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Abstract

The adoption of Internet of Things (IoT) technologies in businesses is increas-
ing and thus enterprise IoT (EIoT) is seemingly shifting from hype to reality.
However, the actual use of EIoT over significant timescales has not been empir-
ically analyzed. In other words, the reality remains unexplored. Furthermore,
despite the variety of EIoT verticals, the use of IoT across vertical industries
has not been compared. This paper uses a two-year EIoT dataset from a ma-
jor Finnish mobile network operator to investigate device use across industries,
cellular traffic patterns, and mobility patterns. We present a variety of novel
findings: EIoT traffic volume per device has increased three-fold over the last
two years, the share of LTE-enabled devices has remained low at around 2%
and that 30% of EIoT devices are still 2G only, and there are order of mag-
nitude differences between different industries’ EIoT traffic and mobility. We
also show that daily traffic can be clustered into only three patterns, differing
mainly in the presence and timing of a peak hour. Beyond these descriptive
results, modeling and forecasting is conducted for both traffic and mobility. We
forecast the total daily EIoT traffic through a temporal regression model and
achieve an error of about 15% over medium-term (30 to 180 day) horizons. We
also model device mobility through a Markov mixture model and quantify the
upper bound of predictability for device mobility.
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1. Introduction

According to a recent survey [2], 29% of companies globally utilize Internet
of Things (IoT) devices, suggesting that IoT use by companies (also referred to
as enterprise IoT or EIOT) is shifting from hype to reality. Furthermore, EIoT
is gaining momentum across different industries that use IoT devices in unique
ways for solving diverse problems. Despite the variety of EIoT verticals and ap-
plications, the actual usage of IoT across industries has never been empirically
explored. Additionally, the few studies [3, 4, 5] that have analyzed EIoT device
usage from commercial cellular networks are relatively old and have only ana-
lyzed short timescales (i.e., typically less than a few weeks). Thus the evolution
of EIoT usage over longer timescales remains uninvestigated.

To address these gaps, this work aims to study the evolution of traffic, mobil-
ity, and population characteristics of EIoT devices on several different timescales
and on both the general and industry-level. Additionally, the work aims to il-
lustrate the feasibility of modeling and predicting several of these diverse char-
acteristics. Impact-wise, traffic, mobility, and population characteristics all are
relevant factors for network operators in terms of both technical network oper-
ations, network planning, and longer term network investment strategies.

Towards these aims, we analyze a two-year EIoT dataset from a major
Finnish mobile network operator (MNO) that includes data traffic volumes,
customer industry class, and device features. We first perform a descriptive
analysis of the traffic, mobility, and population characteristics while highlight-
ing insights along the way. We then, in terms of modeling and prediction, clus-
ter daily temporal traffic patterns, forecast longer term traffic volumes, model
mobility through a Markov mixture model, and calculate the upper bound of
mobility predictability (for an ideal model).

Overall, the work gives a holistic view of the evolution and current state of
EIoT usage in a major MNO, thus illustrating the reality instead of the hype.
We note that Finland is an early EIoT adopter with the 6th most M2M modules
per capita of OECD countries (23 per 100 inhabitants) [6]. We also note that
we do not claim the results can be greatly generalized to other operators or
countries. Instead we hope that the results can represent a case in a larger
process of cross-study comparison between different operators and countries,
thus building up general patterns and theory.

The results of this study are relevant to both researchers and practitioners.
In particular, researchers studying the impact of EIoT on cellular networks
can use the identified EIoT traffic and mobility patterns to improve modeling.
Furthermore, providers of EIoT connectivity and other services can get a better
understanding of the requirements and challenges of IoT devices in different
verticals, which will allow them to address customer needs. Also we note that
the broad and diverse characteristics and methods of the study were chosen to
give, as mentioned, a holistic guide such that future work can focus in on more
specific details and with more specialized methods.

