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Providing End-User Facilities to Simplify Ontology-

Driven Web Application Authoring  
 

Abstract 

Generally speaking, emerging web-based technologies are mostly intended for 

professional developers. They pay poor attention to users who have no programming 

abilities but need to customize software applications. At some point, such needs force 

end-users to act as designers in various aspects of software authoring and development. 

Every day, more new computing-related professionals attempt to create and modify 

existing applications in order to customize web-based artifacts that will help them carry 

out their daily tasks. In general they are domain experts rather than skilled software 

designers, and new authoring mechanisms are needed in order that they can accomplish 

their tasks properly. The work we present is an effort to supply end-users with easy 

mechanisms for authoring web-based applications. To complement this effort, we 

present a user study showing that it is possible to carry out a trade-off between 

expressiveness and ease of use in order to provide end-users with authoring facilities.  

 

1. Introduction 

Human-computer interaction research continues to garner a great deal of interest from 

both academia and industry. Computer applications today are sophisticated in function, 

with many users. This provides strong motivation for improving user interface designs 

as well as for making explicit the ground-rules for how people should interact with 

computers in order to accomplish their daily tasks easily. In fact, the current trend in 

computing shows a shift from machine-centered automation to user-centered services 

and tools. Therefore the traditional approach to computing must change from an 

emphasis on what computers can do to what people can do with computers 

(Shneiderman, 2003). 

Modern computing advocates the idea of people customizing, configuring and also 

creating software artifacts in order to accomplish their daily tasks. However, 

professionals such as engineers, scientists and freelances may have concrete domain 

skills but lack programming abilities (Macías and Castells, 2004). In this regard, further 

support is needed in order to provide such non-programmer professionals with easy-to-

use mechanisms for customizing software artifacts, avoiding the need for them to learn 

programming languages and specifications that are usually deemed to be irrelevant for 

their daily work activities. Programming languages must be flexible enough to deal with 

a wide range of problems; but with flexibility comes complexity, and the result is a 

learning curve that most users cannot be expected to afford (CACM Special Issue on 

End-User Development, 2004). Several researchers have sought to reduce the learning 

burden by creating design environments that do not require users to program per se; 

instead, they design by instructing the machine to learn from examples (Lieberman, 

2001) or by interacting with graphical micro-worlds representing real domains. 

It is estimated that over the next few years we will be moving from easy-to-use to easy-

to-develop interactive software systems. A study reports that today in the U.S. alone, 

there are 55 million end-user developers compared with 2.75 million professional 

software developers (Boehm et al., 1995). This suggests the idea of considering new 

design strategies that provide the end-user with a different role, one of self-directed 



 

 

designer rather than simple computer operator. This idea has motivated new interaction 

paradigms to appear. 

Probably the most important approach is End-User Development (EUD) (EUD-NET; 

Lieberman et al., 2006). This paradigm is focused on a user-centered approach. EUD 

can be thought of as a set of activities and techniques that allow people (including non-

professional developers) to create or modify a software artifact (Klann, 2003). EUD is 

targeted at meeting the needs previously commented upon, enabling end-users to create 

their own software artifacts with minimum effort. Do-it-yourself computing is probably 

one way of regarding this flourishing field (CACM Special Issue on End-User 

Development, 2004).  

Certainly, the World Wide Web can be considered as first and foremost a software 

platform where end-users carry out authoring tasks every day. Large amounts of web 

content and functionality are accessed today through web applications. Many companies 

have created their own web pages and provided users with new capabilities for 

customizing and configuring the way they work and acquire information. This is mostly 

due to the fact that the WWW has spread as a relevant information and distribution 

medium in the last ten years, allowing people to access their saving accounts, purchase 

goods, learn new things and, in general, interact with the world of shared information 

every day.  

Ways of authoring static web pages have been provided by existing commercial tools 

for many years. Such tools enable the user to make changes to web pages and upload 

them to web servers while avoiding having to deal with HTML-based languages. 

However, to provide the maximal functionality, most of today’s web applications are 

dynamic rather than static. It is estimated that 80% of web pages are dynamically 

generated by applications and services stored on web servers (Sahuguet and Azavant, 

2000). Authoring a dynamic web page is a rather complex task, since it requires 

programming skill. At present, most web pages built by end-users simply present 

information; the creation of interactive web sites or of web applications such as online 

forms, surveys and interactive programs still requires considerable skill in programming 

and web technology. 

Preliminary studies indicate that users’ web development activities are limited not 

because of a lack of interest but rather because of the difficulties inherent in interactive 

web development (Rode et al., 2006). There are commercial applications, including 

languages and frameworks such as XSL and JSP/ASP, that can greatly simplify the 

development and maintenance of dynamic web pages. However, such environments still 

require advanced technical knowledge, which domain experts, graphic designers or even 

average programmers may lack. Admittedly, these commercial tools help one to manage 

projects and they provide code-browsing and debugging facilities, but one still has to 

deal with the code finally. Additionally, users might want to customize only a particular 

part of a web application, having no need to deal with relatively complex programmer-

targeted development environments when carrying out simpler modifications. An 

interesting study by Rode and Rosson (2003) revealed that, although much progress has 

been made by commercial web development tools, most of the end-user tools that they 

reviewed did not lack functionality but rather ease of use. Rode and Rosson explored 

many different paths, including extensions to a popular web development tool 

(Macromedia Dreamweaver), that might offer web application features more suitable to 

end-users. Although tools such as Dreamweaver and FrontPage have substantial 

facilities for extending application programming interfaces (APIs), Rode and Rosson 

found the inflexibility in controlling the users’ workflow to be the main hindrance to 



 

 

adopting these approaches. Currently, none of the commercial tools that they reviewed 

would work without major problems for the informal web developer. Ideally, following 

the concept of the ‘gentle slope’ (MacLean et al., 1990), the skills required to 

implement advanced features should be proportionate to the complexity of the desired 

functionality. 

In general, no definitive solution has yet been proposed that provides end-users with 

easy mechanisms for authoring web-based applications dynamically generated by 

databases, web-based services and ontology-based servers. This problem is motivated 

by the difficulty of providing what-you-see-is-what-you-get (WYSIWYG) tools for the 

development of dynamic pages, since it is hard to describe procedural behavior visually. 

That is an inherent problem that is a particular concern with EUD, since authoring 

dynamic web pages can be thought of as creating and editing web-based software 

artifacts. 

In this paper we present an approach aimed at enabling end-users to author dynamically 

generated web-based pages. The approach consists of two tools intended to minimize 

the effort in authoring dynamic web pages: 

 DESK (Macías and Castells, 2003a, 2006) is an interactive authoring tool that 

allows the customization of dynamic page-generation procedures but does not 

require authors to have a priori tool-specific skills. 

 PEGASUS (Castells and Macías 2001, 2002) generates HTML pages from a 

structured domain model and an abstract presentation model. 

Our approach consists of combining Programming by Example (PBE) techniques 

(Lieberman, 2001; Cypher, 1993) with a bespoke ontology-based representation of 

knowledge. DESK acts as a client-side complement of the PEGASUS dynamic web-

page generation system. This solution attempts to smooth the gentle slope of complexity 

in software usage (Macías and Castells, 2004), decreasing general expressiveness by 

means of a WYSIWYG environment, in favor of increasing the ease of use.  

DESK faces the challenge of supporting the customization of page-generation 

procedures in an editing environment that looks like an HTML editor from the author’s 

point of view. The PEGASUS presentation model specifies which pieces of knowledge 

should be presented and how a certain unit of information from the domain model is 

presented to the user. Instead of using PEGASUS’s modeling language, authorized 

users can modify the internal presentation model by editing, in DESK, the HTML pages 

that PEGASUS generates. DESK follows the PBE approach of inferring changes that 

affect every class of knowledge from the user’s actions on the presentation of a specific 

unit. DESK widens the spectrum of authors who can participate in an otherwise abstract 

and complex model-based environment such as PEGASUS. Inversely, our work shows 

that PBE techniques can benefit from a knowledge-based approach, which provides 

models of the user interface and explicit domain semantics for the PBE component to 

reason about. Consequently, our system’s main goal is to help users to carry out the 

authoring task easily. Further, novice web users can benefit from using our system, 

since no programming languages are required and help is provided throughout the 

interaction in order to achieve modifications to web pages with minimum effort.  

Our system was originally created in 2001 and has been considerably improved since. 

