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Abstract

Currently, graph learning models are indispensable tools to help researchers
explore graph-structured data. In academia, using sufficient training data to
optimize a graph model on a single device is a typical approach for training
a capable graph learning model. Due to privacy concerns, however, it is
infeasible to do so in real-world scenarios. Federated learning provides a
practical means of addressing this limitation by introducing various privacy-
preserving mechanisms, such as differential privacy (DP) on the graph edges.
However, although DP in federated graph learning can ensure the security of
sensitive information represented in graphs, it usually causes the performance
of graph learning models to degrade. In this paper, we investigate how DP
can be implemented on graph edges and observe a performance decrease in
our experiments. In addition, we note that DP on graph edges introduces
noise that perturbs graph proximity, which is one of the graph augmentations
in graph contrastive learning. Inspired by this, we propose leveraging graph
contrastive learning to alleviate the performance drop resulting from DP.
Extensive experiments conducted with four representative graph models on
five widely used benchmark datasets show that contrastive learning indeed
alleviates the models’ DP-induced performance drops.
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1. Introduction

With the rapid development of the internet and its applications, online ac-
tivities are producing a massive amount of data in various forms, such as text,
images, and graphs, among which graph data, in particular, have recently
attracted increasing attention and interest from the research community due
to their powerful ability to illustrate the complex relations among different
entities [21, 35]. To extract the informative semantics contained in graphs,
researchers have developed various graph representation learning methods,
including graph embedding methods [28] and graph neural networks (GNNs)
[21, 35], which have been utilized in various real-world applications [2, 32].
Usually, the basic versions of such methods need to be trained on massive
amounts of training data in a centralized manner. However, such a training
setting is infeasible in real-world scenarios due to privacy concerns, commer-
cial competition, and increasingly strict regulations and laws [13, 11], such
as the GDPR1 and the CCPA2. To address privacy concerns, efforts have
been made to introduce federated learning (FL) [11] into the graph learning
domain. FL is a distributed learning paradigm that can serve as a suitable so-
lution for many real-world applications, such as the Internet of Things (IoT)
[41]. It enhances privacy by allowing graph models to be trained on local
devices while incorporating various privacy-preserving mechanisms, such as
differential privacy (DP) on graphs [18].

DP is one of the most widely used privacy-preserving methods with a
strong guarantee [4]. The basic idea of DP is to introduce a controlled level
of noise into the query results to perturb the consequences of comparing two
adjacent datasets [5]. The advantages of DP lie in its ease of practical im-
plementation and its solid theoretical guarantee. It has been proven that
the introduction of noise that follows specific Laplacian or Gaussian distri-
butions can achieve privacy protection at a designated level in accordance
with the Laplacian or Gaussian mechanism [5]. This property means that
the DP mechanism is robust against any postprocessing and can never be

1https://gdpr-info.eu/
2https://oag.ca.gov/privacy/ccpa
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compromised by any algorithms [6]. In the graph learning domain, there are
numerous perspectives from which DP can be implemented, such as node
privacy, edge privacy, out-link privacy, and partition privacy [17]. Among
these, edge privacy provides meaningful privacy protection and is extensively
utilized in many real-world graph learning applications [18].

Although DP can ensure the security of the sensitive information con-
tained in graph structures and possesses theoretically proven advantages, it
always causes the performance of graph learning models to degrade [1]. Some
previous research efforts have sought to alleviate this performance drop. One
representative approach is to generate specific perturbed data and train a
model on both clean and perturbed data simultaneously to help the model
gain robustness against DP noise [37]. However, there are two significant
limitations to adopting this strategy in federated graph learning. First, this
strategy is designed for deep neural networks (DNNs) and image classifica-
tion tasks. It cannot be directly applied to address graph learning problems
with GNNs. The reason for this limitation is that existing DP mechanisms
are usually designed for application to tabular data (including images, as an
image can be regarded as a table in which each entry is a pixel). The noise
produced by a DP mechanism can be easily added to the existing value of
each data entry in a table. However, utilizing such a DP mechanism to pro-
cess graph structures is not straightforward, as there are no explicit tabular
data. Second, model training typically requires clean data. However, if DP
is utilized to process the data uploaded from edge devices, it is difficult for
a model stored on a cloud server to acquire clean data for such a training
process. Therefore, a new solution is highly desirable to overcome the above
challenges in federated graph learning.

To mitigate the performance sacrifice caused by the DP mechanism in fed-
erated graph learning [37], we aim to develop a solution that is resistant to DP
noise. First, we note that a DP mechanism acting on graph edges introduces
noise to perturb the graph proximity by interfering with the values of the
entries in the adjacency matrix, as shown in Figure 1. Such an operation can
be regarded as a type of graph augmentation, i.e., edge perturbation [45]. In
addition, we note that You et al. [45] proposed leveraging graph contrastive
learning (GCL) [45, 43, 10, 48] in conjunction with graph augmentation to
help a graph learning model achieve robustness against noise. Specifically,
GCL employs concepts of contrastive learning to extract critical semantics
between augmented graphs, where the extracted semantic information is ro-
bust to the noise introduced by graph augmentation operations such as edge
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perturbation [45]. Inspired by the above considerations, we propose utilizing
GCL to learn from a graph processed with a DP mechanism.

Nevertheless, applying GCL in federated graph learning is challenging
and not straightforward. First, the noise introduced by DP follows specific
distributions (e.g., a Laplacian distribution), indicating that simply delet-
ing or adding edges via GCL techniques is insufficient to satisfy a specific
form of DP. Moreover, edge perturbation refers to the operation of deleting
or adding complete edges in a graph, changes that are reflected by binary
entry values of {0, 1} in the adjacency matrix. However, the DP mechanism
produces noise values in the range of (0, 1). To ensure compatibility with
the graph learning setting, we need to convert the graph of interest into a
fully connected graph and use the perturbed probabilities to represent the
edge weights. Additionally, in real-world settings, federated frameworks typ-
ically optimize models in a streaming manner, which means that the training
batch size is 1. Consequently, it is not possible to apply the conventional con-
trastive learning protocol, which requires negative samples to be collected in
the same training batch [45, 43], as per the settings in the current GCL liter-
ature. In this paper, we maintain a limited-size stack on each device to store
previously trained graphs and randomly extract samples from this stack to
serve as negative samples in each training round.

