II
THE BACKDOOR DETECTION RATE, THE CLEAN IMAGE IDENTIFICATION
RATE AND THE PERTURBATION INTENSITY ON THREE DATASETS AFTER

THE PROPOSED DEFENSE METHOD IS APPLIED

Dataset CIIR BDR Intensity

Fashion-MNIST [9] 90.66% 99.63% 2.8715
CIFAR-10 [10] 89.82% 99.76% 3.0513
GTSRB [11] 98.85% 99.91% 2.4362

Overall, experimental results show that the proposed defense
method can effectively detect backdoor attacks on different
datasets and DNN architectures. In the three datasets, the
proposed method can achieve high backdoor detection rate
and high clean image identification rate.

C. Defense Performance of the Proposed Method under Dif-
ferent Attack Settings

In this section, we evaluate the performance of the proposed
method under different trigger settings (trigger transparency

[12], trigger size and trigger pattern).
1) Trigger Transparency: In the experiment, we evaluate

the performance of the proposed method against backdoor
attacks with different trigger transparency settings [12]. The
values of the trigger transparency in the experiment are set
to be 50%, 60%, 70% and 80%, respectively. As shown
in Table III, for the backdoor attacks with different trigger
transparency settings, the backdoor detection rates are all at
a high level on the three datasets. Specifically, when the
trigger transparency is 50%, the backdoor detection rate is
98.80%, 99.70% and 99.96% on Fashion-MNIST [9], CIFAR-
10 [10] and GTSRB [11] datasets respectively. When the
trigger transparency increases to 80%, after the proposed
method is applied, the backdoor detection rate is still at a
high level (99.37%, 96.30% and 99.07% on Fashion-MNIST,
CIFAR-10 and GTSRB datasets respectively). The experimen-
tal results indicate that, the proposed defense method can
effectively detect the backdoor instances with different trigger
transparency settings. The reason is as follows. When the
trigger transparency is set to be 0%, the trigger is opaque.
When the trigger transparency is set to be 90%, the trigger
is almost invisible. Generally, the higher the transparency of
the trigger, the trigger is more susceptible to the perturbation.
However, UAP [13] is a kind of image-agnostic perturbation,
which is generated based on clean images. Therefore, when
UAP is added to a backdoor instance, the trigger in the
backdoor instance will only be slightly affected. As a result,
even the transparency of trigger is high (50% ∼ 80%), the
proposed method can still achieve high backdoor detection
rate.

TABLE III
THE BACKDOOR DETECTION RATE OF THE PROPOSED METHOD AGAINST

BACKDOOR ATTACKS WITH DIFFERENT TRIGGER TRANSPARENCY
SETTINGS ON THE THREE DATASETS

Transparency Fashion-MNIST CIFAR-10 GTSRB

80% 99.37% 96.30% 99.07%
70% 99.72% 98.75% 98.62%
60% 95.40% 98.62% 99.90%
50% 98.80% 99.70% 99.96%

2) Trigger Size: In this section, we evaluate the perfor-
mance of the proposed method against backdoor attacks with
three different trigger sizes. The experiment results are shown
in Table IV. As shown in Table IV, for different trigger sizes,
the proposed method can achieve very high backdoor detection
rates (over 99% mostly). Even if the trigger is small, such as
1×4, 2×2, 2×2 in Fashion-MNIST [9], CIFAR-10 [10] and
GTSRB [11] datasets, respectively, the proposed method can
still achieve high backdoor detection rates (99.65%, 99.07%,
98.25% respectively).

3) Trigger Pattern: The performance of the proposed
method against backdoor attacks with different trigger patterns
is also evaluated. In the experiment, the square trigger and
cross pattern trigger (referred to as trigger A and trigger
B respectively) are used to evaluate the proposed method.
The square trigger and the cross pattern trigger for the three
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TABLE IV
BACKDOOR DETECTION RATES OF THE BACKDOOR ATTACKS WITH DIFFERENT TRIGGER SIZE SETTINGS

Dataset Fashion-MNIST [9] CIFAR-10 [10] GTSRB [11]
Size 1× 4 1× 6 1× 8 2× 2 4× 4 6× 6 2× 2 4× 4 6× 6
BDR 99.65% 99.67% 99.75% 99.07% 99.70% 99.75% 98.25% 99.07% 99.60%

datasets are shown in Fig. 4. There are 16 pixels and 7 pixels
contained in the square trigger and the cross pattern trigger,
respectively. As shown in Fig. 5, for all the three datasets, the
proposed method can achieve high backdoor detection rates
against the backdoor attacks with trigger A and trigger B,
respectively. For the trigger A, after the proposed method is
applied, the backdoor detection rates are 99.30%, 98.57%, and
99.47% on Fashion-MNIST [9], CIFAR-10 [10] and GTSRB
[11], respectively. For the trigger B, after the proposed method
is applied, the backdoor detection rates are 98.20%, 98.45%,
99.22% on Fashion-MNIST [9], CIFAR-10 [10] and GTSRB
[11] datasets, respectively.