Initially, the system was intended to deal with adaptive hypermedia courses, preserving 

the original adaptive nature of the project so far. Regarding that, we have created 

different adaptive courses, such as one on graph theory, and also other presentations on 



 

 

painters, an electronic shop and so forth. Our work was implemented using different 

technologies. We have mainly used Java as a coding language, but also some 

JavaScript, XML and JSP. We used parsing technologies such as JDOM for dealing 

with the XML code, and Apache Tomcat to implement the server part. 

The rest of this paper is organized as follows. Section 2 describes the PEGASUS 

mechanism as well as the ontology-based underlying models used in dynamic page 

generation. Section 3 presents DESK as well as the inference mechanisms used in 

authoring dynamic web pages generated by PEGASUS. Section 4 presents empirical 

results about DESK by means of an experiment carried out with users. Next, Section 5 

presents the results and the discussion. Section 6 outlines related work and, finally, 

Section 7 discusses conclusions.  

 

2. Ontology-driven specification in web interfaces 

A few years ago, the semantic web paradigm proposed new challenges for knowledge 

representation, web structure and automation. New XML-based languages were created 

to deal with semantic relationships and contents that are dynamically generated and 

represented in a web browser. We firmly believe in ontologies as a way to model 

different aspects of a user interface and to provide conceptual models by which complex 

relationships can be defined. Such conceptualizations can be used to codify high-level 

semantic paths for automatic web-based interface generation, further characterization 

and reverse-engineering purposes (Macías et al., 2006, Macías 2003). Our research 

experience is in using ontologies to specify knowledge for building data models 

(domain models) used together with application or presentation models. This has 

informed our approach towards specifying complex knowledge focused on the 

interface’s domain and presentation models, as well as working with XML-based 

languages that better fulfill our assumptions about knowledge distribution and sharing. 

More precisely, we work on combining ontologies with Model-Based User Interface 

(MBUI) techniques (Paternò, 2001, Puerta and Eisenstein, 1999), which emerged as a 

solution claiming to overcome several difficulties in automating the process of 

generating interfaces (e.g. redundancy, lack of encapsulation and reusability). The 

implicit idea behind MBUI is to split up the conceptual level of a user interface, which 

leads consequently to the explicit specification of different aspects of the interface itself, 

such as domain knowledge, presentation, dialog and behavior. 

PEGASUS (Presentation modelling Environment for the Generation of ontology-Aware 

context-Sensitive web User interfaceS) is a domain-independent system that helps to 

create a dynamic front-end for ontology-driven knowledge-based applications on the 

web (Castells and Macías, 2002). PEGASUS supports the definition of made-to-

measure ontologies for the description of domain knowledge (see Figure 1). This 

approach is based on MBUI mechanisms that ensure domain independence by 

separating concept and presentation, so that the system generates web pages on the fly 

by selecting domain objects and assembling them into HTML documents in response to 

a user’s requests for concrete knowledge units.  

(Figure 1) 
 

2.1. The domain model 

The domain model in PEGASUS comprises a semantic network of ontology class 

instances and relations. The domain ontology consists of a set of classes that best fit a 

specific application domain or that reflect the specific view of a particular author on the 



 

 

domain. In our approach, ontologies can be defined with a high degree of freedom, with 

very generic classes such as Catalog or Product, or more specific ones such as E-Mail 

Clients and Multimedia Tools. This knowledge is captured by defining attributes for 

classes, and relations between classes (Castells and Macías, 2001). 

Figure 2 shows an example of domain ontology containing classes such as those 

mentioned above. This ontology has been created using one of our authoring tools, 

PERSEUS, by which the domain models for different PEGASUS applications can be 

defined easily. PERSEUS (Presentation ontology buildER for cuStom lEarning sUpport 

Systems) (Macías and Castells, 2001) is an interactive, form-driven tool that was 

originally used for creating adaptive hypermedia e-learning systems with PEGASUS 

(Castells and Macías, 2001). The main goal of this tool was the automatic generation of 

the XML files containing the domain information that will be processed by PEGASUS. 

PERSEUS allows for custom domain-model designs, where the designer can specify the 

hierarchical structure of the ontology by creating different classes and relating them to 

one another by defining dependencies in terms of parent classes and semantic relations. 

In Figure 2, Product corresponds to the current class that is being edited. This class 

comes from a more abstract class called DomainObject and inherits attributes such 

as title and url, as well as relations such as Information. More specific 

attributes for that class have been defined, such as picture (of a product), date, 

size and so on. Furthermore, a new relation called BelongsTo has been defined. 

Relations are one of the most important features of the domain ontology. In our system, 

relations can be created for a concrete class by defining the type of the class that is 

related to the current one, activating the multivalued property that indicates whether 

the relation is one-to-many or not, and completing the title and the relation’s 

attributes when applicable. For instance, Catalog has a one-to-many relation with 

objects of class HigherCategory (i.e. E-Mail, Internet and so on), whereas 

Product has a one-to-many relation with objects of class LowerCategory (E-

Mail-Clients, E-Mail-Parsers and so on). 

(Figure 2) 
For example, assuming the domain ontology defined in Figure 2 for a software 

download site such as Tucows, including classes Product, Category, 

HigherCategory, LowerCategory, and Catalog, the following instances could 

be defined: 

<HigherCategory id="Internet"> 

  <subCategories> 

    <HigherCategory ref="Connectivity"/> 

    <HigherCategory ref="Communications"/> 

    <HigherCategory ref="E-Mail"/> 

    ... 

  </subCategories> 

</HigherCategory> 

<HigherCategory id="E-Mail"> 

  <subCategories> 

    <LowerCategory ref="E-Mail-Clients"/> 

    <LowerCategory ref="E-Mail-Parsers"/> 

    ... 

  </subCategories> 

</HigherCategory> 



 

 

<LowerCategory id="E-Mail-Clients"> 

  <products> 

    <Product ref="AgileMail_2.0"/> 

    <Product ref="AllegroMail_2.0.1"/> 

    ... 

  <products> 

</LowerCategory> 

<Product id="AllegroMail_2.0.1"    

         license="Shareware" price="39.95"> 

  <information> <AtomicFragment> 

      With AllegroMail, you can set up... 

  </AtomicFragment> </information> 

</Product> 

This code corresponds to the instances created by using PERSEUS in Figure 3. 

PERSEUS can generate the domain model of a PEGASUS presentation automatically. 

To be precise, the code above corresponds to PERSEUS’s output once the designer has 

generated the corresponding domain ontology. XML attributes such as license and 

price correspond to properties of a knowledge unit (of class Product), whereas 

elements such as subCategories and products are relations with other units (the 

ref attribute corresponds to the unit identifiers). As in Figure 2, Figure 3 shows 

information about the domain instances listed above. In particular, it depicts the 

information about AllegroMail_2.0.1, which is the instance that is being 

currently edited. This instance belongs to class Product, with attributes that have been 

instanced with concrete values such as the URL, the picture and the date of the product. 

Furthermore, relations such as BelongsTo have been filled in, creating one- to-many 

relations between Product and E-Mail-Clients. 

(Figure 3) 
For historical reasons, we are at present using our own XML extensions to represent the 

domain model, but we are planning to move to some of the currently available ontology 

definition standards such as RDF or OWL (Dean et al., 2002), with minor modifications 

to our system. 

 

2.2. The presentation model 

In contrast to other knowledge-based systems that generate pages automatically, such as 

Adaptive Hypermedia systems (Brusilovsky et al., 1998; Murray, 1998), PEGASUS 

provides extensive control over presentation design by using an explicit presentation 

model, separate from questions of content. The separation of content and presentation is 

achieved by defining a presentation template for each class of the ontology. Templates 

define those parts (attributes and relations) of a knowledge item that must be included in 

its presentation and in what order they are to appear, as well as their visual appearance 

and layout (see Figure 4).  

(Figure 4) 

In addition to domain objects, style can be managed in our approach by inserting 

standard JavaServer Pages (JSP) tags through which the designer can freely customize 

the layout of the page as well as the graphical properties of text and widgets, such as 

color, background, size, justification, font type and so on. This way, it is possible to 

write specifications such as the following: 



 

 

 <h2> <u> <%= Product.title %> </u> </h2> 

This means the title attribute of a product will be made visual by being underlined 

and in header2 style. This explicit separation enables graphical aspects and domain 

contents to be handled more naturally, splitting up design responsibilities depending on 

the designer’s task and/or background. Simpler templates can be elaborated by graphical 

designers, who need focus only on the presentation’s graphical aspects. Designers only 

have to take care to insert references to domain concepts (such as Product, 

CategoryofProduct and so on) into the presentation template. Therefore, content 

providers need only focus on the structure of the domain ontology in order to create the 

contents for such references. Finally, the system dynamically generates the objects 

instanced, using the template created previously.  