We briefly describe the structure of the remainder of the paper. Section 2
summarizes related work on empirical IoT traffic analysis, Section 3 describes
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the dataset, and Section 4 details the basic descriptive results including tem-
poral, spatial (i.e., mobility), and EIoT device population aspects. Section
5 presents further analysis and modeling results covering temporal clustering,
temporal forecasting, and mobility modeling. Finally Section 6 discusses the
limitations and Section 7 the conclusions and implications.

2. Related Work

Shafiq et al. [4] were the first to analyze EIoT 1 data from a commercial
cellular network in the US. They examined the traffic generated by more than
a million EIoT devices over one week in August 2010 and found that such
devices are less mobile than smartphones, generate more uplink than downlink
traffic, and often have synchronized activity. Ref. [5] confirmed these last
two observations by analyzing EIoT device data collected over several weeks in
2013 by a European mobile operator. Both studies concluded that the traffic
generated by EIoT devices significantly differs from smartphones, indicating
the need for MNOs to reassess network planning traditionally optimized for
smartphone users.

In a more recent study, Andrade et al. [7] analyzed the traffic and mobil-
ity patterns of one million connected cars on a cellular network in the US. The
authors concluded that the data traffic that cars generate differ both from smart-
phones and other IoT devices, and warned about the potential adverse impact
that massive over-the-air firmware updates may have on network performance.

Several studies [8, 9, 10] similarly analyzed IoT data from a cellular network
but with different objectives. The studies proposed methods for online and
offline classification of IoT traffic that would give MNOs a more efficient way of
identifying IoT devices compared to the traditional TAC-based (Type Allocation
Code) approach.

From a mobility modeling perspective, smartphone mobility has been ex-
tensively modeled using empirical data. For example, based on a 13-month
dataset, [11] modeled movement between highly visited locations in which tran-
sition speeds and pause times follow log-normal distributions. In another exam-
ple, [12] modeled device location transitions via a semi-Markov process using a
transition matrix and transition time distribution. However, as far as we know
no study has modeled mobility for general EIoT devices. Though, empirical
mobility models for specific IoT devices types (such as vehicles [13]) have been
developed.

Several studies have also modeled longer term (>1 week) internet traffic
volume trends (though only at the aggregate level without differentiating IoT
devices). For example, [14] accurately fit a hyperbolic function to the CAGRs2 of
20 years of fixed and mobile internet traffic volumes. Ref. [15] provides further

1They denoted such traffic as machine-to-machine (M2M).
2Compound annual growth rates
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background into such long term traffic modeling including varying methods,
timescales, and datasets.

3. Dataset

Before describing the dataset, we first note that an EIoT device (e.g., smart-
meter, asset tracker, etc.) typically contains a generic communication module
(CM) to transmit the data the device collects. Since these modules are often
integrated, a device naturally inherits properties of the CM such as network ca-
pabilities. Therefore, in this work differentiating between properties of the EIoT
device and CM is only required in a few cases. Hereafter, we note specifically
when this is the case.

The main dataset of the analysis is a collection of data detail records (DDRs)
of devices that use an IoT-specific enterprise subscription provided by a major
nation-wide Finnish MNO. In other words, in this work, an EIoT device is
defined as a device that uses a IoT-specific enterprise subscription (subscription
based definition).

The dataset covers a period of two years from September 2016 to Au-
gust 2018. Each record covers a single hour and contains the following fields:
anonymized IMSI3, anonymized cell ID, anonymized customer ID (hereafter
company ID), device TAC, uplink traffic volume (in bytes), and downlink traf-
fic volume (in bytes). If the device had traffic in more than one cell in a given
hour then additional records for that hour for each cell were included. In other
words, each record is uniquely identified by a triplet of (device, cell, hour). The
dataset was extracted from the operator’s network accounting system which re-
ceives aggregate statistics from base stations. We also note that the hourly time
granularity of the dataset is a result of collecting the dataset from this network
accounting system.