To help better understand the mechanism for achieving privacy preser-
vation on graph structures in our proposed method, we give an illustrative
example here, as shown in Fig. 1. Let us assume that there is a network con-
sisting of three participants. Initially, a has connections with both b and c.
Then, a new connection is built between b and c. If a malicious attacker initi-
ates a differential attack on this social network in two different time slots, he
or she will be aware that there has been a change in the relationship between
b and c, which could be private information. To defend against such attacks,
we introduce noise Y ∼ L(0, ∆f

ϵ
) to perturb the values, thereby preventing

the attacker from being able to determine whether any two participants are
connected or not via single or several differential attacks. Because the expec-
tation value of the introduced noise is 0, many queries and average look-up
results over a short period of time would be required to derive the precise
lookup result, which is infeasible for the malicious attacker.

In summary, the contributions of this paper are as follows:

• We propose a method for converting a graph into a table to facilitate the
use of current DP methods to achieve privacy preservation on graphs.
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Figure 1: After converting the target graph into a table, we utilize the widely used Lapla-
cian mechanism to introduce noise into the values in the table to defend against differential
attacks via table lookup.

• A novel federated graph contrastive learning method (FGCL) is pro-
posed for the first time. The proposed method can be implemented in
a plug-in manner for federated graph learning with any graph encoder.

• Extensive experiments show the proposed method can alleviate the per-
formance decline caused by the noise introduced by a DP mechanism.

2. Preliminaries

This section presents some background knowledge related to the current
research work, including DP and GCL.

2.1. Differential Privacy (DP)

DP refers to a tailored mechanism for privacy-preserving data analysis
[37], which is designed to defend against differential attacks [6]. DP offers a
theoretically proven guarantee that the amount of information leakage that
occurs during a malicious attack can be controlled to a certain level [17]. This
property means that the DP mechanism is immune to any postprocessing and
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cannot be compromised by any algorithms [6]. In other words, if a dataset
is protected by the DP mechanism, the privacy loss suffered by this dataset
during a malicious attack will never exceed the specified threshold, even if it
is attacked using the most advanced and sophisticated methods available.

Formally, DP is defined as follows:

Definition 1. [6] A randomized query algorithm A satisfies ϵ-differential
privacy iff for any datasets d and d′ that differ by a single element and any
output S of A,

Pr[A(d) = S] ≤ eϵ · Pr[A(d′) = S]. (1)

In the definition above, the datasets d and d′ that differ by only one single
data item are called adjacent datasets, and this adjacency is defined in a task-
specific manner. For example, in graph edge privacy, a graph G represents a
dataset, and a graphG′ is an adjacent dataset ofG ifG′ can be derived fromG
by adding or deleting only one edge. The parameter ϵ in the definition above
denotes the privacy budget [6], which controls how much privacy leakage by
A can be tolerated. A smaller privacy budget indicates less tolerance to
information leakage, which is equivalent to a higher level of privacy.

A general method for converting a deterministic query function f into
a randomized query function Af is to add random noise to the output of
f . The noise is generated from a specific random distribution calibrated
to the privacy budget and ∆f , the global sensitivity of f , defined as the
maximal value of ||f(d) − f(d′)||. In this paper, for simplicity, we consider
the Laplacian mechanism to achieve DP [6]:

Af (d) = f(d) + Y, (2)

where Y ∼ L(0, ∆f
ϵ
), with L(·, ·) denoting a Laplacian distribution with two

parameters to be determined.

2.2. Graph Augmentation for Graph Contrastive Learning (GCL)

GCL [45, 43, 36, 50, 44] has emerged as a fine tool for learning high-quality
graph representations. Graph augmentation techniques contribute greatly to
the success of GCL, playing a critical role in the GCL process, and many re-
searchers have investigated the implementation of such techniques. GraphCL
[45] is one of the most impactful works in the GCL research community, pro-
viding comprehensive and insightful analysis of various graph augmentation
operations. In practice, four basic graph augmentation methods and their
corresponding underlying priors can be identified, as summarized below:
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• Node Drooping. A small proportion of vertices can be deleted such
that the semantics of the modified graphs do not change.

• Edge Perturbation. Graphs usually exhibit semantic robustness
against limited-scale proximity variations.

• Attribute Masking. Graphs exhibit semantic robustness to a partial
loss of attributes on their nodes or edges or on the graphs themselves.

• Subgraph Sampling. Local subgraphs can hint at the entire seman-
tics of the original graph.

In summary, the intuitive purpose behind graph augmentation is to intro-
duce noise into a graph. The augmented graphs can subsequently be utilized
in GCL training procedures to help endow a model with the semantic ro-
bustness of the original graph. This intuition provides researchers with a
potentially feasible way to bridge graph-level privacy preservation and graph
augmentation, as well-designed graph augmentation techniques can satisfy
the requirements of a DP mechanism.

The graph augmentation methods mentioned above are randomly imple-
mented, achieving suboptimal performance for GCL in practice [50]. GCA
[50] is an improved version of GraphCL in which adaptive augmentations are
applied to achieve better performance. As an alternative to the aforemen-
tioned noise-based graph augmentations, other methods, such as MVGRL
[10] and DSGC [43], alleviate the semantic compromise via multiview con-
trastive learning instead of introducing noise for graph augmentation.

3. Methodology

Details of the proposed method are given in this section, which is sep-
arated into subsections addressing five topics: an overview of the method,
DP on graph edges, GCL with augmented graphs, the global parameter up-
date process, and a summary. The notation necessary for understanding the
proposed methodology is listed in Table 1 for reference.