A template is defined by using an extension of HTML based on JSP that allows the 

insertion of control statements (between <% and %>) and Java expressions (between 

<%= and %>) in the HTML code. For instance, a template for class HigherCategory 

could be as follows:  

<% if (availableSpace > 5) { %>      1 

   <widget type="Table" columns="3"      2 

           dataflow="wrap">      3 

     <list> <%= subcategories %> </list>     4 

   </widget>      5 

<% } else { %>      6 

   <table>      7 

     <tr><td> <%= id %> </td></tr>      8 

     <tr><td> <%= subcategories %> </td></tr>    9 

   </table>      10 

<% } %>      11 

The template above specifies that, when there is enough space available (estimated on a 

scale from 0 to 10), a table should be generated in which a subcategory is presented in 

each cell, left to right and top to bottom (lines 2 to 5). Otherwise, a table of two rows 

and a single column is generated (lines 7 to 10) where the category id (line 8) and the 

list of subcategories (line 9) are displayed. In general, the amount of visualization space 

is estimated by means of user identification, Javascript code and HTTP protocol 

headers. We obtain updated information about user and platform which takes part of the 

user model itself. Internally, we have programmed a method that estimates (based on a 

fixed scale from 0 to 10 that depends on the platform used) the information capacity in 

onscreen of the current platform used (PDA, Desktop, etc.) for each user session. This 

way, the static attribute availableSpace is updated and used to evaluate and insert 

user and platform conditions into the JSP template. 

The expression <%= subcategories %> is a reference to the multi-valued relation 

subcategories of the HigherCategory being displayed. The relation points to a 

list of objects of type Category, which PEGASUS presents using the appropriate 

template recursively. The widget XML tag is a JSP custom tag used to provide a 

standard set of HTML widgets such as tables, input types (buttons, combo boxes, etc.) 

and selection lists. Each widget type has specific mechanisms for displaying domain-

model data structures, using different strategies to map complex relations between 

domain objects to display structures. 



 

 

The resulting page for the Internet category can be seen in Figure 5, where the outer 

table results from lines 2 to 5 of the template, and the inner tables correspond to lines 7 

to 10 applied to subcategories of Internet software. For the sake of brevity, a few details 

such as cell background colors and the tabbed bar have been omitted from the template 

code. However, readers can refer to references (Macías and Castells, 2003, 2001) to find 

out more detailed explanations about templates. 

Besides including templates, the PEGASUS presentation model enables the 

construction of presentation rules such as:  

<Rule> 

  <test condition="availableSpace <= 1 "/> 

  <presentation>  <%= this.asLink() %>   </presentation> 

</Rule> 

(Figure 5) 

In Figure 5, this rule controls the presentation of third-level subcategories, such as “E-

mail Clients”, as a link.  

Adaptivity is carried through by inserting conditions into the presentation model’s 

templates, into presentation rules, and into relations between domain objects. These 

conditions can test properties of the user model (overlay model and user profile), 

properties of the data, characteristics of the platform, and any other aspect that can 

influence presentation, such as task requirements, user’s goals, usage modes (e.g. 

exploration vs. selective search), etc.  

At run-time, the user interacts with the application through a web browser. Interaction 

with an application built with PEGASUS consists of navigating through the semantic 

network of domain objects. Each time the user moves to an object, PEGASUS responds 

by generating an HTML page (see Figure 6). In doing so, the system: 

i) resolves the user’s request by determining the actual object to move to; 

ii) locates the instance in the domain model; 

iii) updates the domain and user models; and 

iv) generates the HTML presentation, applying the pertinent rules and the 

template that corresponds to the object class. 

In the generated pages, links do not point to other pages but refer, explicitly or 

descriptively, to other domain objects. 

(Figure 6) 

From the PEGASUS point of view, the unit of interaction with the user is the HTTP 

request. User-model updates are carried out by taking into account only the information 

extracted from the client’s requests. Platform and user-interface characteristics are 

captured client-side through JavaScript code that the system inserts in the generated 

HTML pages, and the information is returned to the server as part of the HTTP request 

when the user clicks on links and buttons. This assumption greatly simplifies the system 

architecture and the integration with external tools and modules. On the other hand, it 

means that the system is not explicitly aware of user activity between two requests, and 

the presentation is not updated during that interval. A finer but far more complex and 

bandwidth-sensitive approach could be supported by generating Java user-interface 

components (applets) that interact with the user and communicate directly with the 

server to query and update the domain and user models. 



 

 

All in all, PEGASUS’s underlying models are flexible enough to represent interface 

information with a high degree of expressiveness. Designers incorporate such 

knowledge by writing it by hand with an ontology-based standard editing tool or by 

using one of our previous tools, such as PERSEUS. However, a designer wanting to 

customize or further change a presentation generated by PEGASUS would have to 

follow the reverse path from the generated web page to the underlying models, dealing 

with procedural information, the domain and presentation models of the applications, 

and figuring out correspondences and mappings from the domain ontology to the 

presentation objects. Obviously, this is a difficult challenge to face, since dealing with 

procedural, presentation and domain knowledge together is not an easy task even for 

advanced programmers. When procedural information needs to be considered, data-

driven design approaches such as PERSEUS are insufficient. Any solution proposed 

should be able to provide mechanisms to support customization by the end-user, where 

ease of use should be the primary concern.  

We conceived DESK as an end-user authoring tool for dealing easily with web 

customization. DESK provides automatic support for creating designs involving 

domain, presentation and procedural information under the same authoring 

environment. Therefore, the user does not need to get involved with the reverse path 

that the system follows automatically to carry out the required modifications. 

 

3. Providing end-users with authoring support 

Our approach focuses on the EUD paradigm to deploy ontology-based MBUI 

techniques that relieve users from having to deal with specification languages. To this 

end, it accepts a reduction in the expressiveness of the MBUI approach in order that 

users do not have to manipulate declarative specifications for the interface. For a 

successful trade-off between expressiveness and complexity, the system must provide a 

low-level abstract design environment, such as a WYSIWYG interface that provides 

end-users with a real representation of the interface. Such environments help users to 

easily manipulate the interface’s objects without using complex specification languages, 

and provide a realistic depiction at every step of what the user is attempting to do. 

However, creating an application from scratch through a WYSIWYG environment is 

not easy, since a great deal of implicit information from the underlying application 

models is often required (Macías and Castells, 2003b). 

With DESK, the user can modify the design of dynamic web documents by editing the 

page that PEGASUS generates, instead of by directly manipulating its modeling 

language. DESK identifies domain values, model fragments, and presentation constructs 

in the HTML code, from which it infers meaningful transformations. The user only 

knows about the web document and need not be aware of the underlying models and 

languages. 

Figure 7 shows how DESK works. DESK has both client-side and server-side 

components. The client-side component looks like a conventional HTML web-based 

authoring tool, where the user navigates through dynamic web pages generated by 

PEGASUS (1) and edits those (2) in a WYSIWYG environment. The tool monitors the 

user’s activity and generates a monitoring model containing user actions along with its 

context for characterizing each action conveniently. Then this information is sent to 

DESK’s server-side component(3), which processes the monitoring model, infers 

changes (4), generates suitable feedback and sends it back to the user (5). Finally, 

DESK applies the inferred changes to the PEGASUS’s underlying models (6). Affected 



 

 

web pages will be dynamically regenerated and will appear suitably modified whenever 

the user navigates through them. 

(Figure 7) 

 

3.1. Characterization of user intent 

The DESK authoring tool uses a set of heuristics consisting of advanced ontology-based 

searching algorithms for obtaining both syntactic and semantic information in order to 

infer user intent. Syntactic information is obtained by the client-side component by 

means of low-level heuristics (HL), whereas the server-side component obtains semantic 

information by applying high-level heuristics (HH). This distinction is because semantic 

information is only available at the server-side where underlying high-level models are 

stored, whereas the client-side component is mostly provided with syntactic information 

about the user’s modification to HTML objects. However, both syntactic and semantic 

information are used together to provide further accuracy when addressing ambiguity 

and analyzing context, thus obtaining more precise and meaningful information about 

the user’s intent. In general terms, DESK heuristics deploy available knowledge from 

PEGASUS’s domain ontology in order to map the user’s modifications to appropriate 

domain structures.  

