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Abstract

In this paper, we propose Value Iteration Network for Reward Shaping (VIN-

RS), a potential-based reward shaping mechanism using Convolutional Neural

Network (CNN). The proposed VIN-RS embeds a CNN trained on computed

labels using the message passing mechanism of the Hidden Markov Model. The

CNN processes images or graphs of the environment to predict the shaping

values. Recent work on reward shaping still has limitations towards training on a

representation of the Markov Decision Process (MDP) and building an estimate

of the transition matrix. The advantage of VIN-RS is to construct an effective

potential function from an estimated MDP while automatically inferring the

environment transition matrix. The proposed VIN-RS estimates the transition

matrix through a self-learned convolution filter while extracting environment

details from the input frames or sampled graphs. Due to (1) the previous success

of using message passing for reward shaping; and (2) the CNN planning behavior,

we use these messages to train the CNN of VIN-RS. Experiments are performed

on tabular games, Atari 2600 and MuJoCo, for discrete and continuous action

space. Our results illustrate promising improvements in the learning speed and

maximum cumulative reward compared to the state-of-the-art.
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Passing, Atari, MuJoCo

1. Introduction

A Reinforcement learning (RL) algorithm is executed against a Markov

Decision Process (MDP) environment. The MDP environment is sketched by

the solution designer where the agent can perform actions decided by RL. The

agent sends feedback to the RL solution with a reward value to update the

value function based on the actions taken. Therefore, an accurate representation

of the reward function is vital for future action selection. Hence, dynamicity

in the structure of the reward function is required to adapt to environmental

changes and produce more effective rewards. Consequently, better rewards lead

to faster convergence to near optimality with regard to agent decisions. MDP

environments have different types with continuous or discrete, finite or infinite

states, and action spaces. Furthermore, a transition matrix deciding the next

state of the agent is most of the time unknown. These MDP properties make it

challenging to develop a scalable and dynamic reward function [15].

RL algorithms are slow to converge, where most of the time is spent on

exploration at the early stages of learning. There are multiple learning speedup

techniques for RL such as offline learning, dynamic exploration, transfer learning,

imitation learning, and reward shaping [23, 1]. Reward shaping alters the original

reward function with values generated from a shaping function. The shaping

values speed learning in RL by directing the reward function to speed the policy

convergence [13]. One of the reward shaping mechanisms is potential-based,

which ensures that updates to the original reward function do not affect the

ability of an agent to reach optimal policy decisions. Due to the different types

of MDP and dynamicity of the environment, it is difficult to design a scalable

and effective potential function for reward shaping that is suitable for most

environments [2]. The existing reward shaping solutions suffer from one or more

of the following limitations: (1) they alter the optimal policy; (2) they are

based on action exploration only [5]; (3) they are not applicable in different
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environments; (4) they rely on transition matrix approximation; (5) have limited

representation of sampled MDPs. The negative consequence of the first limitation

is that obtaining the optimal policy cannot be guaranteed. Because of the second

limitation, the reward function is never adapted to the environment. Due to the

other limitations, the agent performance based on the potential function can be

improved. The applicability of a reward shaping solution is measured by the

performance in various environments and the dependability on external knowledge

like expert feedback. Therefore, a potential-based reward shaping solution is still

an open problem. Hence, we propose in this paper a novel potential-based reward

shaping solution that is scalable, learns on a representation of the MDP either

through frames of images or sampled MDP graphs, and estimates a transition

matrix while training.

The proposed potential function architecture follows the mechanism of the

Value Iteration Network (VIN) and uses convolution layers to perform planning

[24]. The original VIN module in [24] uses a Convolutional Neural Network

(CNN) architecture, which can be trained using RL or Imitation Learning (IL).

The CNN of the VIN can perform value iteration on an MDP for planning. The

output of the CNN is part of an attention mechanism that selects actions as

part of the optimal plan. In [24], learning is either done using IL, thus requiring

a large number of labels, or using RL whose performance is poor on irregular

graphs. Irregular graphs are problematic when training VIN with RL because

the number of actions for the neighbors varies.

The proposed VIN-RS trains a novel CNN based on the probabilistic view of

RL to serve as a potential function. Our new scheme, named Value Iteration

Network for Reward Shaping (VIN-RS), incorporates this novel training mode

and new architecture tailored for reward shaping. Computing message passing

on Hidden Markov Models (HMM) [26], composed of forward and backward

messages, derives the probability of trajectory optimality, thus can be used

to redirect the reward function and speed learning [26, 10]. Computing these

messages in a large environment requires high computation as discussed further

in Section 3.4. On one hand, message passing helps the agent decide if the
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current state belongs to an optimal trajectory. On the other hand, the CNN

module of VIN provides a goal-oriented plan for an optimal trajectory. In this

paper, we will argue that the message passing and VIN combined would help

accelerate learning by acting as the potential function. Therefore, we aim to

train the proposed CNN of VIN-RS based on the message passing loss computed

from sampled trajectories followed by the agent.

In[10], the authors propose a potential-based reward shaping solution using

Graph Convolution Network (GCN). GCN has the potential in propagating

the forward and backward messages of HMM using the graph operation for

sharing information between nodes. Despite significant improvement achieved

over existing reward shaping solutions, using GCN as the potential function

still has some limitations, and it cannot generalize to all environments. Even

though both CNN and GCN belong to the family of Graph Neural Networks

(GNN), GCN performs message passing on a sample of the states, while CNN

uses full images of the environment, which can reveal more states and speed

planning. In addition, to perform the GCN layer operation, the transition matrix

of the MDP should be estimated [10]. Assuming that the value function is

smooth over the MDP graph, the graph Laplacian is used as an approximation

of the transition matrix, resulting in a margin of error [17]. Furthermore, GCN

has issues related to MDP representation and information extraction, which is

due to the graph approximation technique used to represent the environment.