3.1. Overview

An overview of the proposed FGCL method is illustrated in Fig. 2, which
also lists the five steps of the GCL process in a federated setting:
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Table 1: Table of Notation

Notation

G ≜ A set of multiple graphs

Gi ≜ The i-th graph, consisting of a node and an edge set

Vi ≜ The set of all nodes in the i-th graph

Ei ≜ The set of all edges in the i-th graph

Ai ≜ The adjacency matrix of the i-th graph

Xi ≜ The initial node features of the i-th graph

pi ≜ The total number of nodes in the i-th graph

q ≜ The dimensionality of the initial node features

∆f ≜ The sensitivity for DP

Y ≜ The noise introduced for privacy protection, which
is generated from a Laplacian distribution

L(a, b) ≜ A Laplacian distribution with a as the location pa-
rameter and b as the scale parameter

Gi,0, Gi,1 ≜ Two augmented views of the i-th graph

Ai,0,Ai,1 ≜ The adjacency matrices of two augmented views of
the i-th graph

Functions

f ≜ A query function on graph edges

M ≜ A privacy-aware query function on graph edges

g ≜ A graph encoder

p ≜ A classifier that predicts graph labels

(1) Download the global model. The initial parameters of the graph
encoder and the classifier are stored on the remote server. Clients must first
download these parameters from the cloud before performing local training.
(2) Introduce noise into the graph for DP. The Laplacian mechanism
is used to process each graph in the current training batch on every client
twice to introduce noise into the graph proximity, thereby generating two
augmented views of the original graph for GCL.
(3) Update the local model via training. Following the GCL training
protocols, the model parameters downloaded from the server are updated.
(4) Upload the updated parameters to the server. The clients involved
in the current training round upload their locally updated parameters to the
server for a global model update.
(5) FedAvg & update the global model. The server utilizes the FedAvg
algorithm [25] to aggregate the updated local parameters and update the
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... ...

1. Download global model
2. Introduce noises into graph for DP
3. Update local model via training
4. Upload updated parameters
5. FedAvg & update global model

Client 𝑐! Client 𝑐&$"

Figure 2: The federated graph contrastive learning (FGCL) workflow with multiple clients.

global parameters. Specifically, the server collects the uploaded parameter
updates and averages them to acquire the global updates.

Following the workflow above, we can train a global model on the server.
Steps (2) and (3) are introduced in Section 3.2 and Section 3.3, respectively,
and step (5) is discussed in Section 3.4.

3.2. DP on Graph Edges

Some research works have adopted DP to introduce noise into the node or
graph embeddings to protect privacy [19]. However, such strategies could be
problematic when the initial node features are lacking. Instead, researchers
must explore how to apply DP methods to graph structures (e.g., node pri-
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vacy and edge privacy [20]). Here, we convert graph data into tabular data
to enable the utilization of current DP methods, such as the Laplacian and
Gaussian mechanisms. Without loss of generality, we consider only the Lapla-
cian mechanism in this paper.

DP methods such as the Laplacian mechanism were originally designed
for application to tabular data [17]. The key to adapting such methods to
preserve graph structural privacy is to convert graph data into tabular data
and to define the concept of ‘adjacent graphs’ [18]. In our method, a pair
of node indices is treated as the key, and the connectivity between these
two nodes is treated as the corresponding value to form a tabular dataset
of key-value pairs. Regarding the definition of ‘adjacent graphs’, two given
graphs G1 = {V1, E1} and G2 = {V2, E2} are considered ‘adjacent’ if and only
if V1 = V2 and ||(E1 ∪ E2) − (E1 ∩ E2)|| = 1 [18]; an illustrative example is
shown in Fig. 1. Let f(∗) denote the query function on the tables generated
from two ‘adjacent graphs’. To defend against differential attacks, we must
introduce noise into the look-up results M(G) = f(G)+Y , where Y denotes
Laplacian random noise. Specifically, Y ∼ L(0, ∆f

ϵ
) satisfies (ϵ, 0)-differential

privacy, where ∆f = max{G1,G2} ||f(G1)− f(G2)|| = 1 is the sensitivity and
ϵ is the privacy budget [5].

From the perspective of the graph structure, introducing noise into the
entry values in the table generated from a graph is equivalent to perturbing
the proximity of the graph. Let A denote the adjacency matrix of graph G;
then, the perturbed adjacency matrix is

Â = A+ Y, (3)

where Y ∼ L(0, ∆f
ϵ
). Such privacy preservation results in a sacrifice in per-

formance due to the introduction of noise into the graph. However, the
process of introducing noise can be regarded as a type of graph augmen-
tation, which is categorized as edge perturbation. The underlying prior for
edge perturbation is semantic robustness against connectivity variations [45].
Given augmented views of the same graph, the aim of GCL is to maximize
the agreement between these views via a contrastive loss function, such as
InfoNCE [27], to force the graph encoder to acquire representations that are
invariant with respect to the graph augmentations [45]. GCL can help to im-
prove performance on various graph learning tasks, as empirically proven in
previous works [45, 29]. Therefore, we can leverage the advantages of GCL to
alleviate the performance drop incurred with privacy preservation. However,
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it is worth noting that the entries in the adjacency matrix of a graph are
binary and cannot take the decimal values that are derived from the original
entries by adding noise. Therefore, in practice, we convert the original graph
into a fully connected graph and store the protected proximity information
as edge weights instead of using the adjacency matrix.

3.3. GCL with Augmented Graphs

A performance drop in graph learning is unavoidable when noise is intro-
duced into a graph to perturb the graph structure [1]. However, various GCL
techniques [45, 43, 10, 36, 50, 29] have been developed that can facilitate the
learning of invariant representations and the identification of critical struc-
tural semantics for augmented graphs, supported by rigorous theoretical and
empirical analysis [45, 50]. Because the process of achieving graph-structural
DP introduced in the previous section satisfies the definition of graph aug-
mentation, we can utilize GCL to extract invariant representations from such
noise-augmented graphs in order to mitigate the performance drop caused by
the introduction of noise.

Client �

... ...

Structural

DP

Structural

DP

... ...

... ...

Positive Pair

Training Batch

Graph 
Encoder

Graph 
Encoder

... ... ... ...