At the client-side, DESK records all basic user editing actions accomplished in the 

HTML code (insert text, change text style, etc.) and attempts to find out the syntactic 

context by applying low-level heuristics. In turn, contextual information and user 

actions are packed into constructor primitives to form the monitoring model (Figure 8). 

(Figure 8) 

Low-level heuristics determine the syntactic context for every user action (Macías and 

Castells, 2005). Syntactic context is useful to obtain local information about where the 

changes take place in the HTML code, thus providing further support for 

disambiguation. Later, this information will be used on the server-side.  

Low-level heuristics are grouped into several modules. 

 The context-location module finds out the nearest syntactic context for each 

modification. Candidate contexts include references to surrounding HTML objects, 

and text fragments that could be useful in order to identify mappings among HTML 

code and domain objects (see the example of enumerated code in Section 3.2)  

 The special-structure location module identifies presentation structures (e.g. tables, 

selection lists, etc.) in which a modification occurs. This module knows about items, 

cells, rows and columns, as well as how data structures are related to different 

presentation widgets. 

 The monitoring-model generation module generates a structured monitoring model 

containing information extracted from previous modules—that is to say, user actions 

and the surrounding context. This module transforms atomic syntactic actions into 

meaningful editing primitives, including contextual location and information about 

the HTML object’s structures. 

 

3.2. Semantic transformations 



 

 

Once the monitoring model has been created, it is sent to the server for further 

processing. Figure 9 shows the back-end architecture of DESK. The client-side sends 

the monitoring model to DESK’s server-side component, where inference takes place. 

(Figure 9) 

Server-side processing is mainly focused on inferring semantic information that will 

eventually be used to update PEGASUS’s underlying models. To this end, high-level 

heuristics (Macías and Castells, 2005) have been defined. These determine semantic 

context by examining the application’s domain model. The system handles this by 

processing the domain ontology in order to find out relationships between the syntactic 

changes and the domain objects.  

High-level heuristics are also grouped into several modules. 

 The context-location module finds the semantic context by processing the domain 

ontology. This is probably the most important module and is also the first to be 

invoked. It is targeted at identifying domain objects by both analyzing the content of 

the monitoring model and processing the domain ontology. More precisely, an 

algorithm executes a loop to find whether an element of the monitoring model 

matches an ontology object or whether it has instead to be identified by the context 

(analyzing other surrounding objects).  

 The presentation-context module takes into account the information reported by the 

context-location module to create references to presentation objects included in the 

presentation model of PEGASUS. These references will then be used to identify 

changes that concern how the domain objects will be visualized. Since the user can 

make changes to domain and presentation objects separately, the system must 

identify correctly whether a change affects the presentation level (lexical changes 

such as style, position, color and so on) or the domain level (changes concerning 

domain objects and relationships). 

 The disambiguation module is called whenever an ambiguous situation appears. 

This is when two or more references for the same user modification are found 

during context searching by previous modules. To solve this problem, the 

disambiguation module takes into account contextual information stored in the 

monitoring model by means of the low-level heuristics. Such contextual information 

will be analyzed to disambiguate references and decide which is the appropriate one 

to select. When the ambiguity cannot be solved, the system prompts the user for 

help. 

One of the most important concerns of the high-level heuristics is to process the domain 

model in order to obtain meaningful information for characterizing user changes. Figure 

10 shows an example of how such a process is carried out. Let us suppose that the user 

edits the title of an e-mail client called “Allegro Mail”, adding the word “Client” at the 

end. The following information is created in the monitoring model to codify this 

modification: 

<InsertText>             

  <Text> Client </Text>           1  

  <Context start="12" end="18" before="" after="Item 2”>     2 

    <Text> Allegro Mail </Text>         3 

  </Context>   

</InsertText> 



 

 

The code above shows how the system recognizes the insertion of the word Client 

(line 1) and also the context where the insertion takes place—that is, from position 12 

up to position 18 (line 2) of the first line (before = ””; means that before that point 

there is nothing) and just before a given Item 2 (after = “Item 2”), following 

the existing paragraph Allegro Mail (line 3). It is worth noting in Figure 10 that the 

line Allegro Mail was generated by a <%=subcategories(“vertical”)%> 

instruction in the presentation template (step 0). Such a command establishes different 

categories of email products (in this case) to be visualized vertically by a selection list 

(step 1). In order for the system to detect the proposed modification, it processes the 

monitoring-model code above and attempts to find out where “Allegro Mail” software 

appears by matching that string with the existing domain objects. Eventually, an 

occurrence is found, as the title attribute of object EMC1 seems to contain such a 

string (step 2). The system starts to analyze the object affected and then realizes that it 

belongs to the category eMail-Clients. The system searches the domain model 

again to find where the object EMC1 occurs, and discovers that it is included in the 

relation BelongsTo of the object E-Mail (step 3). Analyzing this object and 

searching the domain model once again, the system finally finds the class Software, 

where the relation BelongsTo appears (step 4). Since the system follows up every 

relation coming from the first occurrence, it is possible to determine the logical path for 

every modification. In this way, carrying out a bottom-up search and keeping the 

information found during the process the system can characterize the change in the 

domain model. In this particular case, the characterization carried out by the system can 

be summarized as: “The user has modified the title of a «lower category» e-mail client 

product that belongs to a «higher category» called e-mail, included in the software 

catalog of the electronic shop.”  

(Figure 10) 

The changes our system can detect may also involve presentation styles in the JSP 

template. In order to detect those, the system first characterizes the object involved in 

the modification as explained above. It then searches the presentation model of the 

corresponding class in which the object appears. This is the task of the presentation-

context module, which matches the characterized object with its representation in the 

presentation template, replacing, removing or adding the new style attributes. 

For instance, let us suppose that the presentation template contains the code <h1> <%= 

Product.title %> </h1>, giving the product’s title a heading style of  h1. If 

the user decides to change the style to h2, the following line depicting such a 

modification will appear in the monitoring model:  

<ChangeStyle old=”h1” new = “h2”>       

  <Text> Allegro Mail Client </Text>       

  <Context start="1" end="20" before="" after="Item 2”/>      

</InsertText> 

Once the context-location module has characterized the object Product and its 

attribute title, the presentation-context module searches the presentation template 

(class Product) for such a reference (Product.title) and replaces the existing 

attribute (h1) by the new one (h2), resulting in the following line in the presentation 

template: <h2> <%= Product.title %> </h2>. 

This process can be generalized easily for every HTML structure (such as a table or 

selection list) and widget. Therefore, monitoring-model primitives can reflect changes 



 

 

and additions in style and page layout detected anywhere in the presentation template. 

Additionally, ambiguities are also addressed through the disambiguation module. That 

is, if the same object reference appears twice or more in the same presentation template, 

contextual information is analyzed. The contextual information appears in every 

primitive generated in the monitoring model (see previous examples of code), reflecting 

the start and end positions and the objects appearing immediately before and after it. 

Thus the system can determine the right object to change, with minimum ambiguity.  

The process of running high-level heuristics enriches the monitoring model with 

information resulting from the characterization explained above—that is, semantic 

knowledge such as concrete domain-object names, attributes and semantic relationships. 

Finally, a specialized module for managing changes processes the (enriched) monitoring 

model again in order to accomplish the changes to PEGASUS’s underlying domain and 

presentation models, sending back in turn a detailed report and prompting the user for 

help if needed. In Figure 10, the attribute title of object EMC1 is readily modified by 

such changes to the monitoring module. 

Admittedly, this is only a simplified example of how the system works. The next 

section introduces a further example to illustrate how the system deals with far more 

complex presentation structures.  

 

3.3. A worked example 

At first sight, the DESK client looks like a standard tool for editing HTML pages and 

navigating through them. However, internally it manages a structured model of the user 

interaction (the monitoring model). As well as being used to record the user’s changes 

to dynamic web pages, the knowledge codified in the monitoring model is also 

employed to help the user accomplish cumbersome tasks automatically. This process is 

carried out by analyzing the monitoring model’s actions carefully and using a reactive 

assistant to act as a surrogate for the user when necessary.  

Figure 11 shows the user interface of the DESK client, where the web page depicted in 

Figure 5 is being modified as follows: a) the text “Applications” is to be inserted beside 

the “Internet” literal, and b) a few items from an HTML table have been cut and pasted 

into both a combo box and a selection list. In general, items can be added or removed 

from presentation structures by using a pop-up window that is made visible by double-

clicking on the widget.  