Additionally, the DDR dataset was joined with two other MNO provided
datasets: a dataset of device features (from the GSMA device database) for
all TACs found in the DDR dataset and a dataset of company industries for
each company ID in the DDR dataset. The device feature dataset includes the
following fields: device CM model name, device CM release year, and device
network capabilities (i.e., EDGE, HSPA, LTE, etc.), while the company indus-
try dataset is based on the standard Finnish TOL20084 industry classification.
For industry-level analyses, we only include industries with at least 10 distinct
companies and where the largest company accounts for a maximum of 80% of
traffic or devices in the industry. For reference, we list these industries, their
acronyms (used in figures), and brief descriptions in Table 1.

3We only refer to devices in this work and we assume a one-to-one relationship between
IMSI and device since SIM cards are rarely swapped to different devices. Empirically we find
that only 1.6% of IMSIs were used with multiple devices over the entire period.

4TOL2008 is based on the EU’s classification of economic activities, NACE Rev.2 [16],
prescribed in EC Regulation No 1893/2006
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As previously mentioned, in this work, an EIoT device is defined as a device
that uses a enterprise IoT-specific subscription (i.e., subscription based defi-
nition). However, to further ensure that only EIoT devices were included in
the analysis, we first manually checked all unique device CM models from the
dataset and categorized them as IoT, maybe-IoT (typically PCI Express data
cards that can also be used in laptops), and non-IoT (typically smartphones
and feature phones) based on online research. We then filtered out all non-IoT
devices and any device with an invalid TAC code (since in those cases we did
not have any device information). This filtering removed 5.7% of devices.

We also note that since we only know the CM model name (and not the EIoT
device model name), we do not know the EIoT device type. For example, we
might know that a device has a Cinterion EU3-E module, but we do not know if
the device is a smart meter, asset tracker, etc. Unfortunately inferring the device
type from just the CM is not feasible because, as mentioned, these modules are
generic and many manufacturers do not identify the CMs in their devices. We
even attempted to scrape FCC and other regulatory approval reports to identify
the CMs in devices but with limited success.

In any case, we know that the device population includes EIoT devices like
payment terminals, smart-meters, location trackers, and surveillance cameras.
In terms of requirements, some of these devices require very little bandwidth.
Payment terminals, for example, typically use the ISO-8583 financial message
standard which requires only several kilobytes per payment transaction or even
less [17]. While other devices such as video surveillance cameras can require
over one Mbps depending on the resolution (e.g., a 720p 30 frame per second
H.264 camera requires about 1.9 Mbps). Overall, the analysis further illustrates
this requirement diversity, especially across industries.

Finally, to give an idea of the full scale of the analysis, the DDR dataset
covers hundreds of companies, hundreds of thousands of devices, and tens of
millions of records. We also note that for business confidentiality and privacy
reasons we normalize some of the numerical results, however, this normalization
does not change the interpretations or conclusions. Finally, for illustration pur-
poses we use moving averages5 in several figures to help emphasize longer-term
trends and smooth out short-term fluctuations.

4. Descriptive Results

4.1. Traffic statistics

First, we examine the traffic of cellular EIoT devices over time to understand
its evolution. Figure 1 shows the four-week moving average of traffic per device.
We find that total EIoT traffic per device increased three-fold, whereas downlink
traffic increased six-fold. Most of the traffic growth occurred between September
2016 and 2017. Comparatively, [4] reported a total EIoT traffic increase of

5The moving average is essentially a low-pass filter in signal processing.
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Table 1: Description of industries based on NACE Rev.2 [16]

Industry (abbrevi-
ated)

Acronym Description

Administrative and sup-
port

AS Activities supporting general business operations, ex-
cept professional activities; e.g., rental and leasing,
recruitment, security and investigation

Electricity and gas EG Providing electric power, natural gas, steam, hot wa-
ter and the like through a permanent infrastructure

Information and commu-
nication

IC Publishing activities, including SW; broadcasting;
telecommunications and IT activities

Manufacturing MF Physical or chemical transformation of materials or
components into new products, e.g., food, textiles,
computers and electronics

Professional activities PA Activities making specialized knowledge available to
users, e.g., consultancy and engineering

Transportation TR Provision of passenger or freight transport, and associ-
ated activities such as terminal and parking facilities,
cargo handling, and storage

Wholesale and retail
trade

WR Wholesale and retail sale of any goods, including as-
sociated operations, such as assembling and packing;
repair of motor vehicles and motorcycles

250% during 2011. Furthermore, despite some fluctuations, the traffic does not
demonstrate any seasonal patterns.