Compared to GCN, the proposed CNN learns a representation of this transition

matrix while training. More specifically, VIN-RS estimates a new MDP, not

necessarily related to the original one, which is learned using images of the

environment and trained following the message passing values. Even when the

environment is not captured as images, VIN-RS can train the CNN on a graph

representation from this environment, which leads to promising performance as

illustrated later in our experiments.

Training VIN-RS for reward shaping requires the true labels that are inferred

using message passing. Therefore, the loss function incorporates the message

passing mechanism. Due to (1) the computation complexity induced by calcu-
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lating the message passing; and (2) the difficulty of retrieving and sometimes

approximating the transition matrix of the environment, we train CNN on image

frames or samples of the environment graph capturing the current state of the

agent. CNN uses a transition matrix that is trained as part of the network. The

output of the proposed CNN is a regression value for each possible action in the

environment that estimates if the current state of the agent belongs to an optimal

trajectory. Furthermore, VIN-RS embeds the look-ahead advice mechanism [28].

By evaluating the state and action, the look-ahead advice improves the quality

of the potential function and thus can improve the learning speed using reward

shaping. Thus, VIN-RS produces advice at the state and action levels, which is

at the core of the look-ahead advice mechanism. In addition, it is possible to

apply our solution in discrete and continuous action spaces.

The contributions of this paper are summarized as follows:

1. VIN-RS for potential-based reward shaping using a novel CNN architecture.

2. CNN trained on images or graphs from the environment while using a

message passing mechanism in the loss function.

3. Estimating the transition matrix through training the CNN.

4. Overcoming the limitations of using GCN for reward shaping as the poten-

tial function by training on an estimated MDP using CNN.

5. State-of-the-art results in most of the games for discrete and continuous

action spaces.

The structure of the paper is divided as follows. In We describe the related

work in Section 2. In Section 3, we present the background required to cover the

core concepts of our approach. In Section 4, we present our proposed reward

shaping solution "VIN-RS". The evaluations conducted on tabular, Atari and

MuJoCo games are illustrated in Section 5. The results of our evaluation shows

that VIN-RS achieves on average the best results in the Atari and MuJoCo

games compared to all baselines. Finally, we summarize and conclude the paper

in Section 6 with future directions.
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2. Related Work

Reward shaping has gained more attention in the past years due to the

importance of speeding the learning process in Deep RL [12], especially in

applications requiring real-time feedback. In this section, we first describe VIN

and its applications. Second, we discuss existing reward shaping solutions and

their limitations. Third, we discuss and present the limitations of recent literature

solutions that utilize deep learning to build the potential function.

2.1. Value Iteration Networks and Applications

In [24], a VIN module is proposed to perform planning on a new MDP

extracted from images of the environment. The motivation behind VIN is to

support planning in NNs by integrating a new value iteration method inspired

by the policy updates in RL. The value of the work comes from using the

convolution operators to perform value iteration on an unknown MDP that

outputs an optimal trajectory. The states and actions of this MDP are the

same as the original MDP, while the reward and transition functions are any

differentiable functions that can be learned from the model while training. One

of the main limitations of VIN is that it can be applied using imitation learning

which requires a lot of ground truth labels or RL that provides poor performance.

Furthermore, VIN supports low-dimensional environments or MDPs only. Due

to the importance of the planning feature in NNs, various works extended form

[24] and proposed new differentiable reward and transition functions that can

stabilize learning in the network. For example, the authors in [14] proposes a

novel convolution operator to learn and plan on spatial and irregular graphs.

Various applications use VIN to combine planning with a supervised learning

task to improve the quality of the decisions. For instance, the work in [11]

utilizes VIN to perform UAV planning and adapt to novel physical locations.

Furthermore, the work in [29] uses VIN to learn urban navigation planning.

In this work, we propose a new variation of VIN, named VIN-RS, for the first

time in the context of potential-based reward shaping. VIN-RS encodes a new
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training mode with message passing as part of the loss function. Our VIN-RS

can effectively plan trajectories to speed learning in the original policy. VIN-RS

takes images of the environment as input to output shaping values. The shaping

values are used in the form of potential-based reward shaping by appending the

original reward function.

2.2. Existing Reward Shaping Methods

There exist various reward shaping solutions that (1) alter the optimal policy,

(2) target action exploration instead of reward signal, or (3) requires human inter-

vention. For instance, Learning Intrinsic Rewards for Policy Gradients (LIRPG)

proposes an optimal reward framework and does not guarantee invariance of the

optimal policy [30]. The Random Network Distillation (RND) approach provides

an action exploration method to accelerate learning [4]. RND uses an exploration

bonus, which is calculated using the error of a NN that predicts the observation

features. The proposed RND solution provides Superior performance in the

challenging Montezuma Revenge game. In [16], authors propose the intrinsic

curiosity module (ICM) to speed learning using action exploration. In ICM, the

authors formulate exploration by the error of the agent when trying to predict

the consequences of its actions [16]. In contrast to RND and ICM, our proposed

VIN-RS offers reward shaping based on the reward signal and not the exploration

bonus. In [10], the authors proposed a potential-based reward shaping solution

that performs message passing using GCN. More details about the GCN solution

are provided in the next subsection. In Section 5, we compare the performance

of VIN-RS to LIRPG [30], RND [4], ICM [16], and GCN [10].

2.3. Using GCN for Reward Shaping

Existing reward shaping solutions requires a neural network to become

scalable and accomodate for dynamicity in the environment with large state or

action spaces. For instance, the work in [6] suffers from scalability issues, while

[8] demands human intervention to update the reward function with feedbacks.