�0

�1

��−1

�0,0 �0,1

�1,0 �1,1

Graph Embedding ℎ0,0

Graph Embedding ℎ0,1

Graph embeddings of
� negative samples

Maximizing Agreement

Minimizing Agreement

Negative Sample List

...

��−1,0 ��−1,1

Figure 3: An overview of GCL with augmented graphs on a single client, which consists
of six steps: 1). Training batch partitioning. 2). Applying DP to the graph edges. 3).
Maintaining a list to store negative samples. 4) Coupling of contrasting samples. 5) Graph
encoding. 6) Learning objectives.

We first consider the scenario of conducting GCL with augmented graphs
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on a single client. As shown in Fig. 3, the whole process can be roughly
broken down into six steps:
(1) Training batch partitioning. Each client possesses a local graph
dataset G = {G0, G1, ..., Gn}. It is unlikely that the local model can be
trained on all of the data simultaneously. In accordance with practical expe-
rience, we first need to determine the batch size m to be used in partitioning
the local dataset into training batches Gb ⊆ G, where ||Gb|| = m, at each
client. Moreover, in many GCL methods [45, 43, 29], having negative con-
trasting samples with which to formulate negative pairs is mandatory to
complete the GCL process. We can follow [45, 43] in sampling negative con-
trasting samples from the same training batch to which the positive sample
belongs. However, if the model on a local device is trained in a streaming
manner [16], meaning that m = 1, this method will no longer work. We
address this limitation in step (3).
(2) Applying DP to the graph edges. Laplacian random noise is in-
troduced in this step to perturb the graph proximity information to achieve
DP. This process can be regarded as graph augmentation from the perspec-
tive of GCL. Graph Gi in Gb has adjacency matrix Ai. We apply DP to
the adjacency matrix twice to obtain two augmented views of the original
graph, Gi,0 and Gi,1. The two augmented graphs have adjacency matrices
Ai,0 = A + Y0 and Ai,1 = A + Y1, respectively, where Y0 ∼ L(0, ∆f

ϵ0
) and

Y1 ∼ L(0, ∆f
ϵ1
). Note that the privacy budgets used to produce these two dif-

ferent augmented views could be different. Intuitively, GCL could potentially
benefit more from maximizing the agreement between two more distinguish-
able views (e.g., produced with different privacy budgets). We will examine
this intuition through comprehensive experiments.
(3) Maintaining a list to store negative samples. To address the lim-
itation of traditional methods when m = 1, as mentioned previously, we
propose maintaining a list of a fixed size in which to store negative samples.
Specifically, at the beginning of the training process, we initialize a list whose
size is N . Then, we select the last k instances, where k << N , in the graph
dataset and insert them into the list. These k instances will serve as the
negative samples for the target graph Gt in the first round of training. Once
a training round has finished, two perturbed views of the target graph will
have been generated, namely, Gt,0 and Gt,1, and one of them will be inserted
into the list. The noise applied to both views follows the same distribution,
i.e., a Laplacian distribution. Theoretically, the edge weight matrices of both
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views should be the same. Therefore, either one of them can be inserted into
the list. Once the number of elements in the list would be greater than N ,
the oldest element will be discarded. In all subsequent training rounds, all
negative samples will be sampled from this list. Here, we specify the rea-
son for adopting such a strategy. The current research literature describes
many ways to acquire negative samples. For example, GCC [29] samples
negative instances from another dataset, CGC [44] adaptively generates neg-
ative instances via a counterfactual mechanism, and GraphCL [45] samples
negative instances from the training batch. However, the first two methods
do not work in our setting. Sampling negative instances from other datasets
is infeasible because the clients or servers in an FL system cannot arbitrar-
ily access others. Generating negative samples locally could be problematic
because most clients (e.g., smartphones and tablets) have limited computa-
tional resources. Therefore, the best way to acquire negative samples is by
sampling them from the training batch to which the target belongs, following
the proposed protocols in GraphCL [45].
(4) Coupling of contrasting samples. Although some details of the ac-
quisition of negative samples and positive samples have been introduced in
the previous two steps, we give a formal description of the coupling of con-
trasting samples here. Given a target graph Gi ∈ Gb, we apply DP to Gi

to obtain two augmented views: Gi,0 and Gi,1. Then, we couple these two
views {Gi,0, Gi,1} as a positive pair between which the agreement will be
maximized. For negative samples, we follow the settings adopted in [45, 43].
Specifically, we sample k negative graph instances {Gn

0 , G
n
1 , ..., G

n
k−1} ⊆ Gb,

which should have different labels from that of the target graph. The sam-
pled negative instances may be duplicated if the number of graphs whose
labels are different from that of the target graph is less than k. One of the
augmented views of each negative sample will be coupled with one of the
augmented views of the target graph. Thus, without loss of generality, we
form a set of negative pairs {{Gn

0,1, Gi,1}, {Gn
1,1, Gi,1}, ..., {Gn

k−1,1, Gi,1}}. The
agreement between each negative pair will be minimized. Note that Gi,0 and
Gi,1 are two augmented views of the same graph generated by the same DP
mechanism; therefore, eitherGi,0 orGi,1 can be equivalently used to construct
the negative pair set.
(5) Graph encoding. After obtaining a series of graphs, the next step is
to encode these graphs to acquire high-quality graph embeddings. Various
graph encoders have been proposed, such as GNN models. In this paper,
we select three representative GNN models for study: GCN [21], GAT [35],
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Algorithm 1: FGCL algorithm

Input: Parameters of the global model, θt;
Training set for local client i, Gi = {G0, G1, · · · , Gn};
Graph encoder, f(·, ·);
Readout function, READOUT (·);
Similarity score function, s(·, ·);
Prediction function, p(·);
Temperature hyperparameter, τ ;
Weight control hyperparameter, γ;
The number of clients involved in a training round, c;
The total number of clients, M .
Output: The updated global model.

1 Client:
2 Download the global model ;
3 for each client i ∈ {0, 1, · · · , i, · · · ,M − 1} do
4 Update the local model : θi ← θt;
5 for Gj ∈ Gi = {G0, G1, · · · , Gn} do
6 Apply DP on graph edges to obtain two perturbed views of Gj:

Gj,0, Gj,1;
7 Generate node embeddings :

Hj,0 = g(Aj,0,Xj),Hj,1 = g(Aj,1,Xj); // A is the

adjacency matrix, and X is the feature matrix.

