
1

Agri-Info: Cloud Based Autonomic System for Delivering Agriculture as a Service

Sukhpal Singh
1
, Inderveer Chana

2
and Rajkumar Buyya

3

1,2
 Computer Science and Engineering Department, Thapar University, Patiala, Punjab, India-147004

3
CLOUDS Lab, Department of Computing and Information Systems, The University of Melbourne, Australia

1
ssgill@thapar.edu,

2
inderveer@thapar.edu,

3
rbuyya@unimelb.edu.au

ABSTRACT

Cloud computing has emerged as an important paradigm for managing and delivering services efficiently over the Internet.

Convergence of cloud computing with technologies such as wireless sensor networking and mobile computing offers new

applications’ of cloud services but this requires management of Quality of Service (QoS) parameters to efficiently monitor

and measure the delivered services. This paper presents a QoS-aware Cloud Based Autonomic Information System for

delivering agriculture related information as a service through the use of latest Cloud technologies which manage various

types of agriculture related data based on different domains. Proposed system gathers information from various users

through preconfigured devices and manages and provides required information to users automatically. Further, Cuckoo

Optimization Algorithm has been used for efficient resource allocation at infrastructure level for effective utilization of

resources. We have evaluated the performance of the proposed approach in Cloud environment and experimental results

show that the proposed system performs better in terms of resource utilization, execution time, cost and computing capacity

along with other QoS parameters.

KEYWORDS - Cloud Computing, Autonomic, Fuzzy Logic, Self-Management, Cuckoo Optimization, Quality of Service,

Agriculture as a Service, Aneka Cloud Application Platform

1. Introduction

Cloud computing has emerged as an important paradigm for managing and delivering the new emerging applications in the

field of healthcare, agriculture, education, finance, etc. efficiently over the internet. However, providing dedicated cloud

services that ensure application's dynamic QoS (Quality of Service) requirements and user satisfaction is a big research

challenge in cloud computing. As dynamism, heterogeneity and complexity of applications is increasing rapidly, this makes

cloud systems unmanageable in service delivery. To overcome these problems, cloud systems require self-management of

services. Autonomic cloud computing systems provide the environment in which applications can be managed efficiently

by fulfilling QoS requirements of applications without human involvement [1] [2].

In our earlier work [1] [14] [15] [16] [27], we have identified various research issues related to QoS and SLA for cloud

resource scheduling and have developed a QoS based resource provisioning technique (Q-aware) to map the resources to

the workloads based on used requirements described in the form of SLA. Further, resource scheduling framework (QRSF)

has been proposed, in which provisioned resources have been scheduled by using different resource scheduling policies

(cost, time, cost-time and bargaining based). The concept of QRSF has been further extended by proposing energy-aware

autonomic resource scheduling technique (EARTH), in which IBM’s autonomic computing concept has been used to

schedule the resources automatically by optimizing energy consumption and resource utilization where user can easily

interact with the system using available user interface. In this work, we have proposed a cloud based autonomic information

system which delivers Agriculture as a Service (AaaS) through cloud infrastructure and services.

Emergence of ICT (Information and Communication Technologies) plays an important role in agriculture sector by

providing services through computer based agriculture systems [2]. But these agriculture systems are not able to fulfill the

needs of today’s generation due to lack of important requirements like processing speed, lesser data storage space,

reliability, availability, scalability etc. and even the resources used in computer based agriculture systems are not utilized

efficiently [3]. To solve the problem of existing agriculture systems, there is a need to develop a cloud based service that

can easily manage different types of agriculture related data based on different domains (crop, weather, soil, pest, fertilizer,

productivity, irrigation, cattle and equipment) through these steps: i) gather data from various users through preconfigured

devices, ii) classify the gathered data into various classes through analysis, iii) store the classified information in cloud

repository for future use, and iv) automatic diagnose of the agriculture status. In addition, cloud based autonomic

mailto:1ssgill@thapar.edu
mailto:2inderveer@thapar.edu
mailto:3rbuyya@unimelb.edu.au

2

information system is also able to identify the QoS requirements of user request and resources are allocated efficiently to

execute the user request based on these requirements. Cloud based services can significantly improve reliability, availability

and customer satisfaction.

The motivation of this paper is to design architecture of QoS-aware Cloud Based Autonomic Information System for

agriculture service called Agri-Info which manages various types of agriculture related data based on different domains.

The main aim of this research work is: i) to propose an autonomic resource management technique which is used: a) to

gather the information from various users through preconfigured devices, b) to extract the attributes, c) to analyze the

information by creating various classes based on the information received, d) to store the classified information in cloud

repository for future use and e) diagnose the agriculture status automatically and ii) to do resource allocation automatically

at infrastructure level after identification of QoS requirements of user request. Agri-Info improves user satisfaction by

fulfilling their expectations and increases availability of services.

The rest of the paper is organized as follows. Section 2 presents related work and contributions. Proposed architecture is

presented in Section 3. Sections 4 and 5 describe the experimental setup and present the results of evaluation through

empirical methods and simulation respectively. Section 6 presents conclusions and future scope.

2. Related Work

Existing research reported that few agriculture systems have been developed with limited functionality. We have presented

related work of existing agriculture systems in this section.

2.1 Existing Agriculture Systems

Alexandros et al. [3] proposed architecture of a farm management system using characteristics of internet which focuses on

procedure of farming and mechanisms to exchange the information among stakeholders. Further, this architecture describes

the method for better management of only some of the tasks of farmers without using the autonomic concept. Ranya et al.

[4] presented ALSE (Agriculture Land Suitability Evaluator) to study various types of land to find the appropriate land for

different types of crops by analyzing geo-environmental factors. ALSE used GIS (Global Information System) capabilities

to evaluate land using local environment conditions through digital map and based on this information decisions can be

made. Raimo et al. [5] proposed FMIS (Farm Management Information System) used to find the precision agriculture

requirements for information systems through web-based approach. Author identified the management of GIS data is a key

requirement of precision agriculture. Sorensen et al. [6] studied the FMIS to analyze dynamic needs of farmers to improve

decision processes and their corresponding functionalities. Further they reported that identification of process used for

initial analysis of user needs is mandatory for actual design of FMIS. Zhao [7] presented an analysis of web-based

agricultural information systems and identified various challenges and issues still pending in these systems. Due to lack of

automation in existing agriculture system, the system is taking longer time and is difficult to handle dynamic needs of user

which leads to customer dissatisfaction. Sorensen et al. [8] identified various functional requirements of FMIS and

information model is presented based on these requirements to refine decision processes. They identified that complexity of

FMIS is increasing with increase in functional requirements and found that there is a need of autonomic system to reduce

complexity. Yuegao et al. [9] proposed WASS (Web-based Agricultural Support System) and identified functionalities

(information, collaborative work and decision support) and characteristics of WASS. Based on characteristics, authors

divided WASS into three subsystems: production, research-education and management.

Reddy at el. [10] proposed GIS based DSS (Decision Support System) framework in which Spatial DDS has been designed

for watershed management and management of crop productivity at regional and farm level. GIS is used to gather and

analyze the graphical images for making new rules and decisions for effective management of data. Shitala et al. [11]

presented mobile computing based framework for agriculturists called AgroMobile for cultivation and marketing and

analysis of crop images. Further, AgroMobile is used to detect the disease through image processing and also discussed

how dynamic needs of user affects the performance of system. Seokkyun et al. [12] proposed cloud based Disease

Forecasting and Livestock Monitoring System (DFLMS) in which sensor networks has been used to gather information and

manages virtually. DFLMS provides an effective interface for user but due to temporary storage mechanism used, it is

unable to store and retrieve data in databases for future use. Renaud et al. [13] presented cloud based weather forecasting

system to collect and analyze the weather related data to identify the farming needs of different seasons. This system

3

reduces data replication and ensures load balancing for management of resources. The proposed QoS-aware Cloud Based

Autonomic Information System (Agri-Info) has been compared with existing agriculture systems as described in Table 1.

Table 1: Comparisons of existing agriculture systems with proposed system (Agri-Info)
Agriculture System Mechanism QoS-aware (Parameter) Domains Data

Classification

Resource

Management

ALSE [4] Non-Autonomic Yes (Suitability) Soil Yes No

FMIS [5] Non-Autonomic No Pest and Crop No No

WASS [9] Non-Autonomic No Productivity No No

AgroMobile [11] Non-Autonomic Yes (Data accuracy) Crop Yes No

DFLMS [12] Non-Autonomic No Crop No Yes

Proposed System

(Agri-Info)

Autonomic

Yes (Cost, Time, Resource Utilization,

Computing Capacity, Availability, Network

Bandwidth, Customer Satisfaction And Latency)

Crop, Weather, Soil, Pest,

Fertilizer, Productivity, Irrigation,

Cattle And Equipment

Yes

Yes

All the above research works have focused on different domains of agriculture with different QoS parameters. None of the

existing agriculture systems considers self-management of resources. Due to lack of automation of resource management,

services become inefficient which further leads to customer dissatisfaction. The proposed system is a novel QoS-aware

cloud based autonomic information system and considers various domains of agriculture and, allocates and manages the

resources automatically which is not considered in other existing agriculture systems.

2.2 Our Contributions

We have presented Agri-Info as an agriculture service to manage the various types of agriculture related data pertaining to

different domains automatically. Agriculture data has been classified using K-NN (k-nearest neighbor) classification

mechanism and for extraction of attributes, Principal Component Analysis (PCA) is used. We have used fuzzy logic for

interpretation of agriculture data to diagnose the agriculture status automatically. We have demonstrated the ability of

proposed autonomic resource management technique by implementing it within simulation based cloud environment using

CloudSim toolkit [28] along with its empirical evaluation. Finally, we have validated Agri-Info using cloud environment

and measured the variations. Aneka application development platform is used as a scalable cloud middleware to make

interaction between SaaS and IaaS to deploy e-agriculture web service of Agri-Info. The performance of Agri-Info has been

also tested on cloud testbed using synthetic workloads for different QoS parameters. We have then compared the

experimental results of proposed technique with the non-autonomic resource scheduling technique (without QoS

parameters). The main contribution of this paper is: 1) used Cuckoo Optimization Algorithm for efficient resource

allocation at infrastructure level for effective utilization of resources after identification of QoS requirements, 2) proposed

system gathers information from various users through preconfigured devices and manages data in cloud database and

provides required information to users automatically, 3) used Aneka application development platform to deploy e-

agriculture web service of Agri-Info and 4) to improve the customer satisfaction through self-* management of resources.

Proposed approach thus improves user satisfaction by fulfilling their expectations and increases reliability and availability

of cloud based agriculture services.

3. Agri-Info Architecture
Existing agriculture systems are not able to fulfill the needs of today’s generation due to missing of important requirements

like processing speed, lesser data storage space, reliability, availability, scalability etc. and even the resources used in

computer based agriculture systems are not utilized efficiently. To solve the problem of existing agriculture systems, there

is a need to develop a cloud based autonomic information system which delivers Agriculture as a Service (AaaS). In this

section, we present architecture of QoS-aware Cloud Based Autonomic Information System for agriculture service called

Agri-Info which manages various types of agriculture related data based on different domains. Architecture of Agri-Info is

shown in Figure 1. The main objectives of this proposed technique is: i) to get information from various users, ii) to analyze

the information by creating various classes based on the information received, iii) to store the classified information in

cloud repository for future use, iv) to respond the user queries automatically based on the information stored in repository

and v) allocate the resource automatically based on QoS requirements of current request.