(c)(b)(a)

trigger A

trigger B

Fig. 4. Examples of backdoor instances with different triggers. The first
row is examples of backdoor instances with trigger A. The second row is
examples of backdoor instances with trigger B. (a) Fashion-MNIST images.
(b) CIFAR-10 images. (c) GTSRB images.
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Fig. 5. Backdoor detection rates with different settings of trigger patterns
after the proposed defense method is applied.

D. Experiment Results of the Proposed Method with Four
Different Adversarial Perturbation Generation Methods.

In this section, the effectiveness of different adversarial
perturbation generation methods is evaluated. The four dif-
ferent adversarial perturbation generation methods evaluated
in the experiment are C&W [20], DeepFool [21], PGD [22]
and UAP [13]. These four adversarial perturbation generation
methods are separately used to generate the perturbation
which is later utilized in the proposed method. As shown
in Fig. 6 and Fig. 7, for the three datsets, using UAP [13]
in the proposed method obtains the highest BDR (99.63%,
99.76% and 99.91% in Fashion-MNIST [9], CIFAR-10 [10]
and GTSRB [11] datasets, respectively), and the highest CIIR
(90.66%, 89.82% and 98.85% in Fashion-MNIST [9], CIFAR-
10 [10] and GTSRB [11] datasets, respectively) among all
the four adversarial perturbation generation methods. With the
adversarial perturbation generated by C&W [20], DeepFool
[21] and PGD [22], the performance of the proposed method
is less effective, as the backdoor detection rates are as low as
74.42%, 65.22% and 91.52% by using C&W [20], DeepFool
[21] and PGD [22], respectively (as shown in Fig. 6), and the
clean image identification rates are as low as 41.92%, 47.85%
and 67.77% by using C&W [20], DeepFool [21] and PGD
[22], respectively (as shown in Fig. 7).
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Fig. 6. The backdoor detection rate of the proposed method by using different
adversarial perturbation generation methods.

As mentioned in Section III-D, in the perturbation gener-
ation process, image-specific adversarial attack requires the
label of each specific image to generate corresponding image-
specific perturbation. If the image is a backdoor instance,
its label will be the target label, then the image-specific
perturbation will be generated based on the target label instead
of its ground-truth label. Hence, the generated image-specific
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Fig. 7. The clean image identification rates of the proposed method by using
different adversarial perturbation generation methods.

perturbation will strongly affect the backdoor trigger. Once
the backdoor trigger is strongly affected, it cannot trigger the
backdoor, leading to the inconsistence of predicted labels of
backdoor instance before and after perturbation. As a result,
this backdoor instance will be incorrectly considered as a
benign image. Therefore, the performance of the proposed
method with image-specific perturbation is low. UAP [13]
is a kind of image-agnostic perturbation, which is generated
based on a small set of clean images. The influence of UAP is
mostly on the salient regions of the backdoor instance instead
of the trigger. Therefore, the predicted labels of the backdoor
instance before and after perturbation are consistent, which
makes the image be correctly detected as a backdoor instance.
In summary, among these four adversarial perturbation gen-
eration methods, UAP [13] is most suitable for use in the
proposed method.

E. Comparison with Related Work

In this section, the proposed method is compared with
STRIP [12]. In the detection process of STRIP [12], a set
of other images from different classes are added to the input
image separately in order to generate a set of blended images
[12]. Then, STRIP utilizes entropy to measure the randomness
of the predicted labels of all the blended images [12]. The
entropy of clean images is significantly lower than the entropy
of backdoor instances. As a result, the smaller the entropy, the
input image is more likely to contain a trigger [12].