Therefore, we study the related work proposing to build the potential function
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through deep learning to overcome the mentioned problems. In specific, the most

suitable deep learning models belong to the family of Graph Neural Network

(GNN), such as GCN. Hence, we discuss the two most related work that uses GCN

to build the value function [10, 19]. The GCN is capable of recursively propagate

messages among neighboring nodes in the graph, determining its relation and

importance. When using message passing of HMM, those messages reveal more

information about the state or trajectory of state optimality, thus enlightening

the original reward function about useful information among the selected path.

In [10], an improvement of learning speed and reward achieved are presented

for the first time when using GCN as a reward shaping function. Despite its

performance, the presented mechanism suffers from various limitations including

the representation of the sampled MDP as a sub-graph of sampled transitions,

and the approximation of the transition matrix using graph Laplacian, which

results in a margin of error affecting its performance.

In this paper, we replace GCN with a VIN-RS that utilizes a CNN to perform

reward shaping as a potential function. In addition, GCN utilizes a subset of the

states and forms a graph that is passed to GCN for training. However, using VIN-

RS, we pass images of the environment as input to train the potential function;

therefore, more knowledge is provided with a larger set of states. Furthermore,

using GCN to compute the message passing requires an approximation of the

transition matrix. In this case, the graph Laplacian is utilized [10]. Due to many

drawbacks of using graph Laplacian as analyzed in [17], reward shaping using

GCN affects the performance. Several methods were proposed to construct bases

for Value Function Approximation (VFA), such as using the graph Laplacian.

It is proven that the graph Laplacian can only produce effective VFA when

assuming that the latter is smooth over the induced MDP graph. Therefore,

using the graph Laplacian to approximate the transition matrix cannot generalize

to all MDPs [17]. In our previous work [19], the graph Laplacian is replaced by

a Krylov subspace computed using the augmented Krylov [17], as an attempt to

overcome the graph Laplacian limitations. However, this method still cannot

guarantee an improvement over GCN in some cases. Therefore, we replace in
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this work GCN by a CNN. In the proposed VIN-RS, the probability transition

matrix within the convolution layers is learned when training the CNN network,

thus avoiding the burden of approximating this matrix.

3. Background

A modeled MDP environmentM requires a clear definition of the state space

S, action spaceA, and reward function r. As part of the MDP, γ is also predefined

to a value close to one indicating the amount of information to propagate

during the value function updates in cumulative future steps. Furthermore, a

transition matrix P is defined to foster the transitions from previous state to

next state following an action decided through exploration or exploitation. Thus,

an MDP is represented by the following tuple (S,A, P, r, γ). The policy π is

formed through deterministic or stochastic updates based on the environment

feedback from the environmnet to maximize the cumulative future discounted

rewards. In this work, we focus on value function updates calculated as follows:

Vn+1(s) = maxaQn(s, a), whereQn(s, a) = r(s, a)+γ
∑
s′ P(s′|s, a)Vn(s′), s ∈ S

and a ∈ A. An optimal value function V∗(s) is the maximal return obtained

over steps for all trajectories. When n→∞, the value function Vn converges.

Thus an optimal policy π∗ is obtained as follows: π∗(s) = argmaxaQ∞(s, a).

3.1. Reward Shaping

A reward shaping is the process of updating the reward value by a shaping

value produced using a shaping function. This shaping value is computed by

passing the current and next states to the shaping function. We denote the

shaping function as F and the updated reward function takes the following form:

R(s, a, s′) = r(s, a) + F (s, s′) (1)

where F (s, s′) is the shaping function. In terms of potential-based reward shaping,

the shaping function is computed as follows [28]:

F (s, s′) = γφ(s′)− φ(s) (2)
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where φ is a potential-shaping function. More explanation of previous approaches

proposing shaping functions is described in Section 2.

3.2. Convolutional Neural Network

The CNN network is proven to be successful in computer vision and natural

language processing applications. Furthermore, CNN layers extract features from

the images as it goes deeper into the network. The input layer in a CNN takes

as input raw image pixels which are three-dimensional. A CNN is composed of

convolutional layer, non-linearity layer, max pooling layer, and fully connected

layer. At each convolutional (conv) layer, there is a kernel matrix or filter with

a certain size. Setting the filter size is considered a hyperparameter. A filter for

the current layer is applied on the input matrix, where matrix multiplication

takes place. In addition, a sliding window or stride on the input matrix can be

applied so that more information about the image can be concluded. Adding

more layers with various filters results, in most cases, in more feature extraction

from the input matrix. Furthermore, padding can be added to the images to not

lose any information present at the frame or edges of the matrix.

3.3. Value Iteration Network

A VIN incorporates planning inside a policy of the original MDP M by

performing value iteration using a CNN [24]. It is assumed that VIN tries to

learn and solve another MDP M̄. Similar to any MDP, M̄ has states, actions,

reward and transition functions denoted as s̄ ∈ S̄, ā ∈ Ā, R̄(s̄, ā), and P̄(s̄′|s̄, ā)

respectively. The state and action spaces in M̄ are similar toM. The reward

and transition matrices of M̄ depend on the observations ofM, i.e. R̄ = fr(φ(s))

and P̄ = fp(φ(s)). The functions of the reward and transition (fr and fp) are

learned during the policy training of M̄ using the CNN. The learned policy of

M̄ is connected to obtaining the optimal policy ofM, even though the reward

and transition functions are not the same. The input to the VIN model is a list

of images extracted from the environment. The first layer in the CNN of VIN is

a convolution (Conv) layer that processes raw pixels and pass them to the second
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layer. The first step in value iteration at the second conv layer is to convert

the input of the previous layer into a reward matrix using the reward function

fr. The filter/kernel of this second conv layer is considered as the probability

transition matrix of M̄. In addition, the third conv layer contains the Q value

or state-action value function over the channels of this layer for M̄. Finally, this

last layer is max-pooled to produce the next value iteration V̄.