QoS parameters must be identified before the allocation of resources. Agri-Info is the key mechanism that ensures that

resource manager can serve large amount of requests without violating SLA terms and dynamically manages the resources

based on QoS requirements identified by QoS manager. We have divided the services of Agri-Info into three types: SaaS

(Software as a Service), PaaS (Platform as a Service) and IaaS (Infrastructure as a Service). In SaaS, user interface is

4

designed in which users can interact with system. Aneka is a .NET-based application development PaaS, which is used as a

scalable cloud middleware to make interaction between cloud subsystem and user subsystem. We deployed e-agriculture

web service of Agri-Info to provide user interface through Aneka cloud application platform in which user can access

service from any geographical location [24] and information is classified, stored into cloud repositories and retrieved

automatically based on user request at platform level. In IaaS, autonomic resource manager manages the resource

automatically based on the identified QoS requirements of a particular request. Architecture of Agri-Info comprises

following two subsystems: i) user and ii) cloud.

USER SUBSYSTEM CLOUD SUBSYSTEM

Agriculture

 Expert

Agriculture
 Officer

 Farmer

Resource Pool

SaaS PaaS IaaS

Figure 1: Agri-Info Architecture

3.1 User Subsystem
This subsystem provides a user interface, in which different type of users interacting with Agri-Info to provide and get

useful information about agriculture based on different domains. We have considered nine types of information of different

domains in agriculture: crop, weather, soil, pest, fertilizer, productivity, irrigation, cattle and equipment. Users are basically

classified in three categories: i) agriculture expert, ii) agriculture officer and iii) farmer. Agriculture expert shares

professional knowledge by answering the user queries and updates the AaaS database based on the latest research done in

the field of agriculture with respect to their domain. Agriculture officers are the government officials those provides the

latest information about new agriculture policies, schemes and rules passed by the government. Farmer is an important

entity of Agri-Info who can take maximum advantage by asking their queries and getting automatic reply after analysis.

Use case diagram shown in Figure 2, describes the important functions user can perform with Agri-Info.

Domains

Crop Detail

Soil Detail

Weather

Information

Pest Detail

Fertilizer

Information

Irrigation

Information

Productivity

Information

Data Preprocessing

Data Cleaning

 Data Integration

Data Conversion

QoS Manager

Autonomic Agriculture

Status Diagnosis

Autonomic Resource

Manager

Resource Allocation

Resource Execution

Transformation

Sensors
Effectors

Monitor
To monitor Deviation

Analyze

To Manage alerts

Plan

To Select an Action

Executor
To Execute Action

Knowledge Base

(AaaS Database)

AGRI - INFO

Performance Monitor

Alert

Generator
Classification of

Agriculture

Information

Interpretation

Cattle Detail

Equipment

Detail

Data Reduction

Selection

ANEKA Cloud

Application Platform

5

Figure 2: Use Case Diagram of Agri-Info

Use case diagram describes the interaction of users (agriculture expert, agriculture officer and farmer) with Agri-Info.

Sequence diagram the collaboration of objects based on a time sequence. It shows how the objects interact with others in a

particular scenario of Use Case. Figure 3 shows the sequence diagram of the user interaction in Agri-Info. Firstly,

successful registration of user has been demonstrated. After performing the task of the user’s authentication and

authorization, the home page of user will be displayed. User can write their query regarding the agriculture information

required from any of the domain and then system will provide the required information after analysis of user query

automatically. All the requests are analyzed based on their information asked by user and updates the database.

Users can monitor any data related to their domain and get their response without visiting the agriculture help center. It

integrates the different domains of agriculture with Agri-Info. Agri-Info does not require any technical expertise to use this

system. The information or queries received from user(s) are forwarded to cloud repository for updation and response is

send back to particular user on their preconfigured devices (tablets, mobile phones, laptops etc.) via internet.

Authentication

Registration

Invalid

Farmer_DB

<<extend>>

<<include>>

Agri-Info

Crop Detail

<<extend>>

Farmer

Weather Detail

<<extend>>

Soil Detail

<<extend>>

Irrigation Detail

<<extend>>

<<extend>>

Fertilizer Detail

Productivity

Detail

Pest Detail

<<extend>>

<<extend>>

AaaS_DB

Update Agriculture Status/ Policies

Diagnosis Agriculture Status

<<include>>

Agriculture

Expert

Agriculture

Officer

Answer Query

Ask Query

<<include>>

Cattle Detail

Equipment Detail

 <<extend>>

<<extend>>
<<include>>

6

 Registration get information

 User registered

 Update information send updated information

 Information updated

 <<login>>

 Authenticated user

 Select type of Information

 Type selected

 enter required information get detail

 information entered

 view information
 get information

 generate information call()

 information received

 Enter Query

 Ask query
 Answer query

 Get answer

 <<logout>>

 Figure 3: Sequence Diagram of Agri-Info

3.2 Cloud Subsystem

This subsystem contains the platform in which agriculture web service is hosted on a cloud. Agriculture web service allows

to process the agriculture information provided by users (agriculture expert, agriculture officer and farmer) of different

domains in agriculture: crop, weather, soil, pest, fertilizer, productivity, irrigation, cattle and equipment. Users are basically

classified in three categories: i) agriculture expert, ii) agriculture officer and iii) farmer as already discussed. These details

are stored in cloud repository in different classes for different domains with unique identification number. The information

is monitored, analyzed and processed continuously by Agri-Info. The analysis process consists of various sub processes:

selection, data preprocessing, transformation, classification and interpretation as shown in Figure 1. We have designed

different classes for every domain and sub classes for further categorization of information. In storage repository, user data

is categorized based on different predefined classes of every domain. This information is further forwarded to agriculture

experts and agriculture officers for final validation through preconfigured devices. Further, a number of users can use our

cloud based agriculture web service so we have integrated the QoS manager and autonomic resource manager in cloud

subsystem. QoS manager identifies the QoS requirements based on the number and type of user requests. Based on QoS

requirements, autonomic resource manager identifies resource requirements and allocates and executes the resources at

infrastructure level. Performance monitor is used to verify the performance of system and maintain it automatically. If

system will not be able to handle the request automatically then system will generate alert.

3.2.1 Cloud based agriculture web service

Cloud based agriculture web service provides a user platform in which user can access agriculture service. Functional

aspects of Agri-Info are shown in Figure 4. We have identified various functionalities provided by Agri-Info. Firstly,

agriculture web service allows user to create profile for interaction with Agri-Info.

:Farmer

:Database_Handler

:Farmer_Database

Loop

 Wo rkloads

: Agri-Info

:AaaS_Database

:Agriculture Expert/Agriculture Officer

7

 Farmer

 Agriculture Expert Agriculture Officer

Figure 4: Functional aspects of Agri-Info

After profile creation, user is required to provide his personal details along with the details of information domain. Agri-

Info analyses the information to verify whether the data is complete or not for further processing by performing various

checks. Further data is processed and redundancy of data is removed and data is used to select domain to which data

belongs. Information is classified properly in order with unique identification number. This information is further

forwarded to agriculture experts and agriculture officers for final validation through preconfigured devices. After successful

validation of information, it is stored in AaaS database. If user wants to know the response of their query, then system will

automatically diagnose the user query and send response back to that user.

3.2.2 Detailed Methodology

Agri-Info allows user to upload the data related to different domains of agriculture through preconfigured devices and

classified them based on the domains specified in database. Subtasks of information gathering [22] and providing in Agri-

Info are: i) selection, ii) preprocessing, iii) transformation, iv) classification and v) interpretation as shown in Figure 5.

3.2.2.1 Selection

Numbers of users upload their data of different domains from which Agri-Info selects only relevant information and

maintains this as a gathered Target Data. In this sub process, target datasets are created based on the relevant information

that will further be considered for analysis in next sub process. Elimination of irrelevant information reduces the processing

time in next sub processes.

3.2.2.2 Preprocessing

Different users have different information regarding agriculture. To develop a final training set, there is need of

preprocessing steps because data might contain some missing sample or noise components. In Agri-Info, data preprocessing

contains four different sub processes: i) data cleaning, ii) data integration, iii) data conversion and iv) data reduction. For

critical evaluation, we have collected and analyzed required number of samples.

Data cleaning is performed to remove the inconsistent data, noisy data and fill the data in missing values because dirty data

will create confusion. Data in missing values is calculated by using weights, in which weight are assigned to particular

value in fixed time interval and missing values are filled by using adjacent values of that particular attribute. For noisy data

(some error or variation in data), clustering technique is used which categorizes the similar values in different clusters [15].

We have used data constraints to check the consistency of data and data is corrected manually to remove the inconsistency.

In agriculture web service, non-uniform data is converted into uniform data through data interpolation techniques.

Create Profile

Provide Information Analyze Information

Classify Information

Data Processing

Select Domain

Validate Information

Get Information

Retrieve Information

AaaS Database

Store Information

8

Figure 5: Process of Information Gathering and Providing in Agri-Info

Data integration is used to combine the data coming from different preconfigured devices (tablets, mobile phones, laptops

etc.) into single data store. In this, concept of database schema is used to find out the different entities. Through data

integration different data is integrated but it contains some redundant data also. After this, data transformation is performed

to convert the integrated data into adequate format which is suitable for data mining. We used normalization and

aggregation for data transformation. For normalization, range of every variable is fixed and converts the value in specified

range if it not lies in that range. In aggregation, data of same type is extracted and calculated the average of data and

aggregate to compute monthly value and year value for efficient analysis. Further processing of data will consume large

time due to some complexity and redundancy in data. To eliminate these problems, data reduction is performed to produce

quality of knowledge without compromising the integrity of original data to identify effective analytical results. In this

process, redundant data, irrelevant or weekly relevant data is detected and removed.

For formal analysis, we have constructed a uniform attribute array mathematically. Suppose ‘z’ number of user’s submitted

‘y’ number of attributes in ‘x’ number of domains. Finally ‘z’ number of 2-D arrays are constructed called ‘P’ (Data

Matrices) corresponding to every user ‘a’, where {a=1, 2, 3…z}. Every matrix 𝑃𝑎
 comprises different values of data for

different users and data element 𝑝𝑎
𝑏,𝑐

 represents the value of attribute c for domain b belonging to user a, where 1≤ a≤ z,

1≤ b≤ x and 1≤ c≤ y.

 𝑝1
1,1

 𝑝1
1,2

 ………. 𝑝1
1,𝑦

 𝑝2
1,1

 𝑝2
1,2

 ………. 𝑝2
1,𝑦

 𝑝𝑧
1,1

 𝑝𝑧
1,2

 ………. 𝑝𝑧
1,𝑦

 𝑝1
2,1

 𝑝1
2,2

 ………. 𝑝1
2,𝑦

 𝑝2
2,1

 𝑝2
2,2

 ………. 𝑝2
2,𝑦

 𝑝𝑧
2,1

 𝑝𝑧
2,2

 ………. 𝑝𝑧
2,𝑦

𝑃1 = ⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

, 𝑝2 = ⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

, ⋯ ⋯ ⋯ 𝑝𝑧 = ⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

 𝑝1

𝑥,1
 𝑝1

𝑥,2
 ………. 𝑝1

𝑥,𝑦
 𝑝2

𝑥,1
 𝑝2

𝑥,2
 ………. 𝑝2

𝑥,𝑦
 𝑝𝑧

𝑥,1
 𝑝𝑧

𝑥,2
 ………. 𝑝𝑧

𝑥,𝑦

Further, every matrix 𝑃𝑎 is converted into column matrix 𝑝𝑎 of (𝑥 × 𝑦)dimensions for analysis of data such that

𝑝𝑎 = [𝑝𝑎
1,1

 𝑝𝑎
1,2

 … … . 𝑝𝑎
𝑥,𝑦

] T

𝑝1 = [𝑝1
1,1

 𝑝1
1,2

 … … . 𝑝1
𝑥,𝑦

] T , 𝑝2 = [𝑝2
1,1

 𝑝2
1,2

 … … . 𝑝2
𝑥,𝑦

] T ,…………………. 𝑝𝑧 = [𝑝𝑧
1,1

 𝑝𝑧
1,2

 … … . 𝑝𝑧
𝑥,𝑦

] T ,

By using column matrices , a distinct large matrix is created i.e. 𝑃(𝑥×𝑦)×𝑧 for easy extraction of required attributes which

contains data values of every variable (attributes) of user.