8 Generate graph embeddings : hj,0 =READOUT
(Hj,0), hj,1 =READOUT (Hj,1);

9 Contrastive learning objective:

Lc = − 1
n

∑n−1
i=0 log es(hi,0,hi,1)/τ

es(hi,0,hi,1)/τ+
∑k−1

t=0 es(h
n
t ,hi,1)/τ

;

10 Classification objective:

Le =
1
2·n

∑n−1
i=0 (c(p(hj,0), labelsi) + c(p(hi,1), labelsi));

11 Overall training objective: L = γ · Lc + Le

12 Backpropagate to update local parameters : θi ← θt+1
i ;

13 end

14 end
15 Server:

16 Update the global model: θt+1 = c
M

∑
θt+1
i + M−c

M

∑
θt;

17 return θt+1
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and GraphSAGE [9]. Let g(·, ·) denote the graph encoder, let Ai ∈ Rpi×pi

denote the proximity matrix of graph Gi, and let Xi ∈ Rpi×q denote the
node feature matrix of graph Gi, where pi is the number of nodes in Gi and
q denotes the dimensionality of the initial node features. We can update the
node embeddings by feeding the adjacency matrix and initial feature matrix
into the graph encoder:

Hi = g(Ai,Xi) ∈ Rpi×h, (4)

where h denotes the hidden dimension. Then, a readout function will be
applied to summarize the node embeddings to obtain the graph embedding:

hi = READOUT (Hi) ∈ R1×h. (5)

There are many choices for the readout function, and the chosen function
could vary among different downstream tasks. To obtain the embeddings of
selected positive pairs and negative pairs, we apply graph encoding to these
graphs to obtain positive embedding pairs {hi,0, hi,1} and negative embedding
pairs {{hn

0,1, hi,1}, {hn
1,1, hi,1}, ..., {hn

k−1,1, hi,1}}.
(6) Learning objectives. The objective of GCL can be summarized as
maximizing the agreement between positive pairs and minimizing the agree-
ment between negative pairs. We choose InfoNCE [27], which is widely used
in many works [29, 43], to serve as the objective function for GCL:

Lc = −
1

n

n−1∑
i=0

log
es(hi,0,hi,1)/τ

es(hi,0,hi,1)/τ +
∑k−1

t=0 e
s(hn

t ,hi,1)/τ
, (6)

where s(·, ·) is a function measuring the similarity of two embeddings, such
as the cosine similarity, and τ serves as the temperature hyperparameter to
adjust the contrastive loss. Moreover, for scenarios in which the training data
have labels, we can adopt the cross-entropy function c(·, ·) to introduce su-
pervision signals into the training process. First, however, we need a classifier
p(·) to predict labels in accordance with the obtained graph embeddings:

resi,0 = p(hi,0), (7)

resi,1 = p(hi,1). (8)

Then, we can apply the cross-entropy function:

Le =
1

2 · n

n−1∑
i=0

(c(resi,0, labelsi) + c(resi,1, labelsi)). (9)
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For client c and training batch Gb, we have the following training objective:

L = γ · Lc + Le, (10)

where γ is a hyperparameter that controls the weight of the contrastive learn-
ing loss in the overall objective.

Each client in the proposed FL system follows the same training protocol
described above to conduct GCL locally. By leveraging the advantages of
GCL, we expect to distil critical structural semantics from the augmented
graphs in order to obtain graph representations that will remain invariant
after the introduction of noise, thereby acquiring high-quality graph embed-
dings for the downstream task.

3.4. Global Parameter Update

When the training phase has finished on each client, the updated local
parameters will be uploaded to the remote server. Then, the remote server
will execute an FL algorithm to aggregate these local updates and update
the global model. For simplicity, we consider the most widely used algorithm
for this purpose, FedAvg [25], in this paper.

Specifically, the server collects the uploaded parameter updates and av-
erages them to acquire the global updates. Let θt+1 and θt denote the global
parameters at times t+1 and t, respectively, and let θt+1

i denote the updated
parameters of the local model stored on client ci. Suppose that there are M
clients in total and that c clients will be sampled during this update, denoted
by the set Sc, to participate in training in each round. Thus, the process of
FedAvg can be formulated as follows:

θt+1 =
c

M

∑
ci∈Sc

θt+1
i +

M − c

M

∑
ci ̸∈Sc

θt (11)

3.5. Summary

After the whole training process is completed, the trained model can
be used to conduct inference. Note that there is no difference between the
training and inference processes. Moreover, we summarize the whole training
procedure in Algorithm 1 to better illustrate the proposed methodology.

16



Table 2: Definitions of the hyperparameters

Hyperparameters

h ≜ The hidden dimension size.

m ≜ The size of a training batch.

N ≜ The size of the negative sample stack.

k ≜ The number of negative samples used in each GCL
training round.

ϵ ≜ The privacy budget.

γ ≜ The hyperparameter that controls the weight of GCL
in the overall training objective.

τ ≜ The temperature parameter in the contrastive learn-
ing objective.

4. Experiments

Detailed experimental settings are listed for reproducibility at the begin-
ning of this section, followed by an introduction to the datasets and base
models we adopted in the experiments. Then, we report comprehensive ex-
periments and give the corresponding analysis, providing a detailed view of
the proposed FGCL method.

4.1. Experimental Settings

The proposed FGCL method focuses on federated graph learning. To
implement the proposed method, a widely used toolkit named FedGraphNN
3 is adopted. It provides various APIs and exemplars to help build federated
graph learning models quickly. FGCL shares the same training protocols
as FedGraphNN as well as some common hyperparameters, including the
hidden dimension size, the number of GNN layers, and the learning rate.
Notably, only the graph classification task is used for measurement in our
experiments. The detailed settings can be found in [13, 11].