(Figure 11) 

It is worth noting in Figure 11 that the user is attempting to replace an existing table 

containing product categories by a combo box. Such a widget contains one of the higher 

categories and also a selection list for selecting the subcategories of one of the elements 

chosen from the combo box. DESK automatically detects the user’s intent and suggests 

that the table should be replaced by the combo box and selection list. Figure 12 shows 

the result of such a process, once DESK has changed the presentation model on the 

server-side (the internal mechanisms of DESK’s client- and server-sides are detailed in 

later sections). As we can see, the inserted text “Applications” appears twice in the 

presentation template. This is because the change concerns an attribute called title 

that is included in the domain ontology, and therefore is rendered on both the tabbed 

pane and the page title. This eventually results in the literal “Internet” being replaced by 



 

 

“Internet Applications” at both those locations. Furthermore, the previous table has been 

replaced by a combo box and a selection list in the new version of the presentation. 

(Figure 12) 

It is worth emphasizing that the changes that have been accomplished are far from being 

merely syntactical. The presentation depicted in the previous example was dynamically 

generated, coming from the domain and presentation models stored on the server. 

Consequently, the changes made to widgets, as well as the automatic transformation 

shown, are automatically carried out by the system, which makes semantic assumptions 

about the presentation’s widget structures and deals with mappings to domain objects. 

As we explain in the following sections, semantic information combined with the user’s 

syntactic actions offers interesting possibilities for user assistance, enabling us to handle 

many transformations automatically.  

 

3.3.1. Assisting the user 

As we mentioned before, the monitoring model is one of the chief elements in DESK. 

Aimed at tracking user interaction for further semantic processing, the monitoring 

model is updated continually, reflecting every user action. Besides monitoring the user’s 

actions, the monitoring model is also taken into account on the client-side in order to 

analyze syntactic actions and provide users with help when authoring a web page. 

The DESK client features a mechanism intended to recognize the user’s intent and 

provide appropriate help. This component knows about presentation structures, and 

allows for user actions to carry out automatic transformations. Rather than continuously 

checking for concrete user actions on presentation structures, which would be very 

inefficient, DESK includes a pre-activation agent (DESK-A) that checks against more 

general conditions and detects iteration patterns; see Macías and Castells (2005) for 

further detail. Only one agent is needed in order to check the monitoring model and 

detect different types of actions. This agent is activated when certain actions (e.g. 

copying elements from one widget into another) are detected. The agent looks for partial 

clues that alert the system to execute specific heuristics that trigger a more detailed 

analysis of actions and objects involved. The agent can be configured manually by 

defining its behavior in the form of rules. The agent’s behavior is configured by a set of 

transformation hints such as the following:  

<TransformationHint searchLength="100"> 

  <widget type="Table" 

          changeTo="ComboBox,List" /> 

  <Condition action="Creation"         1 

             object="ComboBox" /> 

  <Condition action="Creation"          2 

             object="List" /> 

  <Condition action="PasteFragment"              3 

             from="Table" to="ComboBox"  

             repeat="3" /> 

  <Condition action="PasteFragment"         4 

             from="Table" to="List" 

             repeat="3" /> 

  <Condition fact="Relation" from="ComboBox"            5 

             to="List" /> 



 

 

</TransformationHint> 

This hint activates a specific heuristic for transforming a table into a combo box and a 

selection list when the following conditions are satisfied: 

1. a combo box has been created 

2. a selection list has been created 

3. (and 4.) domain fragments have been pasted from a table into a combo-box and 

a selection list (at least three times in each one) 

5. there is an existing relation between the information pasted (in terms of domain 

knowledge) into each widget. 

The searchLength attribute represents the number of actions in the monitoring 

model that the agent will consider at any one time. This parameter is useful for tracking 

back the user’s actions related exclusively to the theme of one particular transformation 

(more than one transformation can be nested in the monitoring model). Once activated, 

the agent runs transformation heuristics to carry out more elaborate tests to work out 

how the transformation will be applied. This involves recognizing iteration patterns and 

coordinating data flow among presentation structures. 

As already mentioned, the monitoring model comprises a sequence of instructions that 

reflect actions performed by the end-user. The following monitoring-model fragment 

shows two different primitives extracted from the previous example: the insertion of the 

string Applications and the transformation of a table into a combo box and a 

selection list:  

<InsertText>            1 

  <Text> Applications </Text> 

  <Context start="09" end="21"         2 

           before="T01" after="TB01">        3 

    <Text> Internet </Text> 

  </Context>   

</InsertText> 

<ChangeWidget> 

  <From type="Table" id="T01"          4 

        relation="subCategories"  

        class="HigherCategory" 

        objectID="Internet"/>       

  <To   type="ComboBox" id="C01"         5 

        relation="subCategories"/> 

        class="HigherCategory/> 

  <To   type="List" id="L01"          6 

        relation="subCategories" 

        class ="LowerCategory" /> 

</ChangeWidget> 

As for the text insertion (1), it is worth noting how DESK uncovered contextual 

information about the change (2), that is, where the information is located: starting at 

the ninth position besides the string “Internet”, and ending at position twenty-one. 

Contextual semantic (3) reflects the fact that the insertion has been accomplished 

between the table T01 and the tabbed bar TB01 (DESK internally assigns an identifier 

to every widget when parsed). With regard to the transformation from a table to a 

combo box and a selection list, the code that the transformation heuristic generates 



 

 

comprises a high-level instruction that includes domain semantics and relationships 

between the widgets involved. This way, the code above reflects how a table (4), 

identified by T01 and generated by the relation subCategories of class 

HigherCategory and domain object Internet, is transformed into the combo box 

C01 (5) and the selection list L01 (6), keeping the same domain relationship 

(subCategories) and belonging to different domain classes (HigherCategory 

for the combo box and LowerCategory for the selection list). 

In general, the DESK agent can deal with different types of change by configuring the 

agent’s behavior in order to carry through meaningful transformations by using the 

monitoring model. Interested readers can refer to Macías (2003) and Macías and 

Castells (2005) in order to find further cases of transformations that have been omitted 

from this paper for the sake of brevity.  

 

3.3.2. Deploying semantics in DESK 

Once the monitoring model has been sent to the server-side DESK component, the 

system carefully analyzes its content, instruction by instruction. Continuing with the 

example of the modifications presented above, the first instruction corresponds to the 

text insertion (the string “Internet”). For each instruction, the DESK server uses high-

level heuristics to search the domain model for information matching the domain 

objects, thereby adding (in the text-insertion example) the following semantic:  

<Context class="Category" attribute ="id"  

         objectID="Internet"/> 

In this case, the server-side DESK component has found a correspondence with the 

domain model, and the system processes the domain-model object that has the identifier 

“Internet” (which is an instance of Category). As a result, the system adds the name 

of the class, the attribute and the object as semantic context, changing the content of the 

id attribute to “Internet Applications” in the domain ontology as well. 

In the second example (the transformation of a table into a combo box and a selection 

list), the system notices that the change affects the presentation rather than the domain 

model, and no contextual information is added this time. Instead, the table is substituted 

by a combo box and a selection list in the presentation template for the class 

HigherCategory. After this modification, the new presentation template is as 

follows: 
<% if (availableSpace > 5) { %> 

   <widget type = "ComboBox">  

     <items> <%= subCategories %> </items> 

     <selectedItem> <%= selectedID %> </selectedItem> 

   </widget> 

   <widget type = "List">  

     <items>  

       <%= subCategories.item(SelectedID).subCategories %>  

     </items> 

   </widget> 

<% } else { %> 

   <table> 

     <tr> <td> <%= id %>            </td> </tr> 

     <tr> <td> <%= subcategories %> </td> </tr> 



 

 

   </table> 

<% } %> 

The variable SelectedID represents an input parameter used for widgets that involve 

selection at runtime, such as the combo box. This parameter is internally generated and 

managed by the system, depending on the number of input values needed for each 

widget.  

 

4. User study 

The main goal of our work is to provide easy-to-use mechanisms for customizing 

dynamic web pages. To achieve this, a methodical approach for generating and 

authoring dynamic web pages has been proposed and fully implemented. While most 

commercial and other existing approaches are focused on dealing with static aspects or 

force the user to create code at some point, our approach protects the user from having 

to use a programming language when authoring dynamic web pages. To carry out such 

a challenging brief, the system features a reverse-engineering mechanism that helps 

end-users carry out modifications in a WYSIWYG environment. This enables the 

system to accomplish the changes by automatically modifying the underlying models on 

the server, thus providing the end-user with a new web page with minimal effort.  