 𝑃(𝑥×𝑦)×𝑧 = [𝑝1 𝑝2 … … . 𝑝𝑧]

9

3.2.2.3 Transformation

Data transformation provides an interface between data analysis sub process (classification) and data preprocessing. After

data preprocessing this process converts the labeled data into adequate format which is suitable for classification. In data

preprocessing, data may be presented in different formats. The main aim of this sub process is to reduce effective number

of variables. In Agri-Info, we used lossless aggregation to present data in recognizable format after merging and data

reduction. It is very common that real life data considers more variables than required to classify the information. Our

agriculture web service considers different type of variables and classified based on their domains and store the

corresponding information in cloud repository (AaaS Database). Based on this classification, Agri-Info can automatically

diagnoses the agriculture information and provide response to specific user. We used PCA (Principal Component Analysis)

to find the distinct attributes to reduce the correlation among attributes [21]. After analysis, the stored data is transformed

into new storage location and now data is very easily distributed into different classes. Mathematically, variance by any

projection of data is calculated in PCA and decides their coordinates. In first coordinate (first principal component) contains

the projection of data with greatest variance, second coordinate (second principal component) contains the projection of

data with second greatest variance and so on. Principal Component (PC) is smaller number of uncorrelated variables

derived from correlated variables through transformation in PCA. For every domain, Agri-Info gathered different number

of attributes based on specific agriculture information submitted by user through agriculture web service as shown in Table

2.

Table 2: Domains and their Attributes

Domain Attributes

Crop Info CropId, Name, Type, Soil Moisture, Temperature, Season, Avg. Productivity, Min Land, Growing Period, Seed

Type, Price, Quantity, Disease and Treatment.

Weather Info Humidity, Temperature, Pressure, Wind Speed, Rainfall and Location

Soil Info Bulk Density, Inorganic Material, Organic Material, Water, Air, Color, Texture, Structure and Infiltration

Pest Info Type, Effect, Treatment, Solubility In Water, Outcome and Price

 Fertilizer Info Type, Nutrient Composition and Price

Productivity Info Soil Type, Crop Type, Season, Rainfall, Pest Info, Fertilizer Info and Irrigation Info

Irrigation Info Climate Factors (Rainfall/Temperature), Crop Type, Season and Soil Type

Cattle Info Type, Quantity, Area, Layout and Structure of Yard, Feed, Drinking Water, Health Issue, Disease and Treatment

Equipment Info Type, Quantity, Area, Budget, Price, Maintenance Cost and Work Type

We have described units and range of value for every attribute extracted in different domains. For example, we have fixed

the five levels of productivity (A - E) as shown in Table 3. The level ‘A’ indicates the productivity is very high while level

‘E’ indicates the productivity is very low. For further processing, transformation of data matrix into uniform format is

mandatory. For this, we used normalization to convert the data values of different attributes in matrix 𝑃 to new matrix 𝑃′

(in which all the new data values are scaled uniformly in their specified range). To ensure the zero mean in columns,

normalized data matrix 𝑃′is adjusted to 𝑃′′. The purpose of zero mean is to minimize the value of MSE (Mean Square

Error). For different domains, columns represent the users and rows represent the values of different attributes in matrix 𝑃′′.

PCA (Principal Component Analysis) is applied to matrix 𝑃′′and Covariance Matrix (𝐶𝑜𝑣𝑚𝑎𝑡𝑟𝑖𝑥) is calculated from matrix

𝑃′′ by using Eq. (1), which data point is considered as every column of matrix in region (𝑥 × 𝑦).

 𝐶𝑜𝑣𝑚𝑎𝑡𝑟𝑖𝑥 =
1

𝑧−1
 𝑃′′. 𝑃′′

T
 (1)

Consequently, Eigen values 𝑚1, 𝑚2, … 𝑚𝑧 and Eigen vectors 𝐸𝑉1, 𝐸𝑉2, ………… 𝐸𝑉𝑧 are computed from Covariance

Matrix (𝐶𝑜𝑣𝑚𝑎𝑡𝑟𝑖𝑥) and Eigen values (𝑚1, 𝑚2, … 𝑚𝑧) are stored and sorted in decreasing order (𝑚1 ≥ 𝑚2 ≥ ⋯ ≥
 𝑚𝑥×𝑦). By projecting every data point of 𝑝′′

𝑎
 ∈ region (𝑥 × 𝑦) into a data point 𝑑𝑝𝑎 ∈ region (𝑟), Eq. (2) is used to

calculate the Eigen value 𝑚𝑎 for a
th

principal component.

 𝑑𝑝𝑎 = 𝑝𝑇

𝑎
. 𝑝′′ where {a=1, 2, 3…z} (2)

For our experiments, we calculated few Eigen vectors for first few principal components due to large variation data in this.

Only those Eigen vectors are selected that satisfy Eq. (3). Where r ≤ 𝑥 × 𝑦 and v ≥ 𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 (predefined threshold

value).

𝑣 =
 𝑚1+ 𝑚2+ 𝑚3+⋯+ 𝑚𝑟

 𝑚1+ 𝑚2+ 𝑚3+⋯+ 𝑚𝑥×𝑦
 × 100% (3)

Output of this sub process is forwarded further for classification.

10

3.2.2.4 Classification

Based on the extracted data of PCs, classify the agriculture information of different users of different domains. We used K-

NN (k-Nearest Neighbor) classification mechanism in this research work [20]. K-NN classifier is used to identify the

different class labels of users. K-NN is supervised machine learning technique which is used to classify the unknown data

using training data set generated by it. Known class labels and their similar properties are be included in training data set.

Figure 6 describes the K-NN Algorithm.

Algorithm 1: K-NN Algorithm

Learning Phase:
To create the Training Instance Dataset (TID)
Classification Phase:
for every unknown instance 𝑑𝑝𝑎

1. Identify 𝑑𝑝1, 𝑑𝑝2, …………. 𝑑𝑝𝑘 , the k most nearest instances from TID, where
 𝑑𝑝1, 𝑑𝑝2, …………. 𝑑𝑝𝑘 , are data point𝑠 ∈ region (𝑟).
2. Set class label (cl) is equal to most repeated cl of k nearest instances.
3. Return cl

end for

Figure 6: Pseudo code of K-NN Algorithm

In K-NN algorithm, distance is computed from one specific instance to every training instance to classify that unknown

instance. Both k-nearest neighbor and k minimum distance is determined and output class label is identified among k

classes. During training phase, K-NN Algorithm utilizes training data. Figure 7 illustrates the classification process used in

this research work.

Crop Name Temperature Soil Texture Season Pesticide Fertilizer Productivity

Rice 15-18 °C Slity Clay Winter Carbonate Urea A

Maize 17-22 °C Slity Loam Clay Summer Organophosphate Ammonium-Nitrate D

Wheat 25-30 °C Loam Clay Rainy Organochlorine Ammonium-Sulphate B

Sugarcane 35-40 °C Slity Summer Parathyroid Urea-Ammonium E

Potato 19-28 °C Slity Loam Winter Organophosphate Phosphate A

Cotton 22-24 °C Slity Clay Rainy Parathyroid Ammonium-Nitrate-

Phosphate

A

Soybean 21-27 °C Slity Loam Clay Winter Organochlorine Urea C

 Cassava 28-30 °C Slity Loam Rainy Organophosphate Urea-Ammonium B Induction

Pumpkin 31-34 °C Slity Clay Summer Carbonate Ammonium-Sulphate B

 Training Instance Dataset (TID)

Crop Name Temperature Soil Texture Season Pesticide Fertilizer Productivity

Rice 19-28 °C Slity Clay Summer Organophosphate Ammonium-Sulphate ?

Maize 22-24 °C Slity Loam Clay Winter Organophosphate Urea-Ammonium ?

 Wheat 21-27 °C Slity Loam Rainy Carbonate Phosphate ? Deduction

Sugarcane 19-28 °C Slity Clay Winter Organophosphate Urea ?

 Test Data (Result)

Figure 7: Classification process

We are using K-NN model to identify the productivity level through Training Instance Dataset (TID). Test data is an input

of this model and it is compared with TID and identifies the class in which data laid using following rule:

Rule: If {𝐶𝑟𝑜𝑝 𝑁𝑎𝑚𝑒˄ Temperature ˄ Soil Texture ˄ Season ˄ Pesticide ˄ Fertilizer} then𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦

We have fixed the five levels of productivity (A - E) as shown in Table 3. The level ‘A’ indicates the productivity is very

high while level ‘E’ indicates the productivity is very low.

Based on the given information, TID identifies the class in which given data belongs.

Learning

Model (K-NN)

Application of

Model (K-NN)

Classification

Model (K-NN)

Classification

Algorithm (K-NN)

11

Table 3: Productivity Levels

Productivity Level Description

A Very High Productivity

B High Productivity

C Neutral Productivity

D Low Productivity

E Very Low Productivity

3.2.2.5 Interpretation

The final step is to interpret the agriculture data submitted by different users of different domains which helps user to

understand the classified datasets. Agri-Info is capable to diagnose the agriculture status based on the information entered

by user and send the diagnosed agriculture status to particular user automatically. For this autonomic process, Agri-Info

uses fuzzy logic based algorithm [18] to provide the required information to the user. In this algorithm, training data is used

to generate the member functions and decisions rules. Algorithm used in our research work is given below:

We have considered six attributes: Crop Name, Temperature, Soil Texture, Season, Pesticide and Fertilizer and one

output: Productivity. Based on these six attributes, Agri-Info design rules and membership functions. Values for six

variables are given in Figure 7 as Training Instance Dataset (TID).

i) Cluster and fuzzify the extracted data

To derive required member functions (mfs) from output values, there is need to cluster the output values of all training

instances (𝑡𝑖) into various clusters. After clustering, most close output values of 𝑡𝑖 belong to the similar class is considered.

To achieve this objective, it further includes sub steps:

a) To find relationship among different output values of 𝑡𝑖, Sort the output values in an ascending order

(𝑡𝑖1 ≤ 𝑡𝑖2 ≥ ⋯ ≤ 𝑡𝑖𝑛), where 𝑡𝑖𝑚 ≤ 𝑡𝑖𝑚+1 for m = 1, 2, 3…..n-1,

b) To identify the similarity there is need to find the difference 𝑑𝑚 between adjacent data

 𝑑𝑚 = 𝑡𝑖𝑚+1− 𝑡𝑖𝑚, for each pair 𝑡𝑖𝑚 𝑎𝑛𝑑 𝑡𝑖𝑚+1

c) To transform distance 𝑑𝑚 to a real number 𝑟𝑚, 𝑟𝑚 ∈ (0, 1)

 𝑟𝑚 = {
1 −

 𝑑𝑚

𝑠 × 𝑠𝑑𝑟

, 𝑑𝑚 ≤ 𝑠 × 𝑠𝑑𝑟

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Where 𝑟𝑚 presents the similarity between 𝑡𝑖𝑚 𝑎𝑛𝑑 𝑡𝑖𝑚+1 and 𝑑𝑚 is distance between 𝑡𝑖𝑚 𝑎𝑛𝑑 𝑡𝑖𝑚+1 and 𝑠𝑑𝑟 is standard

deviation of 𝑑𝑚 and 𝑠 is a control parameter which is used to decide the shape of mfs of similarity.

d) Cluster the 𝑡𝑖 according to similarity

For clustering the instances, the value of µ for similarity is identified. Value of µ is used to identify the threshold value two

adjacent data, where adjacent data belongs to similar class. With maximum value of µ, clusters will be smaller.