The output of VIN is only for a subset of states. Therefore, the output

is passed to an attention module that helps reduce the number of parameters

to train or the actions to focus on. Furthermore, the output of the attention

model is passed to the policy update ofM to guide the model in selecting better

actions. The CNN is trained using the standard backpropagation to support RL

or IL decisions.

3.4. HMM and Message Passing

As part of the probability inference view in RL, the MDP is converted to an

HMM by adding the binary optimality variable O, where 1 at t means that St is

optimal, and 0 otherwise. The probability of O = 1 given the state and action

taken at t is inferred using a probability distribution p, computed using function

f that maps rewards to probabilities: p(Ot = 1|St, At) = f(r(St, At)).

This structure is presented in Figure 1, and is analogous to HMMs. A

Figure 1: MDP structure as a graphical model treated as HMM

backward message is computed as follows: β(St, At) = p(Ot:T |St, At). In this

equation, β refers to an approximation of the cumulative reward over the trajec-

tory from t to T [26, 31]. Computing the backward message is a generalization

of the optimal control problem [18]. A forward message is computed as follows:
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α(St, At) = p(Ot0:t−1)|St, At)p(St, At). This message allows the agent to ex-

amine the trajectory optimality from 0 to t − 1. Combining the forward and

backward messages reveals information about the full trajectory, which relevant

and effective for building the potential function in reward shaping.

4. Proposed Scheme: VIN-RS

Figure 2: An architecture incorporating the Value Iteration Network for Reward Shaping with

Reinforcement Learning

In this section, we start first by describing the overall proposed architecture

which consists of three main components: (1) VIN-RS, (2) message passing,

and (3) reinforcement learning algorithm. We describe each of the components

and list the steps for constructing the potential function of our reward shaping

solution using CNN and focus on the advantage of incorporating the look-ahead

advice mechanism. We also discuss the technique to obtain the message passing

values, which are used to compute the loss for the CNN. In addition, we show

an algorithm to train VIN-RS. Finally, the policy update combining the output

of CNN is presented in the main reinforcement learning algorithm.
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4.1. Overall Architecture

In Figure 2, we show the overall proposed architecture that combines VIN-RS

with RL. Our solution contains two main modules, the first is VIN-RS that uses

a CNN on M̄, while the second is the main RL solution for the original MDP

M.

Starting with the main component which is the RL algorithm that computes

the policy π to solveM. The input to the RL module is the list of states which

can either be images or states representation from the environment. These states

are also called observations. Based on the observations, the agent selects the best

action according to the policy π, then executes that action in the environment.

The agent then receives the next state as well as the reward of the action taken

in the environment. This information is used to update the policy using the RL

algorithm. The policy then selects another action for the new observation and

keeps on repeating these steps until the agent finds the optimal policy π∗. The

novelty of our RL solution is that the policy update incorporates the reward

shaping value, which is constructed using the output of VIN-RS.

The CNN of VIN-RS is built using three two-dimensional CNN layers. The

input to CNN is a list of images captured from the environment. CNN accepts

graphs, in contrast to the main RL algorithm where the input can be a state

representation that combines information other than the environment images.

This is similar to the case of MuJoCo environments [25]. The image is passed to

the first conv layer that is responsible for processing the raw image pixels. The

result of the first conv layer is passed to the second one, which is responsible

of producing a reward matrix R̄. This layer has two channels, one holds the

old value function matrix V̄ , and one holds the current rewards. In other words,

states are represented as a two-dimensional grid at each timestep, and each

of these states has a reward value computed using the first layer. This layer

is trained and improved over time by the network through continuous weights

updates. The kernel applied to this layer resembles the probability transition

matrix P̄ , which is also updated during the training. Applying this kernel to the

first reward matrix resulted from the first conv layer will give us the state-action
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value function (Q̄-value). At this conv layer, there are x channels, where x is

the number of actions in the action space Ā. Selecting the action having the

maximum Q̄-value is done by applying a max-pooling for the Q̄ value of the

corresponding states. The resulting matrix V̄ is passed to R̄ to be considered for

the next value iteration or policy update. Furthermore, the Q̄ is flattened and a

dense layer is applied to obtain the output layer. This output layer has the size

of x, which is considered as a shaping value for each action, passed to the main

policy update of the RL algorithm to update the policy using potential-based

reward shaping. Producing a shaping value for each action of a given state is at

the core of the look-ahead advice mechanism [28].

In order to train our CNN, we use the standard backpropagation by computing

the labels using the message passing technique. As discussed in the background

section, the message passing value including the forward and backward messages

is considered as a signal that could accelerate learning. In order to compute

the messages values, a graph of states is formed as shown in Fig. 3, this graph

contains only a subset of the states. Due to the fact that computing message

passing is computationally expensive for large graphs, it is enough to compute

this message passing for the sampled graph of states for the current training

iteration of CNN. For every training episode, the graph is emptied and a new

one is formed. The output of the message passing algorithm is used as the true

labels for the CNN to compute the loss function. In [10], message passing is

implemented using a GCN; however, in this work, we overcome the limitations of

using GCN, described in Section 2.3, and apply CNN to perform value iteration

and compute the message passing values. Because CNN is used to do planning

in the network over K iterations, VIN-RS can tell if an agent state belongs to an

optimal trajectory. The ability of CNN to plan using value iteration is mapped

to what a message passing value represents.