An empirical study has been carried out to evaluate and assess the quality of the 

approach presented here. This section reports on an experiment carried out with real 

users that has helped us evaluate DESK’s authoring mechanisms. Next, in Section 5 we 

discuss the results and analyze DESK’s functionality.  

For the study, we recruited 12 participants from heterogeneous scientific backgrounds 

from our academic institution. The participants were given a 10-minute general 

introduction to the goal of the study. This experiment started with the premise that users 

were expected to have no or minimal skill in web programming, but to have a basic 

ability to handle web navigation. Post-study interviews revealed that only 5 participants  

had any web programming experience, which was limited to creating and modifying 

simple HTML pages manually. However, all of them had significant experience in 

WYSIWYG web authoring and navigation. It is worth mentioning that the authoring 

tool was not initially described to the participants, in order to observe how they dealt 

with DESK and, much more important, whether the authoring tools reminded them of 

others that they might have used. 

In general, the main objectives of this study were: 

a) Evaluate DESK’s ease of use. 

b) Observe whether users easily took control of the authoring mechanisms 

provided by DESK. It was important at this point to measure whether users felt 

familiar with the authoring tool, observing whether DESK reminded them of 

other similar tools they had used, such as commercial tools intended for static 

web authoring. 

c) Observe user’ expectations and frustrations in web page authoring with DESK. 

d) Measure DESK’s hit rate in inferring user intents from their actions monitored 

throughout the experiment. 

In order to fulfill those objectives, a two-stage study was designed, consisting of two 

different tasks to be carried out by each participant: 



 

 

1) Firstly, the users were asked to use DESK to author the dynamic presentation on 

scuba diving depicted in Figure 13. We wanted a very simple web page to be used 

for the test, in order that we could measure quick responses from both user and 

system rather than using a complex designs that would take far more time and effort. 

To this end, we used PERSEUS to create an ontology of a scuba-diving course, and 

then we created a simple template to generate the dynamic contents for the test. To 

carry out the changes, each user was provided with the same list of ten 

modifications to be accomplished. The modifications were not ordered explicitly, 

and were clearly specified in terms such as “Replace the text X by Y” and “Apply 

bold style to text X”. At the beginning of the session, the user had 5 minutes to read 

the list of modifications carefully and ask any questions. The changes proposed can 

be summarized as follows: 

 Replacing different texts  

 Transforming a bullet list into a table 

 Adding a new element to the table created 

 Modifying text attributes (color, justification and so on) 

 Inserting new text 

 Removing existing text 

 Moving HTML objects. 

Each user started with the scuba-diving web page generated by PEGASUS. In 

addition, a printed paper copy containing the modifications was also provided. The 

task was then to modify the given page to obtain a final version with all the changes 

applied. The lack of a specified order in which the modifications should be made 

helped us measure the accuracy of inference, the expressiveness and the freedom of 

design provided by DESK, placing no restriction on the way users carried out the 

customizations from the initial design. Different users could carry out the 

modifications by following different steps and thereby expecting the system to 

respond in different ways. The main objective of this first part of the study was to 

obtain the maximum information about the operation of the system’s inference 

mechanisms. The variety of modifications that were proposed helped us observe 

different aspects of the system’s behavior and inferences made, such as: 

 How the system identified different domain objects by using contextual 

information extracted from user modifications. 

 How the user was assisted in the automatic transformation carried out. In 

this case, it was interesting to observe the system’s behavior in 

transforming a bullet list into a table that was generated automatically by 

the system using the mechanisms explained in previous sections. 

 How the system can move, add, remove or insert new domain elements 

while keeping the contextual information and relating such modifications 

to the correct domain objects. 

 How the system can find attributes of domain objects related to style 

modifications in the presentation’s templates. 

 How the system can control consistency with the new elements created 

by the automatically suggested transformations, identifying presentation 



 

 

structures and enabling the user to add new components. The system was 

expected to discover where to add the new content in the domain 

ontology. In this study, the user added new content to the table 

automatically created by the system. 

(Figure 13) 

2) For the second part of the study, we used two different questionnaires to evaluate 

human reactions to the interaction with DESK, covering the topics of satisfaction, 

ease of use and user’s expectations. Users were asked to fill out a questionnaire 

based on User Interface Satisfaction (Chin et al., 1988) and another based on 

Perceived Usefulness and Ease of Use (Davis, 1989). The questions in both 

questionnaires were selected and customized to mainly focus on DESK, avoiding 

asking participants to respond to unrelated questions. The main objective of this 

second part of the study was to obtain maximum information about users’ 

perceptions when working with DESK. 

 

5. Results and discussion 

The first part of the experiment revealed interesting aspects about both DESK and the 

users’ behavior. For each user intervention, we studied data extracted from internal 

system variables and DESK’s monitoring model, with the aim of analyzing DESK’s 

accuracy and behavior. Specifically, we studied the following parameters: 

a) The time the user took to carry out all the changes 

b) The number of primitives generated in the monitoring model 

c) The inference hit rate (in inferring user intents). 

Although the study generated a great deal of information, we summarize here the most 

important results obtained. 

(Table 1) 
Table 1 shows the numerical values obtained by the test. The first column shows the 

number of primitives generated during the user interaction and recorded on the 

monitoring model. This number differs from one user to another, as max and min values 

indicate. This is principally due to the fact that DESK offers enough expressiveness for 

a task to be accomplished in different ways, and so the number of primitives depends on 

the steps that each user followed to achieve the changes proposed. The average number 

of primitives generated was 200. In the second column, the hit rate shows 95% success 

in inferring users’ intents. This implies that DESK achieved most changes successfully 

when carrying out the reverse-path analysis. Any errors were mainly due to ambiguities 

when inferring user intents (Macías, 2003) and they will be considered for future 

improvements. The final column shows the time that users spent in accomplishing the 

modifications. As we can see, participants spent an average of 5 minutes and 39 seconds 

on this part of the experiment. As the standard deviation shows, the spread of times is 

not very significant, since all participants were able to use standard web tools and 

therefore quickly became familiar with DESK’s features. This corroborates one of our 

initial assumptions, since users perceived that DESK is similar to other static web tools 

but includes powerful mechanisms to modify dynamic web pages automatically.  

The evaluation of the questionnaires also revealed interesting conclusions likely to be 

considered in the second part of the study. One of the parameters measured was the 

predictability of the authoring tool. This value is reflected in Table 2. The predictability 



 

 

is a value ranged between 0 (min) and 5 (max) that users perceived when observing the 

final design inferred by the system. This variable can be considered as a way to estimate 

both frustration and expectation. A small value reflects the fact that the final design 

inferred by DESK did not agree with the user’s intent, whereas a large value reflects the 

opposite. In most cases, expectation can be considered proportional to frustration. If the 

user’s expectation is high and the system does not respond as desired, frustration will be 

also high. Table 2 indicates a good level of predictability for DESK, meaning that the 

final design inferred by DESK matched what users wanted and so in most cases they 

ended up with a low rate of frustration. We can also conclude that on average the 

authoring tool inferred the changes to the dynamic presentation that the user expected.  

(Table 2) 
DESK’s ease of use is probably one of the foremost points to consider. Results obtained 

from the questionnaires greatly encourage a view of DESK as an easy-to-use authoring 

tool that can reduce drastically the ‘gentle slope’ of complexity. Figure 14 displays 

users’ opinions about DESK’s ease of use, showing that two users agreed that DESK is 

easy to use, and the rest (i.e. ten users) that DESK is very easy to use. The range of 

possible answers was “Very Easy”, “Easy”, “Normal”, “Difficult”, and “Very 

Difficult”.  

(Figure 14) 

Another relevant concern is how users perceive DESK as an authoring tool for helping 

to solve their daily tasks. Figure 15 shows the participants’ opinions about DESK’s 

usefulness, where one user agreed it was very high, eight - high, two - normal, and only 

one user agreed it was low. The range of the possible answers was “Very High”, 

“High”, “Normal”, “Low”, and “Very Low”. 