Nevertheless, some hyperparameters are unique to the GCL module and
therefore need to be specified for reproducibility. The definitions and values
of these hyperparameters can be found in Table 2. Please refer to the source
code4 for more details.

3https://github.com/FedML-AI/FedGraphNN
4https://www.dropbox.com/sh/ql9m1d6lltygpgl/AADwD3VtTE_9S2cmypa7wR34a?
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4.2. Datasets and Baselines

In this subsection, we give a brief introduction to the datasets and base-
lines used in this work.

4.2.1. Datasets

We chose several widely used and well-known graph datasets to conduct
our experiments, as follows:

• SIDER 5 [22] contains information about medicines and their observed
adverse drug reactions. This information includes drug classification.

• BACE [34] provides qualitative binding results (binary labels) for a
set of inhibitors of human beta-secretase 1.

• ClinTox [7] compares drugs approved by the FDA with drugs that
have failed clinical trials for toxicity reasons. It assigns a binary label
to each drug molecule to indicate whether it exhibited toxicity.

• BBBP [33] is designed for the modeling and prediction of barrier
permeability. It allocates binary labels to drug molecules to indicate
whether they are able to penetrate the blood–brain barrier.

• Tox21 6 contains graphs of chemical compounds. Each compound has
12 labels to reflect outcomes in 12 different toxicological experiments.

The statistics of the datasets mentioned are summarized in Table 3.

4.2.2. Baselines

Since the performance of federated graph learning may vary with different
graph encoders, we adopted several widely used GNN models to serve as
graph encoders to comprehensively examine the proposed method. Moreover,
we leveraged the advantages of the toolkit named PyTorch Geometric 7 to
efficiently implement high-quality GNN models.

Note that as mentioned in Section 3.2, the protected proximity informa-
tion is stored as edge weights. Hence, we selected only GNNs in PyTorch
Geometric that are capable of handling edge weights, as follows:

dl=0
5http://sideeffects.embl.de/
6https://tripod.nih.gov/tox21/challenge/
7https://www.pyg.org/
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Table 3: Statistics of the datasets

Dataset # Graphs Avg. # Nodes Avg. # Edges Avg. Degree # Classes

SIDER 1427 33.64 35.36 2.10 27

BACE 1513 34.12 36.89 2.16 2

ClinTox 1478 26.13 27.86 2.13 2

BBBP 2039 24.05 25.94 2.16 2

Tox21 7831 18.51 25.94 2.80 12

• GCN [21] is one of the first proposed GNN models, implementing a
first-order approximation of spectral graph convolutions.

• kGNNs [26] considers higher-order graph structures at multiple scales,
thus overcoming the shortcomings of conventional GNNs.

• TAG [3] is a novel graph convolutional network defined in the vertex
domain, thereby alleviating the computational complexity of spectral
graph convolutional neural networks.

• LGCN [14] is a simplified and lightweight version of GCN that includes
only the most essential components.

4.3. Experimental Results

In this subsection, we present the experimental results, and a detailed and
comprehensive analysis of the results is also given to illustrate the properties
of the proposed method and justify FGCL’s effectiveness.

4.3.1. How much performance degradation does graph-structural DP cause
in federated graph learning methods?

Each base model is represented by three rows in Table 4, which give
the experimental results in centralized and federated settings, in federated
settings with DP, and in the proposed FGCL settings. Here, we first examine
the first two rows in this section.

First, we notice that the centralized setting outperforms the federated
setting on all datasets for any base model. This phenomenon has been verified
in many research works [13, 11, 38]. The reason is that the federated learning
protocol distributes the training data to different devices and updates the
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Table 4: Results of comparative experiments (ROC-AUC).

Base Models Settings
Datasets

SIDER BACE ClinTox BBBP Tox21

GCN

Centralized 0.6637 0.8154 0.9227 0.8214 0.7990

Federated 0.6055 0.6373 0.8309 0.6576 0.5338

Fed+Noise / 100 0.6050 0.6162 0.8003 0.6632 0.5317

Fed+Noise / 10 0.5884 0.6245 0.7598 0.6577 0.5303

Fed+Noise / 1 0.5636 0.6246 0.7061 0.6185 0.5327

Fed+Noise / 0.1 0.5374 0.6666 0.7091 0.6036 0.5323

FGCL+Noise / 100 0.6285 (+3.88%) 0.6697 (+8.68%) 0.6740 (-15.78%) 0.7035 (+6.08%) 0.6675 (+25.54%)

FGCL+Noise / 10 0.6334 (+7.65%) 0.6633 (+6.21%) 0.6999 (-7.88%) 0.6915 (+5.14%) 0.6697 (+24.17%)

FGCL+Noise / 1 0.6062 (+7.56%) 0.6665 (+6.71%) 0.7917 (+12.12%) 0.6980 (+12.85%) 0.6470 (+21.47%)

FGCL+Noise / 0.1 0.5549 (+3.26%) 0.6858 (+2.88%) 0.8378 (+18.15%) 0.7044 (+16.70%) 0.5961 (+11.99%)

kGNNs

Centralized 0.6785 0.8912 0.9277 0.8541 0.7687

Federated 0.6033 0.6131 0.8787 0.6371 0.5310

Fed+Noise / 100 0.6035 0.6296 0.8108 0.6526 0.5499

Fed+Noise / 10 0.5817 0.647 0.7502 0.6097 0.5349

Fed+Noise / 1 0.5663 0.6206 0.8160 0.5906 0.5380

Fed+Noise / 0.1 0.5345 0.6291 0.7421 0.5920 0.5334

FGCL+Noise / 100 0.6140 (+1.74%) 0.6826 (+8.42%) 0.7037 (-13.21%) 0.7314 (+12.07%) 0.6720 (+22.20%)

FGCL+Noise / 10 0.6223 (+6.98%) 0.6803 (5.15%) 0.7034 (-6.24%) 0.7264 (+19.14%) 0.6615 (+23.67%)

FGCL+Noise / 1 0.6025 (+6.39%) 0.6789 (+9.39%) 0.7093 (-13.01%) 0.6817 (+15.42%) 0.6535 (+21.47%)