12

If 𝑟𝑚 ≤ µ then [distribute the two adjacent data into different clusters] otherwise [keep two adjacent data into similar

cluster]

Result is obtained in the form like: (𝑡𝑖𝑚, 𝐶𝑜), after the above operation. (𝑡𝑖𝑚, 𝐶𝑜) represents that m
th

 output data is

clustered into the 𝐶𝑜 (where 𝐶𝑜 is o
th

 produced fuzzy region).

Suppose value of µ is 8, then training data clustered into groups: (𝑡𝑖1, 𝐶1), (𝑡𝑖2, 𝐶1), (𝑡𝑖3, 𝐶2), (𝑡𝑖4, 𝐶1), (𝑡𝑖5, 𝐶3), (𝑡𝑖6, 𝐶1),

(𝑡𝑖7, 𝐶3), (𝑡𝑖8, 𝐶2).

e) Identify the membership functions of the output space

We used membership functions for every linguistic variable. Minimum value of µ in the cluster is selected as value of

membership of the two extreme points (𝑡𝑖𝑚 𝑎𝑛𝑑 𝑡𝑖𝑞) of boundary to determine the membership of 𝑡𝑖𝑚 𝑎𝑛𝑑 𝑡𝑖𝑞. Formula

used to calculate 𝜌𝑜 (𝑡𝑖𝑚) and 𝜌𝑜 (𝑡𝑖𝑞):

 𝜌𝑜 (𝑡𝑖𝑚) = 𝜌𝑜 (𝑡𝑖𝑞) = minimum (𝑟𝑚+1, 𝑟𝑚+2, … … … . 𝑟𝑞−1)

f) Determine the value of membership which belongs to the selected cluster for every instance

Fuzzy value formed as (𝑡𝑖𝑚, 𝐶𝑜, 𝜌𝑚𝑜) of each output data is retrieved by using above membership functions. Term (𝑡𝑖𝑚,

 𝐶𝑜, 𝜌𝑚𝑜) referred as fuzzy value (𝜌𝑚𝑜) to the cluster (𝐶𝑜) of output data (m
th

). Every ti is then represented as after

transformation:

(𝑓1, 𝑓2, … … 𝑓ℎ; (𝐶1, 𝜌1), (𝐶2, 𝜌2), … … . (𝐶𝑞 , 𝜌𝑞))

ii) Create initial membership functions for input attributes

Initial membership function is assigned to every input attribute, which is represented as: triangle (j, k, l) with k - j = l - k =

the smallest predefined unit. For example: smallest unit is selected to be 10 if 10, 20 and 30 are three values of an attribute.

We have assumed for the attribute that 𝑗0 be its smallest value and 𝑗𝑛 be its biggest value.

iii) Create the initial decision table

Based on initial membership functions, a multi-dimensional decision table is created in which every attribute is represented

by every dimension and position’s content in the decision table is treated as Slot. To represent the position’s content of

(𝑤1, 𝑤2, 𝑤3 … … … . . 𝑤𝑡) in the decision table, 𝑆𝑙𝑜𝑡(𝑤1,𝑤2,𝑤3………..𝑤𝑡) is created, where position value at the m
th

dimension is

represented by 𝑤𝑚 and dimension of decision table is represented by t. Every slot can be empty or contain a maximum

value of membership of the output data. Slots cannot be empty.

iv) Simplify the initial decision table

To eliminate redundant and unnecessary, initial decision table can be simplified in following ways:

a) Merge two columns/rows into single if slots in two adjacent rows/columns are the same. Example: Two columns

Temperature = 18 °C and Temperature = 19 °C are merged into single if all the slots in the adjacent columns

[Temperature = 18 °C and Temperature = 19 °C] are the same.

b) Merge two rows/columns into single if two slots are the same or (if any slot is empty in two adjacent

rows/columns and minimum one slot in both the rows/columns is non-empty). Example: Two rows Temperature =

40 °C and Temperature = 41 °C, are merged into single.

Based on above mentioned two rules (a and b), membership functions can be rebuilt for simplification process.

v) Derive decision rules from the decision table

To derive a Fuzzy rule (if-then), every slot (𝑆𝑙𝑜𝑡(𝑤1,𝑤2,𝑤3………..𝑤𝑡) = 𝐶0) is used in decision table:

Rule 1: If {𝐴11˄/˅𝐴12 ˄/˅𝐴13 ˄/˅…………………………………….. ˄/˅𝐴1𝑛} then 𝐶1

13

Rule 2: If {𝐴21˄/˅𝐴22 ˄/˅𝐴23 ˄/˅…………………………………….. ˄/˅𝐴2𝑛} then 𝐶2

Rule 3: If {𝐴31˄/˅𝐴32 ˄/˅𝐴33 ˄/˅…………………………………….. ˄/˅𝐴3𝑛} then 𝐶3

 . .

 . .

Rule m: If {𝐴𝑚1˄/˅𝐴𝑚2 ˄/˅𝐴𝑚3 ˄/˅…………………………………….. ˄/˅𝐴𝑚𝑛} then 𝐶𝑚

Where 𝐴𝑖𝑗 is an attribute to be retrieved and 𝐶𝑘 is an output. Data is gathered from AaaS database through various sub

processes in fuzzy inference process and based on fuzzy inference rules and their corresponding membership functions,

decisions are derived. Following steps are performed to find a final result from the input given by user through the use of

inference process:

1. According to the derived membership functions, numeric input values are transformed into linguistic terms.

2. To determine the output groups, linguistic terms and the decision rules are matching.

3. To form the final decision, Defuzzification of output groups is performed.

For Example: user wants to retrieve the productivity level using Agri-Info.

User Request Crop Name Temperature Soil Texture Season Pesticide Fertilizer Productivity

Soybean 21-27 °C Slity Loam Clay Winter Organochlorine Urea ?

Agri-Info using following rule to find the productivity level using Training Instance Dataset (TID):

Rule: If {𝐶𝑟𝑜𝑝 𝑁𝑎𝑚𝑒˄ Temperature ˄ Soil Texture ˄ Season ˄ Pesticide ˄ Fertilizer} then𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦

Agri-Info Response Crop Name Temperature Soil Texture Season Pesticide Fertilizer Productivity

Soybean 21-27 °C Slity Loam Clay Winter Organochlorine Urea C

Similarly, any type of request related to different domains can be asked by user and Agri-Info executes the user request and

send response back to particular user automatically based on the rules defined in AaaS database. Through Agri-Info, users

can easily diagnosis the agriculture status automatically.

3.2.3 Infrastructure Management

Efficient management of infrastructure in cloud is mandatory to maintain the performance of the Agri-Info. It comprises of

two sub units: QoS Manager and Autonomic Resource Manager.

3.2.3.1 QoS Manager

User submits a request to Agri-Info to retrieve some specific agriculture related information. Agri-Info identifies the QoS

parameters required to process the user request through analysis based on user request. Based on the key QoS requirements

of a particular user request, the QoS Manager puts the user request into critical and non-critical queues through QoS

assessment [14]. For QoS assessment, QoS Manager will calculate the execution time of user request and find the

approximate user request completion time. If the completion time is lesser than the desired deadline then it will execute

immediately with the available resources and release the resource(s) back to resource manager for another execution

otherwise calculate extra number of resources required and provide from the reserved stock for current execution. The first

state for every user request is submission, based on key QoS requirements of user request the next state will be decided

either Non-QoS (non-critical) or QoS (Quality oriented user request i.e. critical). After Non-QoS state, if there is no other

user request before that then it will execute directly otherwise put into non-critical queue for waiting. After successful

execution of user request, the user request is completed. On the other hand, all the QoS oriented user requests are put into

critical queue and sorted based on their priority decided by QoS Manager [15]. If there is no obstacle (urgency, more

resource requirement etc.) then execute directly with available resources otherwise put into under scheduling state to fulfill

the user requirements. If all the conditions will meet in the given resource and time constraints then it will execute

otherwise it will be not executed. For instance, when a user request requires low amount of resources, it will assign

resources with lower capability, so that new requests can be served.

14

3.2.3.2 Autonomic Resource Manager

Agri-Info executes the user requests as shown in Figure 10. Firstly, QoS manager predicts the QoS requirements. Based on

QoS information, resources requirement is predicted based on type of request: Non-QoS (non-critical) or QoS (Quality

oriented user request i.e. critical). After resource requirements prediction, resources are allocated to process different type

of user request.

We used evolutionary algorithm i.e. Cuckoo Optimization (CO) Algorithm for resource allocation in this research work due

to following reasons: i) adaptable in dynamic environment, ii) easy integration with traditional optimizations algorithms

and iii) ability to allocate resources to jobs without human expertise (autonomic approach) [19]. This algorithm is basically

inspired by life of bird i.e. cuckoo. CO Algorithm adopts cuckoo’s lifestyle and their characteristics of laying eggs.

CO Algorithm is modified according to the requirements of allocation of resources in this research work. We have

considered initial population as a resource set (𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑒𝑡) based on the different values of resource utilization (𝑅𝑈𝑖)

and sorted different resource set in decreasing order (𝑅𝑈1 ≥ 𝑅𝑈2 ≥ ⋯ ≥ 𝑅𝑈𝑛). There are two types of regions

considered: Existing Resources (mature cuckoo) and their New Instances (eggs). The aim of CO Algorithm in our context

is to improve resource utilization and minimize the value of 𝑹𝒆𝒒𝒖𝒆𝒔𝒕𝒔𝑴𝒊𝒔𝒔𝒆𝒅. Resource Utilization is a ratio of actual time

spent by resource to execute workload to total uptime of resource for single resource [Eq. (4)].

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑖 = ∑ (
𝑎𝑐𝑡𝑢𝑎𝑙 𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑏𝑦 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 𝑢𝑠𝑒𝑟 𝑟𝑒𝑞𝑢𝑒𝑠𝑡(𝑠)

𝑡𝑜𝑡𝑎𝑙 𝑢𝑝𝑡𝑖𝑚𝑒 𝑜𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒
)

𝑛

𝑖=1

 (4)

Figure 8 shows the steps of Cuckoo Optimization based resource allocation algorithm. Flowchart of Cuckoo Optimization

based resource allocation algorithm is shown in Figure 9. The main functions of Cuckoo Optimization based resource

allocation algorithm is described below:

I. Generating Regions of Resources: In CO Algorithm, we considered habitat as a resource set (𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑒𝑡). In m-

dimensional optimization problem, resource set is array of 1×m, representing the set of active resources as follows:

 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑒𝑡 = [𝑅1, 𝑅2, … … … . . 𝑅𝑚], where 𝑅𝑗 is resource.

The profit of a resource set is discovered by evaluation of profit function, 𝑝𝑓 at a resource set of

(𝑅1, 𝑅2, … … … . . 𝑅𝑚). So

Profit = 𝑝𝑓 (𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑒𝑡) = 𝑝𝑓(𝑅1, 𝑅2, … … … . . 𝑅𝑚)

As it seen the CO Algorithm maximizes the resource utilization by executing maximum number of user requests. For

cost optimization of resource allocation, maximize the profit function in terms of cost (𝑐𝑓) described below:

 Profit = −𝐶𝑜𝑠𝑡 (𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑒𝑡) = − 𝑐𝑓(𝑅1, 𝑅2, … … … . . 𝑅𝑚)

To apply this Cuckoo Optimization based resource allocation algorithm, candidate matrix of size 𝑚 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑒𝑡
×m is

created and some random number of instances are assumed for initial 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑒𝑡. In this research work, we have

fixed the range of instances from 5 to 15 instances. Region of resource set is defined based on ELR (Egg Laying

Radius) i.e. maximum values of number of user request a resource set can execute [Eq. (5)].