(Figure 15) 

The results obtained support the initial hypothesis. Most users thought of DESK as an 

easy-to-use authoring tool, very similar in some ways to other static authoring tools they 

may have used, but with an extra and powerful capability of authoring dynamically 

generated web pages. In this experiment, open questions also revealed that most users 

considered DESK to be a useful tool that can be applied to daily tasks such as authoring 

personal agendas and CVs, dealing with database-generated pages, managing dynamic 

on-line courses and teaching information, managing collaborative documents, authoring 

student forums and laboratory web pages, and so forth. Bearing in mind such opinions, 

we affirm that there is an obvious and increasing need to provide end-users with easy 

mechanisms for dealing with dynamically generated web contents in real time. 

 

 

6. Related work  

Our research aims to provide a set of PBE techniques for authoring domain-independent 

web-based user interfaces and dealing with high-level user tasks, and different domains 

have been considered in order to evaluate the tool. From this point of view, DESK is 

comparable to other approaches such as Predictive Interfaces (Darragh and Witten, 

1991) and Learning Information Agents (Bauer et al., 2000), where the system observes 

and monitors the user’s interaction with the software environment. These approaches 

help the user by predicting and suggesting some commands to carry out tasks 

automatically.  

Monitoring user actions is a common practice to provide intelligent interaction between 

users and web applications. One example of this approach is AVANTI (Paramythis et al., 



 

 

2001), in which the system tracks the user interaction in a web browser designed, for 

universal accessibility, as a front-end to the AVANTI information system. This tool 

uses Unified User Interfaces (U2Is) from Unified User Interface Development 

methodology (U2ID) to achieve self-adaptability, monitoring any kind of user during 

the navigation, including elderly and disabled people. In this respect, DESK too is a 

web browser and also an authoring tool that also monitors user actions. By contrast, 

though, DESK uses configurable and parametrical information from different 

knowledge models in order to obtain meaningful information about user intents. 

Furthermore, an intelligent agent tracks user steps during the interaction to infer atomic 

changes. In this way, our authoring tool supplies the user with an easy-to-use web 

browser and WYSIWYG editing tool to automate changes to web presentations. 

Turquoise (Miller and Myers, 1997) is an intelligent browser and editor for the web that 

allows users to create dynamic pages by example rather than by writing program code. 

With such a tool, users without programming experience can create scripts that combine 

data from several web pages, automate repetitive browsing or editing tasks, convert 

other data formats into HTML, and process submitted forms. Scripts are demonstrated 

by familiar browsing and editing actions, which Turquoise records and generalizes into 

a program. Like DESK, Turquoise is based on the PBE paradigm, where the system 

infers procedural information from examples of what the user wants to achieve. 

Turquoise operates by inferring scripts from user actions, and copies HTML contents 

into a special window. Besides copying and pasting elements, DESK allows for a wide 

spectrum of actions in a complete WYSIWYG environment, inferring high-level intents 

from such actions by using knowledge extracted from the underlying models. Ontology-

driven mechanisms enable domain-independent user actions to be processed, and 

modifications to be mapped to concrete objects in the domain ontology with the aim of 

extracting meaningful information about real user intents. Similarly, in Scrapbook 

(Sugiura and Koseki, 1998) users can demonstrate which portions of web pages they are 

interested in by creating a personal page—that is to say, by selecting data through a web 

browser and copying it into the single personal page. Web data is copied directly from 

Netscape Navigator using internal programming interfaces. Once the personal page is 

created, the system automatically updates it by extracting the user-specified portions 

from the latest web pages. Thus, the user can browse the required information on a 

single page and avoid repetitive access to multiple web pages. By contrast, DESK 

provides the user with expressiveness enough to edit the HTML document freely. 

Rather than copying and pasting particular HTML fragments from other pages, DESK 

supports a PBE–WYSIWYG environment for inferring changes to the domain and 

presentation model separately. Such expressive power requires the use of an ad-hoc 

browser instead of a standard one, but provides improved control of the interaction with 

the user as much as possible.  

In the TriIAs system (Bauer et al., 2000), the user interacts with a web-based 

application such as a travel-planning agent that is intended to create a schedule for a 

trip, satisfying all the constraints entered by the user. TriIAs calls an information 

extraction trainer that is able to learn new wrappers for extracting relevant pieces of 

information from web documents. Wrappers (Musela, 1999) provide a uniform access 

to information repositories such as databases, files and so forth. DESK’s extraction of 

structured information, such as context semantics used by and generated from a semi-

structured document (HTML and JSP code), is very similar to the way in which 

wrappers operate. In DESK, an agent tracks the user during the interaction, relieving 

him or her from having to carry out repetitive tasks (e.g. copying items from one widget 



 

 

into another). In that sense, our agent uses enriched semantic information present in the 

monitoring model, as well as semantics coming from our ontology and domain 

knowledge, making the inference step easy without the necessity of using extraction 

languages.  

WebSheets (Wolber, 2002) is another WYSIWYG authoring tool based on the PBE 

paradigm. This tool enables the creation of dynamic web pages with the aim of 

accessing and modifying databases. WebSheets uses Query By Example, by which 

queries are generated in the authoring environment from user actions, using an SQL-like 

language to request information from databases. By contrast, in DESK the domain 

information is stored using an ontology-based semantic model rather than a relational 

model. To this end, our authoring tool can handle complex changes made by the user, 

relating domain objects and widget structures, so that the variety of changes can be 

quite heterogeneous, and all of them can be applied to both domain and presentation 

models. 

LAPIS (Miller, 2003) is a web scraper that enables high-level conceptual information to 

be rendered by means of a pattern library and using a simple web browser. LAPIS 

parses the HTML and transforms tag- and link-level elements into conceptual 

representations that help end-users to understand web information easily. As LAPIS 

does, DESK parses HTML code and characterizes information from web pages by using 

a data model. However, DESK provides the user with WYSIWYG mechanisms for 

authoring web pages, also analyzing user actions as part of the characterization process 

for inferring user intents. 

Considering EUD-intended model-based tools, there have been interesting contributions 

during the last years. WebRevenge (Paganelli and Paternò, 2002) can track the reverse 

path of a web page. WebRevenge generates a CTT task model (Paternò, 2001) by 

analyzing the interaction and the interface’s elements. WebRevenge works together 

with TERESA (Mori et al., 2002), an authoring tool for modeling applications from 

CCTT-based task models. TERESA handles the forward engineering and WebRevenge 

the reverse path, in order to provide support for web-based migration of applications to 

different platforms. By contrast, DESK is intended to help the user during interaction 

with a system rather than when using it as a multi-model generation system. DESK also 

takes into account both user interaction and an ontological data model, and information 

extracted from both is used together to infer further modifications. DESK uses a low-

level task model rather than a CTT-based one, where interface objects, domain 

information and user actions are embedded to enrich the monitoring model with 

semantics used for further characterizing the user’s intent. On the other hand, Bouillon et 

al. (2002) presents a model-based approach for web engineering. This work consists of an 

architecture for reverse-engineering web pages, with a view to applying forward 

engineering subsequently. Reengineering methods are then applied to produce new user 

interfaces for multiple contexts of use, thus creating a capability for the rapid production 

of user interfaces for different computer platforms, access devices, etc. In this respect, 

DESK provides a reengineering mechanism by following the inverse of the path 

traversed by PEGASUS, starting from the HTML code and going back to the 

constructor models. Such an approach allows for the mapping of final user changes to 

concrete domain objects with the maximum domain independence.  

The use of a data model was already present in the earliest PBE systems. In a very 

simple form, Peridot (Myers, 1998) lets the user create a list of sample data in order to 

construct lists of user-interface widgets. In Gold (Myers et al., 1994) and Sagebrush 

(Roth et al., 1994) the user can build custom charts and graphics by relating visual 



 

 

elements and properties to sets of data records. The data model in Peridot consists of 

lists of primitive data types. Gold and Sagebrush assume a relational data model. We 

also have previous experience in developing PBE- and model-based approaches such as 

HandsOn (Castells and Szekely, 1999). In HandsOn, the interface designer can 

manipulate explicit examples of application data at design-time to build custom 

dynamic displays that depend on application data supplied at run-time. HandsOn is 

based on the presentation model of MASTERMIND (Szekely et al., 1995), where the 

designer can build presentation objects by means of direct manipulation in a visual 

environment. Our view in this regard is that it is interesting to lift these restrictions and 

support richer information structures. We firmly believe in ontologies as a medium to 

specify different features of interfaces and, specifically, web-based interfaces. 

Ontologies provide a conceptual model in which complex relationships can be defined 

in order to codify high-level semantic paths for further characterization and reverse-

engineering purposes (Macías et al., 2006). Our research experience is in using 

ontologies as a medium to specify knowledge for building data models (i.e. domain 

models) used together with application or presentation models. This makes it possible 

for our approach to specify complex knowledge focused on the interface’s domain 

model and also work with XML-based languages that better fulfil the assumptions about 

distribution and sharing (Macías and Castells, 2003b). 