FGCL+Noise / 0.1 0.5287 (-1.09%) 0.6433 (+2.26%) 0.8433 (+17.86%) 0.6356 (+7.36%) 0.6352 (+7.36%)

TAG

Centralized 0.6276 0.7397 0.9392 0.7642 0.6052

Federated 0.5552 0.6286 0.8865 0.6535 0.5360

Fed+Noise / 100 0.5509 0.6539 0.8812 0.6208 0.5335

Fed+Noise / 10 0.5482 0.6324 0.7529 0.5808 0.5416

Fed+Noise / 1 0.5543 0.6297 0.7915 0.6370 0.5405

Fed+Noise / 0.1 0.5551 0.5839 0.7700 0.6173 0.5253

FGCL+Noise / 100 0.6174 (+12.07%) 0.7091 (+8.44%) 0.9034 (+2.52%) 0.7005 (+12.84%) 0.5592 (+4.82%)

FGCL+Noise / 10 0.6369 (+16.18%) 0.6744 (+6.64%) 0.7923 (+5.23%) 0.7044 (+21.28%) 0.5463 (+0.87%)

FGCL+Noise / 1 0.5619 (+1.37%) 0.6977 (+10.80%) 0.7387 (-6.67%) 0.6755 (+6.04%) 0.5342 (-1.17%)

FGCL+Noise / 0.1 0.5721 (+3.06%) 0.6720 (+15.09%) 0.5978 (-22.36%) 0.6726 (+8.96%) 0.5359 (+2.02%)

LGCN

Centralized 0.6866 0.8385 0.9269 0.7829 0.7734

Federated 0.5933 0.6741 0.8098 0.6930 0.5379

Fed+Noise / 100 0.5916 0.6863 0.7785 0.6632 0.5350

Fed+Noise / 10 0.5942 0.6619 0.6882 0.6832 0.5324

Fed+Noise / 1 0.5747 0.6157 0.7938 0.5826 0.5358

Fed+Noise / 0.1 0.5610 0.5952 0.6719 0.6017 0.5385

FGCL+Noise / 100 0.6331 (+7.01%) 0.6898 (+0.51%) 0.8716 (+11.96%) 0.7229 (+9.00%) 0.6324 (+18.21%)

FGCL+Noise / 10 0.6335 (+10.23%) 0.7093 (+7.16%) 0.7291 (+5.94%) 0.7138 (+4.48%) 0.6396 (+20.14%)

FGCL+Noise / 1 0.6016 (+4.68%) 0.6870 (+11.58%) 0.8027 (+1.12%) 0.7450 (27.88%) 0.6474 (+20.22%)

FGCL+Noise / 0.1 0.5678 (+1.21%) 0.6826 (+14.68%) 0.7882 (+17.31%) 0.6547 (+8.81%) 0.5823 (+8.13%)
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global model based on the gradients or parameters passed back from the
local devices, which makes the model training more biased.

Next, we consider the results of introducing noise generated from a Lapla-
cian distribution to achieve DP on the graph edges. Specifically, we applied
privacy budgets of {0.1, 1, 10, 100} to generate noise via the DP mechanism.
The corresponding results are shown in the second row. In most cases, the
ROC-AUC scores in a federated setting with DP privacy preservation are
lower than those in the pure federated setting. It is reasonable that the
introduced noise protects privacy, but it simultaneously undermines the se-
mantics in the graph, resulting in a performance decrease. Moreover, differ-
ent privacy budgets are tested in these experiments. Theoretically, a greater
privacy budget means more minor noise, indicating that a federated setting
with a greater privacy budget should perform better than a federated set-
ting with a lesser privacy budget. However, the experimental results do not
strictly follow this pattern. This is because the noise is randomly generated.
Consequently, this pattern is not expected to manifest until sufficient rounds
of experiments are completed.

In summary, FL addresses some of the limitations of centralized train-
ing protocols, but it sacrifices performance. Moreover, introducing privacy-
preserving mechanisms such as DP into FL further decreases performance.
Hence, it is critical for the research community to explore solutions to alle-
viate this performance drop.

4.3.2. Can GCL help alleviate the performance sacrifice caused by graph-
structural DP?

As mentioned in the previous subsection, introducing noise via the DP
mechanism to protect privacy will decrease the performance of federated
graph learning. In this paper, we propose leveraging the advantages of GCL
to achieve semantic robustness against noise by contrasting perturbed graph
views. The experimental results of the proposed method are also listed in
Table 4, in the third row for each base model. Overall, although the pro-
posed FGCL setting is not competitive compared to the centralized setting,
it outperforms the federated setting in some cases and is superior to the
federated setting with DP privacy preservation in most cases. The improve-
ment is generally between 3% and 15%, but we notice that in some cases,
either there is no improvement or the improvement is exceptionally high,
sometimes more than 20%. The cases of nonimprovement mainly occur in
the experiments on the ClinTox dataset. We observe that the performances
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on the ClinTox dataset in the centralized setting, the federated setting, and
the federated setting with DP noise are very high, much better than those
on other datasets. Therefore, the room for improvement in performance on
this dataset is less than that on the others. The findings suggest that our
proposed FGCL method may not work well when the room for improvement
is limited. Regarding the cases of exceptionally high improvement, these
appear in the experimental results on the Tox21 dataset. We note that on
Tox21, the performance decrease after implementing the federated setting
(with or without the DP mechanism) is the most severe, at approximately
-35%. This significant performance gap provides considerable room for im-
provement. Accordingly, the findings indicate that FGCL is more powerful
when the performance drops dramatically with the implementation of feder-
ated learning and the DP mechanism. Moreover, a particular case is worthy
of note: the base model TAG. The improvement achieved through FGCL
with TAG as the base model on the Tox21 dataset is minor. This is because
of the nature of TAG. In the centralized setting, TAG has worse performance
than the others, indicating that TAG is not as delicate as the others. We also
find that the overall performance of FGCL with TAG as the base model is
the worst among all base models, as will be illustrated in the next subsection.
Hence, we conclude that choosing an appropriate base model is one of the
keys to fully leveraging the advantages of the proposed FGCL method.