4.2. VIN-RS Module

Our VIN-RS builds and solves M̄, where the parameters of the policy π̄

include fr and fp. These two functions are differentiable and learned while
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Figure 3: The CNN architecture of the proposed VIN-RS module

training the CNN. The CNN is trained using the message passing result as the

label. To obtain π̄∗ for solving M̄, value iteration is applied as follows:

π̄∗(s̄) = argmaxāR̄(s̄, ā) + γ
∑
s̄′

P̄(s̄′|s̄, ā)V̄ ∗(s̄′) (3)

where s̄′ is the state at the next timestep. The value iteration procedure is

implemented using the CNN of the proposed VIN-RS. Furthermore, we construct

a VIN-RS tailored for reward shaping in the context of RL. Mainly, we train VIN-

RS using the message passing values and consider its output as the shaping value

that is used to update the original policy of the RL algorithm. An illustarion on

the training and integration between the CNN of VIN-RS and the RL module

is shown in Figure 2. In addition, the CNN in VIN-RS is trained in a separate

network to solve its own policy and not combined with the RL network. As

shown in Figure 3, the input to CNN is the list of images extracted from the

environment. The input can also be a graph representation of the states from the

environment, in case images are not available. Using graphs instead of images

can reduce the number of states the CNN trains on; however, it makes our

solution applicable to high dimensional state spaces. In other words, using grid

of pixels is practical when the environment image is two-dimensional or covers

the current state and end goal. Using fr, which corresponds to the weights of

the first conv layer, the R̄ matrix is computed. R̄ has the dimension of l,m, n,
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where l is number of channels and m and n represent the image dimensions. The

extracted reward R̄ is passed to the next conv layer, where the Q̄ values are

computed. The Q̄ conv layer contains x channels, or a channel for each action in

M̄. Q̄ā,i′,j′ represents the Q̄-value for a state defined at positions between i, i′

and j, j′ respectively for a particular action ā. Q̄ā,i′,j′ is computed as follows:

Q̄ā,i′,j′ =
∑
l,i,j

W ā
l,i,jR̄l,i′−i,j′−j (4)

In Equation 4, the reward matrix is multiplied by the weights or a representation

of the transition matrix P̄ . From the resulting Q̄ matrix, we apply max-pooling

by selecting the highest Q̄-value from the list of actions or channels to obtain V̄ .

An element in V̄ at i, j is:

V̄i,j = maxāQ̄(ā, i, j) (5)

where Q̄(ā, i, j) is the result of the Q̄ function for a given state and action.

Following the computation of V̄ , we update the first channel of the R̄ matrix. In

addition, a dense layer is applied after flattening Q̄. Finally, a fully connected

output layer is added, which results in the shaping values for each action. In

order to obtain the true labels for the shaping value, we apply the message

passing mechanism on the extracted graph from the observations, and pass

this value to the loss of CNN. A forward pass in this CNN is considered as a

single value iteration. Assuming that the number of steps required by the agent

to reach the goal from the current state is K, then the ideal number of value

iterations required in CNN for value function updates is K. After each iteration,

V̄ is calculated using Q̄ and appended to R̄ for the next iteration, as shown in

Figure 3. In Algorithm 1, we show a pseudo-code of the training steps in our

proposed CNN.

The pseudo-code of Algorithm 1 presents how the CNN of VIN-RS is trained

for a single step. Lines 1-5 perform a forward pass in the algorithm. Lines 6-10

perform K value iterations. Lines 11-13 flatten the Q̄ matrix and obtain the

output φ. Lines 14-15 compute the message passing values and compute the
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Algorithm 1 A training step with K value iterations of CNN in VIN-RS

Input: X: a list of images sampled from the environment.

G: a graph constructured from the sampled images or the list of states

encountered.

cnnH: Conv layer that processes the image pixels

cnnR: Conv layer that computes the R̄ matrix

cnnQ: Conv layer that computes the Q̄ matrix

wV : Initialize weights for computing Q̄ matrix

Fn: Fully connected layer

Opt: Output layer

Output: φ: shaping value for the corresponding images/states.

1: p = Normalize(X) . or G as input when applicable

2: h = cnnH(p)

3: r = cnnR(h)

4: q = cnnQ(r)

5: v = Max(q) . Get the maximum or apply max pooling

6: for i = 1, . . .K do . Perform K value iterations

7: q = EVALUATE_Q(r, v)

8: v = Max(q)

9: end for

10: q = EVALUATE_Q(r, v)

11: v = Max(q)

12: flatten_q = Reshape(q) . Flatten the matrix v

13: fn = Fn(flatten_q)

14: φ = Opt(fn)

15: label = Message_Passing(G)

16: loss = L(label, φ)

17: backpropagate()

18: update_gradient()

19: procedure evaluate_q((r, v, cnnQ,wV )) . Perform value iteration

20: rv = Concat(r, v) . Concatenate r and v

21: wQwV = Concat(cnnQ.weights, wV )

22: q = Conv(rv, wQwV ) . Apply a Convolutional layer

23: return q

24: end procedure
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loss. Line 16 performs backpropagation to compute the gradients of the network

weights. Line 17 updates the weights based on the computed gradient.

4.3. Loss Function: Message passing

Following the success of using message passing for reward shaping, we propose

training the CNN of VIN-RS using the message passing values as the true labels.

Using the probability inference view of RL, a solution is to find the distribution

of the optimality variable O = 1 for a given state and action. This structure

is analogous to HMM, where forward and backward messages can be used to

compute this probability distribution. Combining the forward and backward

messages results in a policy that looks backward and forward in time. In other

words, the resulting values from message passing tells if a state belongs to an

optimal trajectory. More details about the messages calculation is presented in

Section 3.4. Thus, the combined forward and backward messages (α and β) are

expressed as follows:

p(Ot|St, At) ' α(St, At)β(St, At) (6)

Thus, the potential function is expressed as φα,β = α(St, At)× β(St, At). Com-

pared to VIN, a CNN can also produce optimal plans/trajectories for the agent

on M̄. Based on this observation, we propose VIN-RS that incorporates the

message passing results in the training process to produce the shaping values.

In VIN-RS, we benefit from message passing to compute the loss of CNN.

To compute those messages, base and recursive losses are required. In our loss

formulation, the state and action are passed as input when computing the loss.