The advantages of the proposed method over STRIP [12]
are as follows. (i) The proposed method perturbs the image
with universal perturbation [13] rather than other images from
different classes. Since the `∞ norm of UAP [13] is very
low, the perturbation is very small. In addition, because UAP
is generated from clean images, the generated UAP mainly
focuses on perturbing the salient regions of an image rather
than the trigger. Therefore, the trigger is almost unaffected.
However, in STRIP, other images are directly added to the
input image, so the input image is globally affected [12]. It
will not only destroy the main content of the input image, but
also may break the trigger. (ii) For each image, the proposed

method only needs to generate one extra perturbed image
and predict two images (perturbed and unperturbed image).
However, for each input image, STRIP needs to generate a set
of blended images and input them to the model in order to
estimate the entropy of the predicted labels of these blended
images [12]. Therefore, the detection process of STRIP [12]
is more complex than the proposed method, thus the proposed
method is more efficient than STRIP.

The experiment is also conducted to compare the proposed
method with STRIP [12], and the experimental results are
shown in Table V. We reproduce STRIP by following the
method proposed in [12] for comparision. As shown in Table
V, the performance of the proposed method is significantly
better than that of STRIP [12] on all the three datasets.
Specifically, for STRIP, the backdoor detection rate is 63.40%,
96.32% and 73.95% on Fashion-MNIST [9], CIFAR-10 [10]
and GTSRB [11] respectively. For the proposed approach,
the backdoor detection rate is 99.63%, 99.76% and 99.91%
on Fashion-MNIST [9], CIFAR-10 [10] and GTSRB [11]
datasets, respectively. For the clean image identification rate,
the proposed method also has better performance than STRIP
[12]. Specifically, for STRIP, the clean image identification
rate is 67.40%, 89.57% and 88.80% on Fashion-MNIST [9],
CIFAR-10 [10] and GTSRB [11] datasets, respectively. For
the proposed method, the clean image identification rate is
90.66%, 89.82% and 98.85% on Fashion-MNIST [9], CIFAR-
10 [10] and GTSRB [11] datasets, respectively.

TABLE V
PERFORMANCE COMPARISON BETWEEN THE PROPOSED METHOD AND

STRIP [12]

Dataset

CIIR on
clean images

BDR on
backdoor instances

STRIP [12] Ours STRIP [12] Ours

Fashion-MNIST 67.40% 90.66% 63.40% 99.63%
CIFAR-10 89.57% 89.82% 96.32% 99.76%
GTSRB 88.80% 98.85% 73.95% 99.91%

Note that, the intensity of trigger in this experiment is at a
low level (0.15, 0.5, 0.2 for Fashion-MNIST [9], CIFAR-10
[10] and GTSRB [11] datasets, respectively). For STRIP [12],
the backdoor instance is totally superimposed with other image
from different classes, so the trigger is inevitably blended
with other pixels. Generally, when the intensity of trigger is
normal, the trigger in the blended image may still activate the
backdoor. However, the intensity of trigger in this experiment
is low, so the trigger in the blended backdoor instance is
destroyed and will be ignored by the model. Therefore, the
entropy of this backdoor instance is similar to the entropy of
clean images. As a result, STRIP [12] will incorrectly consider
the backdoor instance as a clean one. In comparison, the
proposed method uses the universal adversarial perturbation
(UAP [13]) to perturb the input image. First, unlike STRIP
[12], adversarial perturbation will not globally perturb the
input image. The perturbation will only modify limited number
of pixels as the `∞ norm of UAP is very low. Second, UAP
[13] is generated from a small set of clean images. Therefore,
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even if the backdoor instance is perturbed, the trigger in
the backdoor instance will only be slightly affected. As a
result, the proposed method can successfully detect backdoor
instances carrying the trigger with low intensity. However,
STRIP [12] fails to detect some backdoor instances in this
experiment, where the intensity of trigger is at a low level.

In summary, there are two advantages of the proposed
method over STRIP [12]. First, the the proposed method
is more effective than STRIP, as the proposed method will
not destroy the trigger while STRIP may destroy the trigger.
Second, the proposed method is more efficient than STRIP,
as the proposed method only needs to predict two images
(perturbed and unperturbed image) for each untrusted image
and STRIP needs to predicts a set of blended images.

V. CONCLUSION

In this paper, we propose a novel backdoor detection method
based on adversarial perturbations. Specifically, the universal
adversarial perturbation [13] is first generated from the model,
then the generated perturbation is added to the image. If
the prediction of model on the perturbed image is consistent
with the one on the unperturbed image, the input image is
considered as a backdoor instance. Experimental results show
that, the proposed defense method can achieve high backdoor
detection rate and high clean image identification rate, while
maintaining the visual quality of the image. Besides, the
defense performance of the proposed method against backdoor
attacks under different settings is also demonstrated to be
effective. Our future work will explore the defenses against
physical backdoor attacks in real physical world.
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