4.3.3. Study of the hyperparameters for FGCL

Three hyperparameter experiments are reported in this section to com-
prehensively reveal the detailed characteristics and properties of the proposed
FGCL method. The first hyperparameter investigated is k, the number of
negative samples in the GCL module. Negative samples have been verified
to play a critical role in the model training process [30]. Here, we fix all hy-
perparameters other than k to investigate its impact. The candidate values
of k are [1, 5, 10, 20, 30, 40, 50], and the experimental results are illustrated in
Figure 4. The first observation is that selecting a suitable number of negative
samples can further enhance the performance of FGCL and achieve greater
improvement. However, there is no obvious pattern that would indicate
how to select k, suggesting that this task is highly task- or dataset-specific.
For instance, the BACE dataset requires FGCL to have a relatively large
k value for better performance, but a relatively small k value is sufficient
for the Tox21 dataset. In summary, the hyperparameter k is highly task-
or dataset-specific and should be carefully selected, and for computational
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Figure 4: The number of negative samples is selected from the set [1, 5, 10, 20, 30, 40,
50]. The figures above show the performance of FGCL in combination with the different
base models on all datasets with different numbers of negative samples.

efficiency, selecting a smaller k when possible would be better.
The second hyperparameter experiment concerns γ, the parameter con-

trolling the weight of the contrastive learning objective. The overall training
objective of FGCL consists of two components: the graph classification loss
and the contrastive learning loss. Between the two, graph classification is the
primary task. γ plays the role of balancing these two objectives. We select
the value of γ from the set [0.001, 0.01, 0.1, 1], and the corresponding exper-
imental results are shown in Figure 5. According to the results, the impact
of γ on the performance is not as significant as that of k. Nevertheless, we
observe that FGCL with γ < 1 can achieve slightly higher ROC-AUC scores.
When γ ≥ 1, the contrastive learning objective undermines the importance
of the primary graph classification task in the overall objective, resulting in
suboptimal performance on this task. Therefore, we recommend adopting a
relatively small γ value to achieve better results in practice.

The third experiment concerns the privacy budget ϵ, which controls how
much privacy leakage can be tolerated. In other words, the privacy budget
ϵ determines how much noise will be introduced. Note that to obtain a pair
of positive contrasting views, we need to augment the original graph twice,
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Figure 5: The value of γ is selected from the value set [0.001, 0.01, 0.1, 1]. The figures
show the performance of FGCL in combination with different base models on all datasets
with different γ values.

with privacy budgets ϵ0 and ϵ1. In this experiment, we focus on studying
the performance of FGCL with ϵ0 ̸= ϵ1 instead of ϵ0 = ϵ1. The values of the
privacy budget are selected from [0.1, 1, 10, 100]. Therefore, there are 10 pos-
sible combinations on each dataset for a selected base model. Figure 6 shows
the experimental results. We notice that the overall performances are similar
to those in Table 4. However, careful fine-tuning of this hyperparameter can
yield better outcomes than the results listed in Table 4, even on the ClinTox
dataset. Nevertheless, there is no regular pattern indicating how to choose
an optimal combination of ϵ0 and ϵ1. Hence, this hyperparameter should be
selected in accordance with the privacy protection requirements.

5. Related Work

In this section, we summarize the research progress on two topics related
to this paper: graph contrastive learning and federated graph learning.

5.1. Graph Contrastive Learning

Graph contrastive learning (GCL) has emerged as a delicate tool for graph
representation learning. DGI [36], one of the first research works to intro-
duce the concept of contrastive learning [8] into the graph learning domain,
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Figure 6: We select different privacy budgets for the generation of contrasting pairs to
investigate the extent to which the performance decrease caused by the DP mechanism
can be alleviated. The figures above illustrate the improvements achieved with different
combinations of privacy budgets. 25



adopts mutual information maximization as the learning objective to con-
duct contrastive learning between a graph and a corrupted instance thereof.
Subsequently, other researchers have borrowed the same idea with different
contrasting samples to conduct contrastive learning. For example, GCC [29]
selects different graph instances from different datasets to construct con-
trasting pairs, GraphCL uses graph augmentation methods for this purpose,
and MVGRL [10] and DSGC [43] generate multiple views to serve as the
contrasting pairs. The success of GCL can be seen from its broad scope of
application in real-world scenarios, including recommender systems [24] like
[42, 46] and smart medicine or health service [23, 15].

5.2. Federated Graph Learning

Federated graph learning (FGL) is a cross-disciplinary field lying at the
intersection of graph neural networks (GNNs) and federated learning (FL).
It leverages the advantages of FL to address various limitations existing in
the graph learning domain and has achieve great success in many scenar-
ios. A representative application case of FGL is molecular learning [11], in
which FGL can help diverse institutions efficiently collaborate to train mod-
els based on the small-molecule graphs stored at each institution without
transferring their classified data to a centralized server [12, 40]. Moreover,
FGL is also applied in recommender systems [38, 39], social network anal-
ysis [47], and the Internet of Things [49]. Various toolkits are available to
help researchers quickly build their own FGL models, such as TensorFlow
Federated8 and PySyft [31]. However, these toolkits do not provide graph
datasets, benchmarks, or high-level APIs for implementing FGL. He et al.
[13, 11] developed an FGL-focused framework named FedGraphNN, which is
used in this paper. This framework provides comprehensive and high-quality
graph datasets, convenient and high-level APIs, and tailored graph learning
settings to facilitate research regarding FGL.

6. Conclusion

This paper proposes a novel federated graph contrastive learning method
named FGCL, which is the first work on privacy-aware graph contrastive
learning in federated scenarios. Inspired by our observation of the similar-
ity between differential privacy on graph edges and graph augmentation in

8https://www.tensorFlow.org/federated
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graph contrastive learning, we innovatively adopt graph contrastive learning
methods to help a model achieve robustness against the noise introduced by
the DP mechanism. According to comprehensive experimental results, the
proposed FGCL method alleviates the performance decrease caused by the
noise introduced by the DP mechanism.
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