Such formulation boosts the performance of VIN-RS by applying the look-ahead

advice naturally in the CNN implementation, due to the fact that each channel

in Q̄ is a Q-function for each action in the environment. Therefore, the loss

function is computed in two steps as follows:

L = L0(S̄, Ā) + ηLrec(S̄, Ā) (7)

where L0 is the base case, Lrec is the recursive case, S̄ and Ā are the lists of

base case states and actions respectively in M̄, and S̄ and Ā are the states and
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actions retrieved from the graph of experiences. Noting that the base states

are composed of the rewarding states. In VIN-RS, we consider states that are

used to form the graph G, where each state in this graph is an images of the

environment. Furthermore, the base loss is computed using the rewarding states

only in G, in order to extract information only from important states. The base

loss is the usual supervised loss that considers the true and predicted labels.

L0 = H(p(Ō|S̄, Ā), φ(S̄, Ā)) =∑
s,a∈S̄,Ā

p(Ō|s, a)log(φ(s, a))
(8)

The recursive loss written as Lrec is computed by aggregating the messages

with the neighboring states using the adjacency matrix of the graph G. Lrec is

formulated as follows:

Lrec =

||d||∑
i=1

||e||∑
j=1

Ai,j ||φ(S̄i, Āi)− φ(S̄j , Āj)||2 (9)

In Equation 9, d and e are the list of states and corresponding neighbors

respectively. In addition, A is the adjacency matrix. Getting φ for a given state

and action is at the output layer Opt of CNN for VIN-RS. Compared to [10], our

loss function considers both the states and actions for activating the look-ahead

advice mechanism.

4.4. Look-Ahead Advice

The Look-ahead advice mechanism proposed in [28] suggests considering

the action as part of the potential-based reward shaping function. Advising on

specific actions is a more rigorous method taken at the level of actions instead

of being general for the whole state. The shaping function produced by CNN in

VIN-RS after applying the look-ahead advice takes the following form:

F (s̄, ā, s̄′, ā′) = γφ(s̄′, ā′)− φ(s̄, ā) (10)

where φ is the potential shaping function that considers states from S and

actions from A to result in a scalar value. Hence, the updated shaping function
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considering the action taken becomes:

R(s, a, s′, a′) = r(s, a) + F (s, a, s′, a′) (11)

By augmenting the action values, the shaping function could potentially speed

the learning speed further. Therefore, we propose adding the look-ahead advice

in the design of VIN-RS, which is naturally embedded at the Q̄ layer.

4.5. Training RL with VIN-RS

VIN-RS is able to produce shaping values that can accelerate learning and

overcome the limitation of existing solutions by processing full images of the

environment or extracted graphs of states. After training the CNN of VIN-RS,

the resulting shaping values for each state and action are passed to the RL

algorithm for training and policy update. In Algorithm 2, we show the steps

followed to train RL and benefit from the shaping value to obtain the Qcomb,

which is a combination of the original Q value and the one obtained using

Equation 2 with φ from CNN as the shaping value. The algorithm starts by

initializing the CNN and RL networks, as well as an empty graph G to hold the

list of transitions. In each epoch of training, for a number of iterations T (for

each trajectory followed by the agent), images are stored to later train the CNN.

In addition, the list of transitions are stored in graph G to later compute the loss

of CNN. For every N episodes, the CNN is trained with the sampled images and

graphs of transitions. Training the CNN every N episodes is more efficient and

reduces the runtime of using VIN-RS in combination with the RL solution to

speed learning. The loss is computed using Equation 7 and the CNN is trained

for K iterations following the steps of Algorithm 1. Noting that if images are

not available for training the CNN, the graph G can be used instead.

The combined value function with reward shaping is expressed as:

Qπcomb(s, a) = αQπ(s, a) + (1− α)Q̄π̄φ(s, a)

where Q̄π̄φ(s, a) = E(s,a)[
∑
t

γtr(St, At) + γφ(St+1,

At+1)− φ(St, At)]

(12)
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φ(St, At) is the shaping value at the output layer Opt of the CNN for state

St and action At. Moreover, α is a hyperparameter the amount of the reward

shaping value considered for updating the state-action value function. At the

end of an epoch, the graph G can be emptied.

Algorithm 2 Training RL with VIN-RS
1: Create the CNN network for VIN-RS

2: Create empty graph G

3: Create the RL networks

4: for Episode=0,1,2, . . . do

5: for t = 1, 2, . . . , T do

6: Store images of all transitions

7: Perform the best action based on π

8: Get the state and reward from the environment

9: Add the transition to graph G

10: end for

11: if mod(Episode, N) then

12: Pass the list of images to CNN

13: Compute the loss for CNN using Equation 7

14: Train CNN following Algorithm 1 for K iterations

15: end if

16: Obtain φ for the list of states and actions

17: Qπcomb = αQπ + (1− α)Q̄π̄φ
18: Train RL networks by updating the policy to maximize

Eπ[∇logπ(At|St)Qπcomb(St, At)]

19: Reset G to empty graph (optional)

20: end for

5. Experiments

In this section, the evaluation consists of experiments on two environments

with discrete and continuous state and control. We use twenty Atari 2600 games
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from the Gym environment and four games from MuJoCo. In order to analyse

the performance of VIN-RS and illustrate its advantage, we compare with the

Proximal Policy Optimization (PPO) [22]; using GCN (denoted as φGCN ) as

the shaping function with the graph Laplacian as the filter [10]; LIRPG [30];

RND [4]; and ICM [16]. Details about the implementation and machines used

are provided in the next subsection. First, we analyze the time complexity of

VIN-RS compared to PPO and GCN. Afterward, we evaluate the performance of

VIN-RS in different games for the Atari 2600 [3], and MuJoCo [25] environments

compared to various baselines.