As for commercial web-development tools, Microsoft FrontPage and Macromedia 

Dreamweaver can be considered as the most popular ones. These tools offer a high 

functionality and provide environments intended to deal with different web-based 

languages such as HTML, CSS, XSL, XML, JSP, ASP and so forth. Although these 

tools also come with multiple tool bars and debugging facilities, they are not intended 

for end-users. In order to modify procedural, content and presentation information, the 

user has to act at some point as a skilled designer, dealing with web-based languages (or 

at least with a visual representation of them) and being subjected to the authoring 

formalisms. Some studies (Rode and Rosson, 2003) revealed that, although much 

progress has been made by commercial web development tools, most of the end-user 

tools that they reviewed (including Microsoft FrontPage and Macromedia 

Dreamweaver) lacked not functionality but ease of use. In general, the cognitive load in 

carrying out editing tasks using such environments is very high, because these 

commercial tools are mostly intended for professional designers rather than end-users. 

Although providing the highest functionality is a first-order concern in commercial 

authoring environments, end-users might just want to accomplish customization and 

easy changes to concrete parts of a dynamic web interface. This implies reducing 

expressiveness in favor of increasing ease of use, something that is barely visible in 

existing commercial authoring tools today. In DESK, we provide easy mechanisms for 

authoring dynamic web pages, relieving the user from having to deal with programmatic 

representations. DESK includes less functionality than commercial tools in favor of 

increasing ease of use. Our tool features intelligent mechanisms intended to fulfill end-

user needs, automatically modifying the underlying ontologies in PEGASUS and 

traversing the reverse path with no user intervention. This way, end-users can easily 

customize and make partial changes to dynamic web pages. Furthermore, end-users are 

provided with assistance during the authoring process. Therefore, users only have to 

achieve syntactic changes in a WYSIWYG environment, taking no notice of 

specification languages and of procedural information that is automatically tackled by 

the system. 

 



 

 

7. Conclusion 

An increasing proportion of web content and services are accessed today through 

dynamically generated web pages. Dynamic web pages enable user interfaces to be 

generated automatically, splitting content, structure and layout, which are processed on 

the fly depending on application data or state, user input, user characteristics, and any 

contextual condition that the system is able to represent. However, the development and 

customization of dynamic pages is a complex task that requires advanced programming 

skills. Most tools and technologies targeted at authoring the (semantic) dynamic web 

still require advanced technical knowledge that domain experts, content producers, 

graphic designers or even average programmers usually lack. Commercial development 

environments have been provided for these technologies, and they help to manage 

projects and provide code browsing and debugging facilities; but they are intended for 

expert developers rather than end-users. Consequently, web applications are expensive 

to develop and customize for end-users and often are of poor quality, which is currently 

an important hurdle for the end-user development of web applications. 

Many informal user studies have revealed that the web development tool that users 

envision is typically “Word for Web Applications”, expressing a preference for a 

desktop-based tool that embraces the WIMP, drag-and-drop, and copy-and-paste 

metaphors, and offers wizards, examples and template solutions (Rode et al., 2006). The 

research we present here is an effort to face such a challenge. It aims at combining the 

ease of use of an interactive authoring tool with the power of the model-based approach, 

providing an integral solution to enable end-users to modify dynamic web applications 

based on the semantic web.  

DESK provides the designer with an intuitive authoring environment capable of 

addressing complex web page designs. Our authoring tool is based on the Programming 

by Example paradigm, where the user supplies the system with an example of what he 

or she wants to get and the system infers the changes to dynamic page generation 

procedures automatically. From monitoring user actions, DESK obtains information that 

will be processed together with semantic domain knowledge. Such information will be 

used to infer the knowledge necessary to provide the user with assistance during the 

authoring process. Changes are automatically carried out in the server by using both 

domain and presentation knowledge from PEGASUS. DESK tries to infer maximal 

information from user actions and from existing semantic knowledge that is 

independent from the application domain. To test assumptions about our approach’s 

ease of use, we have carried out a user test. This experiment shows that is possible to 

reduce the ‘gentle slope’ of complexity by supplying an easy-to-use WYSIWYG user 

interface, but has revealed some limitations on expressive power, owing to the fact that 

DESK is focused on concrete WYSIWYG representations rather than abstract ones. 

All in all, the main goal of our work is not to provide a universal solution to the issue of 

end-user authoring, but to find out how far one can go without leaving the WYSIWYG 

approach. More precisely, one of the most important aims of our work is to provide a 

useful authoring tool capable of inferring correct actions in a reasonable number of 

cases. DESK can successfully infer the following types of change in documents: 

 Insertion, deletion and modification of HTML fragments within the presentation 

template and generation rules. 

 Insertion, deletion and modification of HTML tags surrounding domain 

elements within the presentation template and generation rules. 



 

 

 Creation, deletion, modification and automatic transformation between widgets 

(e.g. combo boxes, selection lists, and tables). 

 Insertion, deletion, modification and moving around of dynamic text and 

multimedia references from the domain model. 

However, the information that DESK processes must be supplied by the PEGASUS 

system, and hence DESK is not able to create a web page from scratch. Since the DESK 

authoring tool is based on PEGASUS’s ontological facilities, it is not able to modify 

arbitrary dynamic web pages generated from other sources. Besides, to provide with 

intelligent support we have programmed heuristics that at present can be considered as 

domain-independent built-in algorithms intended to deal with our ontological RDF-like 

language. Such algorithms are conceptually grouped into 6 different modules (as 

explained in sections 3.1 and 3.2) that comprise low and high level heuristics. 

Concerning implementation, each module consists of pure Java algorithms. Therefore, 

new improvements require modification of the internal Java code by a programmer. 

Rule programming is about 50% of the existing java code. Nevertheless, our 

contribution can be regarded as a PBE semantic web approach to take on board when 

designing web-based generation systems, in order to improve the interaction with end-

users as much as possible. In particular, we have made minimal assumptions about the 

user’s skills in web-based languages, supplying an EUD solution that involves an 

automatic process of reverse engineering intended to reduce interaction efforts. Our 

work is based on well-known disciplines such as the Programming by Example and 

Model-Based User Interfaces paradigms. In our opinion, PBE and MBUI techniques can 

be combined together to relieve the user from having to deal with web-based languages 

and complex development environments not intended for end-users. Certainly, this 

implies some reduction in the expressive power of the MBUI approach, since end-users 

do not need to manipulate declarative specifications, but rather to devote all their effort 

to modifying the application interface to fulfill their expectations in software 

customization. In general terms, we believe that the user should not be aware of the 

interface’s internal specification processes. This led us to research on formal 

mechanisms in order to implement intelligent authoring tools that help users modify 

dynamic web-based pages and thereby provide them with an approach intended to deal 

with their daily, non-programming-oriented, creative problem-solving activities. 

As for future work, we plan to improve DESK to deal with more sophisticated cases of 

inference in order to provide end-users with further assistance. The results obtained 

from the user experiment will be also considered when making improvements, refining 

the heuristics for dealing with new transformations and advanced widget manipulation. 

We will also consider improving user and platform models for further customization. So 

far, we have dealt with a user model that just stores basic information (personal user 

information and platform characteristics), and with applying conditions inserted into the 

presentation template. However, one significant improvement would be to have 

different domain models (considering separate XML files) for each user, as well as 

studying advanced characteristics and navigation goals.  
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Figure Captions 

 

 

Figure 1. Knowledge Representation in PEGASUS 

 

Figure 2. Domain ontology in PERSEUS 

 

Figure 3. Domain instances in PERSEUS 

 

Figure 4. Hypermedia document generation from domain objects by applying 

presentation templates and rules 

 

Figure 5. Web page generated for an instance of type HigherCategory 

 

Figure 6. PEGASUS Architecture 

 

Figure 7. DESK mechanism overview 

 

Figure 8. DESK client-side 

 

Figure 9. DESK server-side 

 

Figure 10. An example of the characterization of a change 

 

Figure 11. DESK authoring tool 

 

Figure 12. Resulting web page after the changes have been processed 

 

Figure 13. DESK snapshots of the web page used for the user test 

 

Figure 14. Ease of use of DESK perceived by users 

 

Figure 15. Usefulness of DESK perceived by users 

 