ELR = 𝛾 × (
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑏𝑦 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑠𝑒𝑡

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
) × (𝑖𝑢 − 𝑖𝑙) (5)

Where 𝑖𝑢 is upper limit of variable and 𝑖𝑙 is lower limit of variable and 𝛾 is an integer to handle maximum value of

ELR.

II. Create Instances: Every resource set creates instances in their specified regions based on ELR. Only those instances

kept which has maximum value of resource utilization and detected as a stable and remove those instances in which

Resource Consumption > Threshold Value by declaring those instances as a unstable.

III. Select the Target Set of User Requests: To perform this step, Cuckoo Optimization based resource allocation

algorithm: a) determine value of 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑀𝑖𝑠𝑠𝑒𝑑 of different resource set, b) select best resource set with minimum

value of 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑀𝑖𝑠𝑠𝑒𝑑 and c) execute the set of user requests on selected resource set. Based on the profit of

resource set and similar characteristics of user requests, target set of user requests is selected. If more number similar

user requests are required to execute simultaneously, then resource set with similar resource configuration is clustered

through k-means based clustering algorithm [15] to speed up the execution. Similarity of user requests identified based

on execution time and cost to execute the user request.

15

IV. Remove dead resources: 𝑖𝑢 is the maximum value of resource which can keep in one resource set. Based on resource

utilization in terms of profit, the resource with less profit value will be removed for effective control on resources.

ALGORITHM 2: Resource Allocation

1. Initialize resource set with some value of resource utilization.

2. Define some instances of resource to execute user requests.

3. Define region (ELR) for each resource in which that resource can execute user requests

4. Let resource to create instances inside their corresponding region using ELR

5. To keep efficient resources in resource pool and remove those resources in which

𝑹𝒆𝒒𝒖𝒆𝒔𝒕𝒔𝑴𝒊𝒔𝒔𝒆𝒅 > Threshold Value.

6. Add new resource and allocate (if required)

7. Evaluate the resource consumption of every instance in resource set

8. Remove those instances in which Resource Consumption > Threshold Value

9. Cluster resources and find best resource set and select the target set of user requests

10. Let new resource set execute the target set of user requests

11. if all the user requests are executed then Stop else GOTO step 2.

Figure 8: Cuckoo Optimization based resource allocation algorithm

This algorithm starts with initial population i.e. resource set (𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑒𝑡). Initially, every resource set has some instances

to execute the user requests. Some of the instances have the tendency to execute more user requests and become stable

based on value of resource utilization for further execution but some instances of resources are detected as inefficient and

unstable and are removed (if all the instances are inefficient). More the instances are stable, more the value of resource

utilization. The objective of this detection is finding the stable instances to execute more number of user requests. After

achieving the required value of resource utilization, resource set forms new regions based on ELR (Egg Laying Radius).

Each region has their own set of resources with different resource configuration and every resource set defines instances in

different regions. After this, it will check resource requirement to check whether the provided resources are enough to

execute the current set of user requests. In case of lesser number of resources, new resources will be provided to continue

the execution. For successful execution of resources, value of 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑀𝑖𝑠𝑠𝑒𝑑 and Resource Consumption is lesser than

threshold value otherwise performance monitor will generate alert. Restart the resource and same execution is performed

twice, if Agri-Info fails to correct it then it system will treated as down and removed and then new resources will be

provided to continue the execution. If resource consumption is less than threshold value and value of 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑀𝑖𝑠𝑠𝑒𝑑 is

lesser than threshold value then execution of resources continues. Based on the requirements of user request, resources are

clustered and start execution of user requests. Agri-Info monitors periodically through monitor whether all the user requests

are executed or not. If not then Agri-Info further performs following four steps to execute the pending user requests:

 Create the new instances of resources.

 Determine Value of 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑀𝑖𝑠𝑠𝑒𝑑 of Different Resource Set.

 Select Best Resource Set with Minimum Value of 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑀𝑖𝑠𝑠𝑒𝑑 .

 Execute the Set of User Requests on Selected Resource Set.

After allocation of resources, actual execution of user requests is started. During execution of user requests, performance is

monitored continuously using sub unit performance monitors to maintain the efficiency of Agri-Info and generates alert in

case of performance degradation. Alerts can be generated in two conditions generally: i) if resource consumption is more

than threshold values of resource consumption to execute user request (Action: Reallocates resources) and ii) if the number

of missed requests are greater than the threshold value (Action: Predict QoS Requirements Again). Working of sub units

described in Figure 10 as: Monitor [M], Analyze and Plan [AP] and Executor [E]. Same action is performed twice, if Agri-

Info fails to correct it then system will be treated as down. JADE is used to establish the communication among Autonomic

Elements (AEs) and exchanging information for updates and all the updated information is stored in centralized database

for future usage and backup of corresponding updates is also maintained in case of failure of database. Working of

autonomic element of Agri-Info is based on IBM’s autonomic model [17] that considers four steps of autonomic system: i)

monitor, ii) analyze, iii) plan and iv) execute.

16

 Yes

 No

 Yes

 No

 Yes

 No

 Yes

Figure 9: Flowchart of Cuckoo Optimization based resource allocation algorithm

3.2.3.2.1 Sensors

Sensors get the information about performance of other nodes using in the system and their current state. Firstly, the

updated information from processing nodes is transfer to manager node then manager node transfers this information to

sensors. Updated information includes information about QoS parameters (execution time, execution cost and resource

utilization etc.).

Resource Required<

Provided Resources

Let Resources to Create

Instances

Start

Initialize Resources with Instances

Define Instances in Different Regions

Check Resource Requirement

 (𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑀𝑖𝑠𝑠𝑒𝑑 >

Threshold Value)

Resource Consumption

> Threshold Value

If all the user requests

are executed?

Cluster Resources

Execute the Set of User Requests

Add New

Resource(s)

Remove Dead

Node

Declared Current

Resource is dead

Node

Stop

Determine Value of

𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑀𝑖𝑠𝑠𝑒𝑑 of

Different Resource Set

Select Best Resource Set

with Minimum Value of

𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑀𝑖𝑠𝑠𝑒𝑑

Execute the Set of User

Requests on Selected

Resource Set

17

 No

 Yes

 No

 Yes

Figure 10: Autonomic Execution of Resources

3.2.3.2.2 Monitor [M]

Initially, Monitors are used to collect the information from sensors for monitoring continuously performance variations by

comparing expected and actual performance. Actual information about performance is observed based QoS parameters and

transfers this information to next module for further analysis.

3.2.3.2.3. Analysis and Plan [AP]

Analyze and plan module start analyzing the information received from monitoring module and make a plan for adequate

actions for corresponding alert. We have used following formula to calculate Resource Consumption [Eq. (6)]:

 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑖 = ∑ (
Actual Resource Usage

Predicted Resource Usage
)

𝑛

𝑖=1
 (6)

Where Actual Resource Usage is usage of resource to execute particular number of user requests and

Predicted Resource Usage is resource usage estimated before actual execution and n is the number of resources. Value of

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 is more than 1 generally because Actual Resource Usage is more than

Predicted Resource Usage but ideally it will be 1 when both are equal. In our research work, we have fixed maximum

values for 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 and that is called threshold value. We have used following formula to calculate

number of requests missed (𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑀𝑖𝑠𝑠𝑒𝑑) in a particular period of time [Eq. (7)]:

Check Current Resource

Consumption (RC) [M]

RC<

Threshold

Reallocate

Resources [AP]

Check Number of Missed

Requests [M]

Missed Requests

< Threshold

QoS Requirements Prediction

Resource Requirements Prediction

Allocate Resources

Execute Resources [E]

18

𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑀𝑖𝑠𝑠𝑒𝑑 = [Number of Requests Executed Successfully – Number of Requests Missed Deadline] (7)

For successful execution of resources, value of 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑀𝑖𝑠𝑠𝑒𝑑 is lesser than threshold value

[ALGORITHM 3: Analyzing Unit (AU)] is used to analyses the performance of management of resources as shown in

Figure 11.

ALGORITHM 3: Analyzing Unit (AU)

Check Resource Requirement

 if (Provided Resources < Required Resources) then
 Allocate new resources by using [Algorithm 2]

 elseif

 Generate Alert

 end if

Check Resource Consumption

 if (Resource Consumption > Threshold Value) then

 Restart the resource and start execution

 elseif

 Reallocate resources by using [Algorithm 2]

 elseif
 Current resource is declared as dead resource

 Allocate new resources by using [Algorithm 2]

 elseif

 Generate Alert

 end if

Check Number of Requests Missed

 if (𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑀𝑖𝑠𝑠𝑒𝑑 > Threshold Value) then

 Restart the resource and start execution

 elseif

 Reallocate resources by using [Algorithm 2]

 elseif
 Current resource is declared as dead resource
 Allocate new resources by using [Algorithm 2]

 elseif

 Generate Alert

 end if

Figure 11: Algorithm for Analysis and Planning

With the help of (Eq. 6) and (Eq. 7), resource consumption is calculated and allocates the resources for execution and then

compares the resource consumption with threshold value. If resource consumption is less than threshold value and value of

𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑀𝑖𝑠𝑠𝑒𝑑 is lesser than threshold value then execution of resources continues otherwise no resource is allocated and

process of reallocation is started using [Algorithm 2]. After meeting this condition, resources are allocated for further

execution and value of resource consumption and 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑀𝑖𝑠𝑠𝑒𝑑 are checked periodically. In case of more value than

threshold, alert will be generated by performance monitor.

3.2.3.2.4 Executor [E]

Executor implements the plan after analyzing completely. To reduce the execution time and execution cost and improve

resource utilization is a main objective of executor. Based on the output given by analysis and executor tracks the new user

request submission and resource addition, and take the action according to rules described in knowledge base.

3.2.3.2.5 Effector

Effector is used to exchange updated information and it is used to transfer the new policies, rules and alerts to other nodes

with updated information.

4. Implementation and Experimental Results

We have used empirical methods and simulation to evaluate the performance of Agri-Info. Tools used for setting cloud

environment for empirical evaluation are Microsoft Visual Studio 2010, NetBeans IDE 7.1.2, Oracle Java SDK V.6, Aneka

[26], SQL Server 2008, JADE Platform (for agents). Microsoft Visual Studio 2010 is an Integrated Development

Environment from Microsoft. JADE is used to establish the communication among devices and exchanging information for

19

updates and all the updated information is stored in centralized database for future usage and backup of corresponding

updates is also maintained in case of failure of database. Aneka has been installed along with its requirements on all the

nodes which provide cloud service. Nodes in this system can be added or removed based on the requirement. We have

verified QoS-aware Cloud Based Autonomic Information System for agriculture service called Agri-Info in cloud

environment. The integration of multiple environments used to conduct experiments is shown in Figure 12.