5.1. Implementation and Setup

The source code is written in the Python programming language. In our

implementation, we used the PyTorch library to build our VIN-RS and combine

it with the implementation of the Actor Critic (A2C) and Proximal Policy

Optimization (PPO) algorithm. We also utilize the OpanAi Gym [3] and

MuJoCo [25] libraries to simulate the environments of all the games. Images

are passed to CNN to train in both the Atari and MuJoCo environments. The

state representation of the MuJoCo games contains additional information about

the state and not only the raw pixels. Therefore, we utilized the camera option

in the MuJoCo package to build the CNN input. In case there is no option to

get images from the environment, a graph of states can be used as input to

CNN. The same graph of states is used to compute the loss function, through

message passing, when training the CNN. Passing images as input results in more

information about the environment, which further improves the performance of

CNN. As described in Section 4, the look-ahead advice mechanism is naturally

embedded within the VIN-RS design and implementation, which offers a level of

advantage for the proposed scheme compared to existing baselines. Our source

code is available on GitHub and will be shared after publication.

For each run, a single GPU (NVIDIA V100 Volta (16GB HBM2 memory))

and eight CPUs (Intel E5-2683 v4 Broadwell @ 2.1GHz) were used with 32 GB of

RAM. Details about the network configuration of each environment are provided
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in Sections 5.3.2 and 5.3.3.

5.2. Complexity

In this section, we show the results of our analysis in terms of runtime

of the proposed VIN-RS when combined with PPO compared to GCN and

vanilla PPO. In Table 1, we show the number of frames processed per second

(FPS) using each of the solutions. As presented in Algorithm 1, the CNN of

VIN-RS is only trained every N episodes, that’s why the FPS is very close

compared to the other solutions. Therefore, when comparing the performance

of VIN-RS to the other baselines, it is enough to compare the cumulative

steps to converge or the average reward achieved over the number of iterations.

Method FPS

PPO 1126

GCN 1054

VIN-RS 1051

Table 1: Frame Per Sec-

ond (FPS) evaluated on

Atari 2600

Training VIN-RS consumes additional time every couple

of episodes due to the added computation of the loss

using Equation 7, in addition to the steps of training

CNN following Algorithm 1. Therefore, VIN-RS has

comparable execution time compared to PPO and GCN,

thus not affecting the speed of learning. Hence, studying

the number of iterations to convergence has the same

effect as measuring the time in seconds when comparing

to different baselines in the following subsections.

5.3. Performance Analysis

In our evaluations, we consider three different environments to test the

performance of the proposed VIN-RS. First is the Tabular with the four rooms

game, second is the Atari 2600, and third is the MuJoCo. All these environments

are similar to the evaluation criteria followed in [10] that proposes the use of

GCN to perform message passing and predict the shaping value. Even-though

the φCNN (using VIN-RS) approach for reward shaping achieves considerable

improvement over the PPO algorithm in [10], we still provide a comparison with

A2C and PPO as baselines.

23



5.3.1. Tabular Learning

In this experiment, we present two setups of the Four Rooms game to evalu-

ate the performance of VIN-RS φCNN that uses A2C. The analysis conducted

on VIN-RS is compared to A2C, φGCN , and φαβ . In φαβ , message passing is

computed due to the small environment spaces. Furthermore, λ-return is used

as the critic part of A2C. A tabular RL solution is enough for the four rooms

game shown in Figure 4a. In such an environment, it is possible to compute

the actual message passing value φαβ . However, in larger environment sizes and

dimensions, it is not feasible to compute those messages. The two games we

evaluate are the Four Rooms and its variant Four Rooms Traps, where negative

rewards are scattered across the four rooms as traps. Moreover, the exploration

rate is maintained by setting the probability of random action selection to 0.1.

The results showing the cumulative steps are presented in Figures 4 and 5.

(a) Four Rooms

(b) Convergence Speed

Figure 4: Cumulative steps over the number of iterations in Four Rooms

As shown in Figure 4, φCNN has faster convergence speed indicated by less

number of cumulative steps compared to A2C, φαβ , and φGCN . In particular,

after 300 episodes, φCNN In this particular game, VIN-RS helps the agent plan

the optimum trajectory by selecting the shortest path to reach the goal with a

smaller number of training iterations. The planning factor is not possible when
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(a) Four Rooms Traps

(b) Convergence speed

Figure 5: Cumulative steps over the number of iterations in Four Rooms Traps

using message passing through GCN as the potential function, because (1) a

subset of the states is only considered when training, and (2) value iteration is

not performed to ensure planning.

5.3.2. Atari 2600

The Gym library offers environments for twenty different Atari 2600 games.

The main property of these games is that the action space is discrete. In this

section, we evaluate the performance of our proposed solution φCNN in each of

the games compared to four baselines, which are PPO, φGCN , LIRPG, RND,

and ICM. In terms of VIN-RS implementation, we use the states which are raw

pixel representation as input to the CNN. Furthermore, the number of channels

at the Q̄ layer is equal to the number of actions of the game.

We experiment with the twenty different Atari 2600 games using φCNN ,

φGCN , LIRPG, RND, ICM, and PPO. We execute each algorithm on every game

for ten million steps, the same parameters are used as shown in Table 2.
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Table 2: VIN-RS and RL configuration for the Atari 2600 games

Hyperparameter Value

Learning rate 2.5e-4

γ 0.99

λ 0.95

Entropy Coefficient 0.01

PPO steps 128

PPO Clipping Value 0.1

# of minibatches 4

# of processes 8

CNN: α 0.9

CNN: η 1e1

GCN: α 0.9

GCN: η 1e1

In Figure 6a, we show the improvement achieved by φCNN using VIN-RS

over PPO. In addition, we present the improvement of each of the baselines

φGCN , LIRPG, RND, and ICM compared to PPO in Figures 6b, 6c, 6d, and 6e

respectively. The results in these figures are shown in logarithmic scale. The

mean difference between each solution and PPO is computed, then a log is

applied.