Figure 12: Cloud Environment at Thapar University [Thapar Cloud]

Agri-Info is installed on main server and tested on virtual cloud environment that has been established at High Performance

Computing Lab at Thapar University, India. We installed different number of virtual machines on different servers, and

deployed the QoS based autonomic resource management technique to measure the variations. In this experimental setup,

three different cloud platforms are used: Software as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a

Service (IaaS). At software level, Microsoft Visual Studio 2010 is used to develop e-agriculture web service to provide user

interface in which user can access service from any geographical location. At platform level, Aneka cloud application

platform [26] is used as a scalable cloud middleware to make interaction between IaaS and SaaS, and continually monitor

the performance of the system. Aneka is a framework for development, deployment, and management of cloud

applications. It consists of a scalable cloud middleware that is deployed on top of heterogeneous computing resources and

an extensible collection of services coordinating the execution of applications, monitoring the status of the cloud, and

providing integration with existing cloud technologies. Aneka harnesses the computing resources of a heterogeneous

network of workstations, clusters, grids, servers, and data centers, on demand. Aneka provides developers with a rich set of

APIs for transparently exploiting such resources and expressing the business logic of applications by using the preferred

programming abstractions. System administrators leverage a collection of tools to monitor and control the cloud, which can

be a public virtual infrastructure available through the Internet, a network of computing nodes in the premises of an

enterprise, or their combination [24] [25] [26]. At infrastructure level, three different servers (consist of computing nodes)

have been used to test the resource scheduling algorithm which allocates resources to process the different user requests at

runtime. Computing nodes used in this experiment work are further categorized into four categories as shown in Table 4.

Table 4: Configuration Details of Thapar Cloud

Configuration Specifications Operating System Node

Intel Core 2 Duo - 2.4 GHz 1 GB RAM and 160 GB HDD Window 6

Intel Core i5-2310- 2.9GHz 1 GB RAM and 160 GB HDD Linux 4

Intel XEON E 52407-2.2 GHz 2 GB RAM and 320 GB HDD Linux 2

.NET FRAMEWORK

SQL

SERVER

Cloud

Consumer

Cloud Infrastructure (IaaS)

 JADE

 Agent

ANEKA (PaaS)

 [e-Agriculture]

(SaaS)

20

4.1. Empirical Evaluation – Autonomic Resource Scheduling on Cloud Testbed

The aim of this empirical study is to demonstrate that it is feasible to implement and deploy the autonomic resource

management technique on real cloud resources. Nodes in this system can be added or removed at runtime by autonomic

resource manager based on the requirement. The key components of the cloud environment are: user interface, web service

(e-agriculture), Aneka, resource scheduler and resources. A detailed discussion of the implementation using the Aneka can

be found in [26]. However, to enable the understanding of the cloud based environment in which the proposed autonomic

resource management technique is implemented, we briefly present its working as follows:

1) Cloud consumer submits their request to user interface that contains the workload description (Number of user

requests to be processed).

2) Cloud based web service of Agri-Info (e-agriculture) is deployed on Aneka Platform (used as a scalable cloud

middleware to make interaction between SaaS and IaaS).

3) Resource configuration is identified to schedule the number of workloads (list of submitted user requests).

4) Resource scheduler schedules the resources to the workloads based on the resource allocation algorithm as

discussed in Section 3.2.3.2 based on QoS requirements as described by cloud consumer.

5) Autonomic resource manager uses Sensors to measure the performance of system in terms of QoS to avoid under-

loading and overloading of resources and updated information is exchanged between all the autonomic units

through Effector.

6) After successful execution of user requests, this further returns the resources to resource pool.

7) At the end, the autonomic unit returns updated experiment data along with processed request (workload) back to

the cloud consumer.

We have performed the different number of experiments in different type of verification by comparing Agri-Info (QoS-

aware Autonomic) with non-QoS based resource management technique (non-autonomic) in which no QoS parameter and

autonomic scheduling mechanism are considered while allocating resources to process the user requests. Experiment has

been conducted with different number of user requests (1-70) for verification of execution cost, execution time, resource

utilization and latency [15] [16]. To validate Agri-Info, we have presented performance evaluation through a web service

i.e. e-Agriculture cloud by considering QoS parameters at service level [23].

We have developed this proposed system due to following main reasons:

 It is difficult to discuss the technical queries manually, if expert is not present at same office, and managing a meeting

personally.

 It is wastage of time to search for and to traverse all the documents listed manually.

Cloud based e-Agriculture web service is global Community of practice, where users [(i) agriculture expert, (ii) agriculture

officer and (iii) farmer] from all over the world exchange information, ideas, and resources related to the use of information

and communication technologies (ICT) for sustainable agriculture for different domains. The e-Agriculture utilizes

information, imaging and communication technologies coupled with applications of the internet for the purpose of

providing enhanced agriculture services and information to the farmer and farming community. The e-Agriculture is

implemented as centralized system in cloud environment. Several users make use of this system from several locations.

Users send their request to the Agri-Info and the Agri-Info gives a response to the request submitted by the user. The

various users make use of the system depending upon the rights given to the user. The users login into the Agri-Info and

access the database. This computerized control of the several aspects related to the agriculture to a better management of

the different domains such as crops etc. going on in the environment which leads to an improvement in efficiency of work

and leads to the customer satisfaction and trust in the organization owing to the timely and proper management. The main

objectives to develop a cloud based e-Agriculture web service are:

 To give suggestions to the user queries coming from different domains of agriculture.

 To provide accurate information to users and save time of users.

 Multiple farmers can communicate with each other and discuss their problems and any enquiry about any domain.

User interface of cloud based e-Agriculture web service is shown in Figure 13.

21

Figure 13: User interface of Cloud based e-Agriculture Web Service

Main functions of cloud based e-Agriculture web service are: searching information using quick search, viewing resource

(equipment and tools uses in agriculture) information, get crop status, latest news etc. Figure 14 shows the searching of

crop in cloud based e-Agriculture web service. Figure15 shows processing of query by cloud based e-Agriculture web

service and results after execution of query.

22

Figure 14: Crop Searching in Cloud based e-Agriculture Web Service

Figure 15: Query Processing and Results in Cloud based e-Agriculture Web Service

Existing agriculture system manages resources without considering the concept of autonomic and QoS parameters, which

leads to performance degradation. To solve this problem, we have considered four QoS parameters [16] to validate Agri-

Info which clearly shows that QoS based autonomic resource management techniques performs better. With increasing the

number of user requests, the value of latency is increasing. The value of latency in QoS-aware autonomic system is lesser

as compared to non-autonomic based resource scheduling (non-autonomic) at different number of user requests as shown in

23

Figure 16. The maximum value of latency is 220 seconds and minimum value of latency is 65 seconds in QoS-aware

autonomic resource management technique.

We have calculated value of average cost for both QoS-aware cloud based autonomic resource management technique

(QoS-aware autonomic) and non-QoS based resource management (non-autonomic) with different number of user requests

as shown in Figure 17. Execution Cost is an addition of resource cost and penalty cost. Agri-Info defined the different

levels of penalty rate based on QoS requirements. Delay time is difference of deadline and time when workload is actually

completed. Average cost is increasing with increase in number of user requests. QoS-aware autonomic performs excellent

with different number of user requests. At 70 user requests, average cost in QoS-aware autonomic is 37.6 % lesser than

non-QoS based resource management technique.

Figure 16: Influence of Change in Number of User Requests on Latency

 Figure 17: Influence of Change in Number of User Requests on Average Cost

Figure 18: Effect of Execution Time with Change in Number of User Requests

Figure 19: Influence of Change in Number of User Requests on Resource

Utilization

As shown in Figure 18, the execution time is increasing with increase in number of workloads. At 45 user requests,

execution time in QoS-aware autonomic resource management technique (QoS-aware autonomic) is 33% lesser than non-

QoS based resource management technique. After 30 user requests, execution time increases abruptly in non-QoS based

resource management technique but QoS-aware autonomic performs better than non-autonomic technique. With increasing

the number of user requests, the percentage of resource utilization is increasing. The percentage of resource utilization in

QoS-aware autonomic resource management technique (QoS-aware autonomic) is more as compared to non-QoS based

resource management (non-autonomic) at different number of user requests as shown in Figure 19. The maximum

percentage of resource utilization is 94.66% at 65 user requests in QoS-aware autonomic but QoS-aware autonomic

performs better than non-autonomic technique. Table 5 describes the comparison of execution time used to process

different number of queries (small, medium and large) on cloud environment for Agri-Info (QoS-aware Autonomic) and

non-QoS based resource management technique (non-autonomic).

In this experiment, we have considered two different cloud infrastructures with different processor configurations (4 core

processor and 8 core processor) to measure the variation of execution time with different number of user queries. Due to

limited experimental evaluation on real cloud environment, detailed analysis of QoS offering has been conducted through

cloud based simulated environment using CloudSim [28].

0

50

100

150

200

250

300

10 20 30 40 50 60 70

L
a

te
n

c
y

(S

e
c
o

n
d

s)

Number of User Requests

QoS-aware

Autonomic

Non-Autonomic

0

20

40

60

80

100

120

10 20 30 40 50 60 70

C
o

st
 (

G
$

)

Number of User Requests

Non-Autonomic

QoS-aware

Autonomic

0

50

100

150

200

250

10 20 30 40 50 60 70

E
x
e
c
u

ti
o

n
 T

im
e
 (

S
e
c
)

Number of User Requests

QoS-aware

Autonomic

Non-Autonomic

0

20

40

60

80

100

10 20 30 40 50 60 65

R
es

o
u

r
c
e
 U

ti
li

z
a

ti
o

n
 (

%
)

Number of User Requests

Non-Autonomic

QoS-aware

Autonomic

24

Table 5: Variation of Execution Time with Number of User Queries

Number of User Queries

Execution Time (Secs)

4 Cores Processor 8 Cores Processor

QoS-aware Autonomic Non-Autonomic QoS-aware Autonomic Non-Autonomic

Small (1-20) 10 15 316 158

Medium (21-45) 76 100 698 1636

Large (46-70) 763 1624 4274 19358

5. Simulation Based Experimental Results

A variety of techniques and technologies exist for carrying out performance evaluation of resource management and

scheduling algorithms by using evaluation techniques like analytical and simulation. Some of the notable cloud tools are

CloudSim and Cloud Analyst for simulation. Simulation allows the creation of large-scale virtual cloud environments, and

usage and availability scenarios that can be repeated and controlled. We have selected CloudSim [28] for simulation as it

supports both system and behavior modeling of cloud system components such as data centers, Virtual Machines (VMs)

and resource scheduling policies. CloudSim also supports modeling and simulation of cloud computing environments

consisting of both single and inter-networked clouds (federation of Clouds). Moreover, it exposes custom interfaces for

implementing policies and scheduling techniques for allocation of VMs under inter-networked cloud computing scenarios.

CloudSim has been installed along with its requirements using NetBeans which provide cloud service. 3000 independent

cloud workloads (user requests) were generated randomly in CloudSim as Cloudlets. Table 6 shows the characteristics of

resources and cloudlets (workloads) that have been used for all the experiments. User cloud workloads are modeled as

independent parallel applications are modeled which is compute-intensive. Thus the data dependency among the cloud

workloads in the parallel applications is negligible. Each cloud workload is parallel and is hence considered to be

independent of any other cloud workload.

Table 6: Scheduling Parameters and their Values
Parameter Value

Number of resources 50-250

Number of Cloudlets (Workloads) 3000

Bandwidth 100 - 1500 B/S

Size of Cloud Workload 10000+ (10%–30%) MB

Number of PEs per machine 1

PE ratings 100-4000 MIPS

Cost per Cloud Workload $3–$5

Memory Size 2048-12576 MB

File size 300 + (15%–40%) MB

Cloud Workload output size 300 + (15%–50%) MB

We have performed the different number of experiments by comparing Agri-Info (QoS-aware Autonomic) with non-QoS

based resource management technique (non-autonomic) in which no QoS parameter and autonomic scheduling mechanism

is considered. Non-QoS based resource scheduling technique used for experimental evaluation in this paper has been done

designed by combining two traditional resource scheduling algorithms (First Come First Serve FCFS and Round Robin), in

which resources are scheduled without considering QoS parameters. Experiment has been conducted with different number

of workloads (500-3000) for verification of execution cost, execution time, resource utilization, computing capacity,

availability, network bandwidth, customer satisfaction and latency and one performance metric (number of user request

missed) to validate Agri-Info [15] [16]. Performance of all the QoS parameters and one performance metric have been

evaluated and as compared with non-autonomic based resource scheduling. For verifying our proposed framework, we have

conducted simulation based experiments with the variations in the number of workloads submitted.

Test Case 1: Availability: It is a ratio of Mean Time Between Failure (MTBF) to Reliability [Eq. (8)].

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹 + 𝑀𝑇𝑇𝑅
 (8)

25

Where Mean Time Between Failure (MTBF) is ratio of total uptime to number of breakdowns [Eq. (9)].

𝑀𝑇𝐵𝐹 =
𝑇𝑜𝑡𝑎𝑙 𝑈𝑝𝑡𝑖𝑚𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛𝑠
 (9)

Where Mean Time To Repair (MTTR) is ratio of total downtime to number of breakdowns [Eq. (10)].

𝑀𝑇𝑇𝑅 =
𝑇𝑜𝑡𝑎𝑙 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛𝑠
 (10)

We have calculated percentage of availability for both QoS-aware Cloud Based Autonomic Information System (QoS-

aware autonomic) and non-QoS based resource management technique (non-autonomic). With increasing the number of

cloud workloads, the percentage of availability is decreasing. The percentage of availability in QoS-aware autonomic is

more as compared to non-QoS based resource management technique (non-autonomic) at different number of cloud

workloads as shown in Figure 20. The maximum percentage of availability is 89.9 % at 500 cloud workloads.

Figure 20: Influence of Change in Number of Workloads Submitted on Availability

Test Case 2: Network Bandwidth: The network bandwidth can be calculated as number of bits transferred/received in a

particular workload in one second. It can be formulated as follows [Eq. (11)]:

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑖𝑡𝑠 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑒𝑑

𝑆𝑒𝑐𝑜𝑛𝑑
 (11)

We have compared the value of network bandwidth of QoS-aware Cloud Based Autonomic Information System (QoS-

aware autonomic) with non-QoS based resource management technique (non-autonomic) is shown in Figure 21. QoS-aware

autonomic is performing better than non-autonomic after 2000 workloads. At 3000 workloads, network bandwidth using in

QoS-aware autonomic is 18.98% lesser than non-QoS based resource management technique.

Test Case 3: Customer Satisfaction: The Confidence and Fulfillment Matrix based on satisfaction level of Cloud Service

as shown in Table 7 and calculated as follows [Eq. (12)]:

𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑆𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛 =
Number of workloads completed successfully within their budget and deadline

Total number of workloads submitted
 (12)

We have calculated percentage of Customer Satisfaction for both QoS-aware Cloud Based Autonomic Information System

(QoS-aware autonomic) and non-QoS based resource management technique (non-autonomic).

0

20

40

60

80

100

500 1000 1500 2000 2500 3000

A
va

ila
b

ili
ty

 (
%

)

Number of Workloads

Non-Autonomic

QoS-aware Autonomic

26

Figure 21: Influence of Change in Number of Workloads Submitted on Network Bandwidth

TABLE 7: CONFIDENCE AND FULFILLMENT MATRIX [16]

Customer Satisfaction Level Confidence (%)

Very Satisfied 100

Satisfied 75

Neutral 50

Dissatisfied 25

Completely Dissatisfied 0

With increasing the number of cloud workloads, the percentage of availability is decreasing. The percentage of Customer

Satisfaction in QoS-aware autonomic is more as compared to non-QoS based resource management technique (non-

autonomic) at different number of cloud workloads as shown in Figure 22. The maximum percentage of Customer

Satisfaction is 90.5 % at 500 cloud workloads.

Figure 22: Influence of Change in Number of Workloads Submitted on Customer Confidence Level

Test Case 4: Number of Requests Missed

We have used following formula to calculate number of requests missed (𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑀𝑖𝑠𝑠𝑒𝑑) in a particular period of time

[Eq. (13)]:

𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑀𝑖𝑠𝑠𝑒𝑑 = [Number of Requests Executed Successfully – Number of Requests Missed Deadline] (13)

We have compared the value of 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑀𝑖𝑠𝑠𝑒𝑑 of QoS-aware Cloud Based Autonomic Information System (QoS-aware

autonomic) with non-QoS based resource management technique (non-autonomic) is shown in Figure 23. QoS-aware

0

200

400

600

800

1000

1200

500 1000 1500 2000 2500 3000

N
et

w
o

rk
 B

an
d

w
id

th
 (

B
/S

)

Number of Workloads

QoS-aware Autonomic

Non-Autonomic

0

20

40

60

80

100

500 1000 1500 2000 2500 3000C
u

st
o

m
er

 C
o

n
fi

d
en

ce
 L

ev
el

 (
%

)

Number of Workloads

QoS-aware Autonomic

Non-Autonomic

27

autonomic is performing better than non-autonomic but at 2500 workloads, the number of requests missed in both the

techniques is same.

Test Case 5: Latency

We have calculated percentage of Customer Satisfaction for both QoS-aware Cloud Based Autonomic Information System

(QoS-aware autonomic) and non-QoS based resource management technique (non-autonomic). Latency is a defined as a

difference of time of input cloud workload and time of output produced with respect to that workload. We have used

following formula to calculate Latency [Eq. (14)]:

𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑖 = ∑(𝑡𝑖𝑚𝑒 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 − 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑜𝑓 𝑐𝑙𝑜𝑢𝑑 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑) (14)

𝑛

𝑖=1

Figure 23: Influence of Change in Number of Workloads Submitted on Number of Requests Missed

With increasing the number of cloud workloads, the value of latency is increasing. The value of latency in QoS-aware

autonomic is lesser as compared to non-autonomic based resource scheduling (non-autonomic) at different number of cloud

workloads as shown in Figure 24. The maximum value of latency is 42.15 and minimum value of latency is 22.26 seconds

in QoS-aware autonomic.

Figure 24: Influence of Change in Number of Workloads Submitted on Latency

Test Case 6: Execution Cost

We have calculated value of average cost for both QoS-aware Cloud Based Autonomic Information System (QoS-aware

autonomic) and non-QoS based resource management (non-autonomic) with different number of cloud workloads as shown

in Figure 25. Execution Cost is an addition of resource cost and penalty cost. Agri-Info defined the different levels of

penalty rate based on QoS requirements. Delay time is difference of deadline and time when workload is actually

completed. We have used following formula to calculate average cost [Eq. (15)].

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑜𝑠𝑡 = 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝐶𝑜𝑠𝑡 + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝐶𝑜𝑠𝑡 (15)

0

50

100

150

200

250

300

500 1000 1500 2000 2500 3000

N
u

m
b

er
 o

f
U

se
r

R
eq

u
es

ts

M
is

se
d

Number of Workloads

QoS-aware Autonomic

Non-Autonomic

0

10

20

30

40

50

500 1000 1500 2000 2500 3000

La
te

n
cy

 (
Se

co
n

d
s)

Number of Workloads

QoS-aware Autonomic

Non-Autonomic

28

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝐶𝑜𝑠𝑡 =
𝑇𝑜𝑡𝑎𝑙 𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝐶𝑜𝑠𝑡 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑

𝐻𝑜𝑢𝑟

𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝐶𝑜𝑠𝑡 = ∑(𝑃𝐶𝑖)

𝐶

𝑐=1

𝑃𝐶 = 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑚𝑖𝑛𝑖𝑚𝑢𝑚 + [𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝑅𝑎𝑡𝑒 × 𝐷𝑒𝑙𝑎𝑦 𝑇𝑖𝑚𝑒]

Where c ∈ C, C is set of penalty cost with different levels specified in Agri-Info. Average cost is increasing with increase in

number of workloads. At 500 workloads, average cost of QoS-aware autonomic and non-autonomic technique is almost

same but QoS-aware autonomic performs excellent at 2000-3000 workloads. At 2500 workloads, average cost in QoS-

aware autonomic is 16.66 % lesser than non-QoS based resource management technique.

 Figure 25: Influence of Change in Number of Workloads Submitted on Average Cost

Test Case 7: Execution Time

Execution Time is defined as a ratio of difference of workload finish time (𝑊𝐹𝑖) and workload start time (𝑊𝑆𝑡𝑎𝑟𝑡𝑖) to

number of workloads. We have used following formula to calculate execution time [Eq. (16)].

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑖 = ∑ (
𝑊𝐹𝑖 − 𝑊𝑆𝑡𝑎𝑟𝑡𝑖

𝑛
) (16)

𝑛

𝑖=1

Where 𝑛 is the number of workloads to be executed. As shown in Figure 26, the execution time is increasing with increase

in number of workloads. At 1500 workloads, execution time in QoS-aware Cloud Based Autonomic Information System

(QoS-aware autonomic) is 21.72% lesser than non-QoS based resource management technique. After 1500 workloads,

execution time increases abruptly in non-QoS based resource management technique but QoS-aware autonomic performs

better than non-autonomic technique.

Figure 26: Effect of Execution Time with Change in Number of Workloads

0

100

200

300

400

500 1000 1500 2000 2500 3000

C
o

st
 (

G
$

)

Number of Workloads

Non-Autonomic

QoS-aware Autonomic

0

500

1000

1500

2000

500 1000 1500 2000 2500 3000

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
c)

Number of Workloads

QoS-aware Autonomic

Non-Autonomic

29

Test Case 8: Resource Utilization

Resource Utilization is defined as a ratio of actual time spent by resource to execute workload to total uptime of resource

for single resource. We have used following formula to calculate resource utilization [Eq. (17)].

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑖 = ∑ (
𝑎𝑐𝑡𝑢𝑎𝑙 𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑏𝑦 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑

𝑡𝑜𝑡𝑎𝑙 𝑢𝑝𝑡𝑖𝑚𝑒 𝑜𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒
)

𝑛

𝑖=1

 (17)

Where n is number of workloads. With increasing the number of cloud workloads, the percentage of resource utilization is

increasing. The percentage of resource utilization in QoS-aware Cloud Based Autonomic Information System (QoS-aware

autonomic) is more as compared to non-QoS based resource management (non-autonomic) at different number of cloud

workloads as shown in Figure 27. The maximum percentage of resource utilization is 91.67% at 3000 cloud workloads in

QoS-aware autonomic but QoS-aware autonomic performs better than non-autonomic technique.

Figure 27: Influence of change in number of workloads submitted on Resource Utilization

Test Case 9: Computing Capacity

We have calculated value of Computing Capacity for both QoS-aware Cloud Based Autonomic Information System (QoS-

aware autonomic) and non-QoS based resource management technique (non-autonomic) with different number of cloud

workloads. Computing Capacity is a ratio of actual usage time of resource to expected usage time of resource. We have

used following formula to calculate Computing Capacity [Eq. (18)]:

𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖 = ∑ (
actual usage time of resource

expected usage time of resource
)

𝑛

𝑖=1

 (18)

With increasing the number of cloud workloads, the value of Computing Capacity is decreasing. QoS-aware Cloud Based

Autonomic Information System (QoS-aware autonomic) performs better than non-autonomic based resource scheduling

(non-autonomic) at different number of cloud workloads as shown in Figure 28.

The minimum value of computing capacity is 4.13 at 3000 cloud workloads and maximum value is 11.29 at 500 workloads

in QoS-aware autonomic.