As shown in Figure 6a, the proposed φCNN is able to improve the perfor-

mance of 14 different Atari games compared to PPO as a baseline. In the games

of Venture, Qbert, UpNDown, MsPacman, and SpaceInvaders, φCNN is not

performing well compared to PPO. In contrast, the performance of φGCN in this

game is better compared to PPO. On the other hand, in most of the other games,

φCNN is outperforming φGCN and improving over PPO. These information are

extracted from Figures 6a and 6b. Furthermore, the proposed φCNN has the

best results in terms of the number of games where the performance is better

than PPO compared to the rest of the baselines. More specifically, the number
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(a) φCNN (b) φGCN

(c) LIRPG (d) RND

(e) ICM

Figure 6: Performance comparison of each learning and reward shaping algorithm on Atari

games in log scale over ppo
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of games with an improvement of PPO are classified as φCNN : 13, φGCN : 9,

LIRPG: 11, RND: 7, ICM: 12.

These results highlight the capabilities of performing value iteration or mes-

sage passing using the proposed CNN architecture. Compared to φCNN , LIRPG

does not guarantee invariance for the optimal policy, thus it is not potential-based.

On the other hand, RND and ICM provide reward shaping through exploration

and can only support discrete action spaces. Additional results showing the per-

formance comparison between φCNN , φGCN , and PPO are presented in Figure

7.

5.3.3. Mujoco

We evaluate the performance of VIN-RS in continuous action space on the

MuJoco games compared to baselines. In the CNN implementation of VIN-RS,

we deal with the continuous action space by discretizing the action space. The

values of two actions at the output layer resemble the range of the continuous

actions in M. The rest of the implementation is similar to the Atari games.

In terms of baselines comparison, we compare with PPO and φGCN . It is not

possible to compare with RND and ICM because these solutions do not support

continuous control. We only compare with φGCN as a reward shaping solution

because it is the closest to our work in terms of potential-based solution and the

use of message passing. The results comparing the performance of each game

to the other baselines are shown in Figure 8. The different settings related to

this experiment are provided in Table 3. We use the same parameters as in [10]

for evaluating the different techniques and baselines for fair comparison. The

experiments were executed for three million steps for each game. We performed

the experiment for each solution on each game for five times. The results in

Figure 8 show the mean for each of the games in terms of rewards with respect

to the number of steps in the environment.
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(a) Alien (b) Assault (c) Asteroids (d) Frosbite

(e) Gopher (f) Jamesbond (g) Hero (h) Kangaroo

(i) Krull (j) MontezumaRevenge (k) MsPacman (l) NameThisGame

(m) Qbert (n) RoadRunner (o) Seaquest (p) SpaceInvaders

(q) UpNDown (r) Venture (s) WizardOfWar (t) Zaxxon

Figure 7: Results on 20 Atari games comapring the performance of φCNN to φGCN and PPO
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Table 3: VIN-RS and RL configurations for the MuJoCo games

Hyperparameter Value

Learning rate 3e-4

γ 0.99

λ 0.95

Entropy Coefficient 0.0

PPO steps 2048

PPO Clipping Value 0.1

# of minibatches 32

# of processes 1

CNN/GCN (Walker and Ant): α 0.6

CNN/GCN (Hopper and HalfCheetah): α 0.6

CNN/GCN: η 1e1

As shown in the results of Figure 8, the proposed φCNN solution using VIN-

RS outperforms PPO and φGCN in all the MuJoCo games. This improvement

is measured by the convergence speed and the ability to reach high rewards at

early stages of learning. In addition, the planning capability of φCNN is reflected

in the performance by reaching high rewards that are not observed by the other

solutions. In the results of the Hopper game of Figure 8c, φCNN reaches higher

rewards, which is at least two times better than φGCN and PPO.

6. Conclusion and Discussion

In this paper, we propose VIN-RS, a potential-based reward shaping mecha-

nism that employs a novel CNN architecture as a potential function. VIN-RS

performs planning in the environment by implementing a value iteration function-

ality. The loss function of CNN for value iteration is computed using the message

passing mechanism that embeds forward and backward messages, resulting in

an effective potential function for rewards shaping. The training of CNN is

performed on a sample of transitions. Our solution embeds the look-ahead

30



(a) Ant (b) HalfCheetah

(c) Hopper (d) Walker2d

Figure 8: Performance comparison between different reward shaping mechanisms and PPO in

Mujoco environments.

advice mechanism inside the design of CNN for VIN-RS. We then propose the

use of CNN as the potential function to produce shaping values. The resulting

shaping values from sampled trajectories at each action are passed to the RL

algorithm to update the policy. In terms of learning speed, VIN-RS achieves

state-of-the-art results in various games. Besides, through planning, the CNN

for reward shaping can converge faster and reach high rewards that are not

observable by other solutions. In our evaluations, we showed that the complexity

of combining VIN-RS with other RL solutions is minimal. Furthermore, we

evaluated the performance of VIN-RS compared to other baselines in Tabular,

Atari 2600, and MuJoCo environments.
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In terms of future work, the current implementation of VIN-RS does not

support high-dimensional state spaces, such as using the MiniWorld environment.

This issue can be solved following the VIN generalization solution proposed in

[14].

Using VIN-RS, we believe that existing RL-based solutions in the studied

MDP environments have the potential to improve the learning speed and quality

of the decisions at the same time. For example, there are various dynamically

changing and time-sensitive MDPs requiring fast adaptation to environmental

changes. Examples of these environments include autonomous driving, resource

management [20, 21], health applications, Blockchain [9, 7], and financial appli-

cations [27].
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