5.1. Discussions

The performance of QoS-aware Cloud Based Autonomic Information System (Agri-Info) has been tested on cloud based

simulation environment and also cloud testbed to analyze the values of different QoS parameters with different number of

workloads and resources. The performance of Agri-Info has been evaluated with respect to network bandwidth, execution

cost, execution time, availability, customer satisfaction, computing capacity, resource utilization and latency on simulated

cloud environment. Experimental results reported that the Agri-Info executes the same number of workloads at a minimum

network bandwidth, execution cost, execution time, number of user request missed and latency, and maximum resource

utilization, availability and customer satisfaction. At 3000 workloads, network bandwidth using in Agri-Info is 18.98%

lesser than non-QoS based resource management technique. The maximum value of latency is 42.15 and minimum value of

latency is 22.26 seconds in Agri-Info. Execution cost permits the evaluation for selection of resource whereas duration of

0

20

40

60

80

100

500 1000 1500 2000 2500 3000R
e

so
u

rc
e

 U
ti

liz
at

io
n

 (
%

)

Number of Workloads

Non-Autonomic

QoS-aware Autonomic

30

workload execution evaluates by execution time. Agri-Info reduces the execution time by up to 21.72% compared to non-

QoS based resource management technique (non-autonomic) and it reduces the execution cost by up to 16.66% compared

to non-autonomic. The maximum percentage of resource utilization is 91.67% at 3000 workloads in Agri-Info but it

performs better than non-autonomic technique.

Figure 28: Influence of Change in Number of Workloads Submitted on Computing Capacity

Further, we have done empirical study to demonstrate that it is feasible to implement and deploy the autonomic resource

management technique on real cloud resources also. Experiment has been conducted with different number of user requests

(1-70) for verification of execution cost, execution time, resource utilization and latency in real cloud environment. In this

experiment, we have considered two different cloud infrastructures with different processor configurations (4 core

processor and 8 core processor) to measure the variation of execution time with different number of user requests (small,

medium and large) in the form of user queries. Agri-Info reduces the execution time by up to 33% compared to non-QoS

based resource management technique (non-autonomic) and it reduces the execution cost by up to 37.6 % compared to non-

autonomic. Experimental results reported that Agri-Info using cloud infrastructure with 4 core processor performs better

than Agri-Info using cloud infrastructure with 8 core processor for small number of user requests (1-20) and for average

(21-45) and large (46-70) number of user requests Agri-Info performs better with cloud infrastructure of 8 core processor.

From all the experimental results, the QoS-aware Cloud Based Autonomic Information System (Agri-Info) performs better

than non-QoS based resource management technique (non-autonomic) in both simulation and real cloud environment.

6. Conclusions and Future Scope
In this paper, QoS-aware Cloud Based Autonomic Information System (Agri-Info) for Agriculture Service has been

presented which manages the various types of agriculture related data based on different domains through different user

preconfigured devices. We have used PCA (Principal Component Analysis) to find the distinct attributes to reduce the

correlation among attributes and K-NN (k-Nearest Neighbor) classification mechanism is used to classify the agriculture

data. In real life scenarios, K-NN attains better classification accuracy for agriculture data identification. Further, classified

data is interpreted through fuzzy logic and users can easily diagnose the agriculture status automatically through Agri-Info.

In addition, Agri-Info uses evolutionary algorithm i.e. Cuckoo Optimization Algorithm for efficient resource allocation at

infrastructure level after identification of QoS requirements of user request. We have evaluated the performance of

proposed approach in cloud environment and experimental results show that the proposed system performs better in terms

of resource utilization, execution time, cost and computing capacity along with other QoS parameters. We have validated

Agri-Info through e-Agriculture cloud web service by considering QoS parameters (network bandwidth, execution cost,

execution time, availability, customer satisfaction, computing capacity, resource utilization and latency) and also with

performance metric (number of user request missed) and experimental results, it is shown that the proposed solution

delivers a superior autonomic solution for heterogeneous cloud workloads (user requests) and approximate optimum

solution for challenges of resource management. Aneka application development platform has been used as a scalable cloud

middleware to make interaction between SaaS and IaaS to deploy e-agriculture web service of Agri-Info and empirical

evaluation has been done on cloud testbed resources to validate the system on real cloud environment.

Proposed technique can be extended by developing pluggable scheduler, in which resource scheduling can be changed

easily based on the requirements. Presently, Agri-Info supports only English language and further different language can be

used to provide the services to the end users like farmers by using the concept of Natural Language Processing (NLP). In

future, Android or Window based application can be developed for handheld devices for easy access.

0

2

4

6

8

10

12

14

16

500 1000 1500 2000 2500 3000

C
o

m
p

u
ti

n
g

C
ap

ac
it

y

Number of Workloads

QoS-aware Autonomic

Non-Autonomic

31

Acknowledgement

One of the authors, Sukhpal Singh [SRF-Professional], gratefully acknowledges the Department of Science and Technology

(DST), Government of India, for awarding him the INSPIRE (Innovation in Science Pursuit for Inspired Research)

Fellowship (Registration/IVR Number: 201400000761 [DST/INSPIRE/03/2014/000359]) to carry out this research work.

We would like to thank Dr. Maninder Singh [EC-Council’s Certified Ethical Hacker (C-EH)] for his valuable suggestions.

References

[1] Sukhpal Singh and Inderveer Chana, “QoS-aware Autonomic Resource Management in Cloud Computing: A Systematic Review”,“ACM

Computing Surveys” , Volume 48, Issue 6, pp. 1-39, 2015

[2] Rajkumar Buyya, Rodrigo N. Calheiros, and Xiaorong Li. “Autonomic cloud computing: Open challenges and architectural elements”, In

Proceeding of the Third International Conference on Emerging Applications of Information Technology (EAIT). (2012), 3-10, IEEE.
[3] Kaloxylos, Alexandros, Robert Eigenmann, Frederick Teye, Zoi Politopoulou, Sjaak Wolfert, Claudia Shrank, Markus Dillinger, “Farm management

systems and the Future Internet era”, Computers and Electronics in Agriculture, 89 (2012): 130-144.

[4] Ranya Elsheikh, Abdul Rashid B. Mohamed Shariff, Fazel Amiri, Noordin B. Ahmad, Siva Kumar Balasundram, and Mohd Amin Mohd Soom,
“Agriculture Land Suitability Evaluator (ALSE): A decision and planning support tool for tropical and subtropical crops”, Computers and

Electronics in Agriculture, 93 (2013): 98-110.

[5] Raimo Nikkilä, Ilkka Seilonen, and Kari Koskinen, “Software architecture for farm management information systems in precision agriculture”,

Computers and Electronics in Agriculture, 70(2) (2010): 328-336.

[6] C. G.Sørensen, S. Fountas, E. Nash, Liisa Pesonen, Dionysis Bochtis, Søren Marcus Pedersen, B. Basso, and S. B. Blackmore, “Conceptual model of

a future farm management information system”, Computers and Electronics in Agriculture, 72(1) (2010): 37-47.
[7] Zhao Ruixue, “Study on Web-based Agricultural Information System Development Method”, In Proceedings of the Third Asian Conference for

Information Technology in Agriculture, China, 601-605. 2002.

[8] C. G. Sørensen, Liisa Pesonen, D. D. Bochtis, S. G. Vougioukas, and Pasi Suomi, “Functional requirements for a future farm management
information system”, Computers and Electronics in Agriculture, 76(2), (2011): 266-276.

[9] Yuegao Hu, Zhi Quan, and Yiyu Yao, “Web-based Agricultural Support Systems”, In Proceeding of the Workshop on Web-based Support Systems,
75-80. 2004.

[10] M. Narayana Reddy, and N. H. Rao, “GIS Based Decision Support Systems in Agriculture”, National Academy of Agricultural Research

Management Rajendranagar, (1995): 1-11.
[11] Shitala Prasad, Sateesh K. Peddoju, and Debashis Ghosh, “AgroMobile: A Cloud-Based Framework for Agriculturists on Mobile Platform”,

International Journal of Advanced Science and Technology, 59 (2013): 41-52.

[12] Seokkyun Jeong, Hoseok Jeong, Haengkon Kim, and Hyun Yoe, “Cloud Computing based Livestock Monitoring and Disease Forecasting System”,
International Journal of Smart Home 7(6), 2013.

[13] Renaud Pawlak, Sylvain Lefebvre, Zakia Kazi-Aoul, and Raja Chiky, “Cloud Elasticity for Implementing an Agricultural Weather Service”, In the

Processing of the 11th Annual International Conference on New Technologies of Distributed Systems (NOTERE), 1-8, IEEE, 2011.
[14] Inderveer Chana, and Sukhpal Singh, “Quality of Service and Service Level Agreements for Cloud Environments: Issues and Challenges”, Cloud

Computing-Challenges, Limitations and R&D Solutions. (2014), 51-72, Springer International Publishing.

[15] Sukhpal Singh, and Inderveer Chana. QRSF: QoS-aware resource scheduling framework in cloud computing. The Journal of Supercomputing, 71(1)
(2015), 241-292.

[16] Sukhpal Singh, and Inderveer Chana, “Q-aware: Quality of service based cloud resource provisioning”, Computers & Electrical Engineering,

(2015): 1-24. DOI: http://dx.doi.org/10.1016/j.compeleceng.2015.02.003
[17] Jeffrey O. Kephart, and William E. Walsh, “An architectural blueprint for autonomic computing”, Technical Report, IBM Corporation (2003), 1-29,

IBM. Retrieved on December 25, 2014 from: http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf

[18] Tzung-Pei Hong, and Chai-Ying Lee, “Induction of fuzzy rules and membership functions from training examples”, Fuzzy sets and Systems 84(1)
(1996): 33-47.

[19] Ramin Rajabioun, “Cuckoo optimization algorithm”, Applied Soft Computing 11(8) (2011): 5508-5518.

[20] Daniel T. Larose, “k‐Nearest Neighbor Algorithm”, Discovering Knowledge in Data: An Introduction to Data Mining (2005): 90-106.
[21] Hervé Abdi, and Lynne J. Williams, “Principal component analysis”, Wiley Interdisciplinary Reviews: Computational Statistics 2(4) (2010): 433-

459.
[22] M. Jay Norton, “Knowledge discovery in databases”, Library Trends, 48(1), (1999): 9-21.

[23] “e-Agriculture: Using Technology to Empower Farming Communities”, [Online]. Available:

http://www.intel.in/content/dam/www/public/us/en/documents/corporate-information/eagriculture_program_cs.pdf. [Accessed 10 12 2014].
[24] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu Palaniswami, “Internet of Things (IoT): A vision, architectural elements,

and future directions”, Future Generation Computer Systems 29(7):1645-1660, 2013.
[25] Xingchen Chu, Krishna Nadiminti, Chao Jin, Srikumar Venugopal, and Rajkumar Buyya, “Aneka: Next-generation enterprise grid platform for e-

science and e-business applications”, In Proceeding of the IEEE International Conference on e-Science and Grid Computing, 151-159. IEEE, 2007.

[26] Rodrigo N. Calheiros, Christian Vecchiola, Dileban Karunamoorthy, and Rajkumar Buyya, “The Aneka platform and QoS-driven resource
provisioning for elastic applications on hybrid Clouds”, Future Generation Computer Systems, 28(6), (2012): 861-870, 2012.

[27] Sukhpal Singh and Inderveer Chana, “EARTH: Energy-aware Autonomic Resource Scheduling in Cloud Computing”, Journal of Intelligent and

Fuzzy Systems, 1-16, 2015 DOI: http://dx.doi.org/DOI:10.3233/IFS-151866
[28] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A. F. De Rose, and Rajkumar Buyya, “CloudSim: A Toolkit for Modeling and

Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms”, Software: Practice and Experience, 41(1): 23-

50, Wiley Press, New York, USA, January 2011.

http://dx.doi.org/10.1016/j.compeleceng.2015.02.003
http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
http://www.intel.in/content/dam/www/public/us/en/documents/corporate-information/eagriculture_program_cs.pdf
http://dx.doi.org/DOI:10.3233/IFS-151866
http://www.buyya.com/papers/CloudSim2010.pdf
http://www.buyya.com/papers/CloudSim2010.pdf