The volume of traffic increased in all industries, as shown by the four-week
moving average of traffic per device in Figure 2. We observe significant differ-
ences in traffic volumes between industries, with devices in Manufacturing and
Administrative and support generating on average 10 MB and 2 GB per device,
respectively. This difference might be explained by Administrative and support
containing security companies that may generate video traffic via surveillance
cameras. The most substantial increase occurred in Electricity and gas where
traffic grew twelve-fold to 19 MB per device. This could be due to a 1-hour
metering obligation deadline for smart meters in Finland. We also analyzed the
traffic evolution for the subset of companies that had active IoT devices in both
the first and last months of the observation period and found similar trends.
This indicates that the increase in traffic over time includes both companies
that already use IoT and new companies adopting IoT.

To explore industry-specific differences in traffic depending on the day of the
week, we study the daily traffic per device for August 2018. Figure 3 illustrates
this traffic. We find that most industries do not show significant variation
depending on the day of the week. However, in Professional activities and
Manufacturing industries, we observe weekday-weekend patterns, with traffic
halving during weekends.

Furthermore, we study uplink vs. downlink traffic volumes across industries.
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Figure 1: Traffic per device per four week period
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Figure 2: Traffic per device per four week period for industries
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Figure 3: Traffic per device per day for August 2018
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Figure 4: ECDF of the log of uplink to downlink traffic ratio for August 2018
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Figure 4 illustrates the empirical cumulative distribution (ECDF) of the log of
uplink/downlink ratio for August 2018. Negative values indicate larger down-
link traffic than uplink and positive values vice versa. As the figure shows, 92%
of EIoT devices generated more uplink than downlink traffic, which is consistent
with the finding of [4], but exceeds the observation of [5] by more than 30%.
However, in some industries, particularly Transportation and Professional ac-
tivities, the share of devices with greater uplink than downlink traffic is lower,
around 54% and 78% respectively. Further, in Manufacturing, the uplink traf-
fic is much larger than downlink traffic (compared to other industries), with a
median ratio of 4.66 compared to 1.41 for all EIoT devices. Overall, the re-
sults illustrate both intra and inter-industry variation that helps illustrate the
diversity of EIoT .

4.2. Mobility statistics

Concerning device mobility, we infer such mobility through the number of
different cells visited6 by devices. Figure 5 presents the ECDF of the number
of unique cells visited by devices in August 2018. As the figure shows, about
40% of EIoT devices visited only a single cell indicating significant immobility.
Furthermore, for a one week time frame (last week of August), we find an even
higher fraction of 55% of devices visited only a single cell. In comparison, [4]
found that 30% of devices visited only a single cell in their one-week dataset.
The actual share of stationary devices (again given our definition from footnote
6) may be even higher since some devices at cell edges may jump between cells
depending on signal strength fluctuations or cell load balancing.

We also observe differences in device mobility across industries. Overall
around 95% of all EIoT devices and most devices in Electricity and gas, Whole-
sale and retail trade, and Administrative and support industries visited less than
ten cells per month. Contrastingly and expectedly, devices in the Transporta-
tion industry are very mobile, with 90% having visited more than ten cells per
month. Some industries, for example Manufacturing, include a mix of mobile
and stationary devices.

4.3. Cell statistics

We analyze the distribution of devices and traffic over all the visited cells.
Figure 6 illustrates the ECDF of EIoT traffic and devices7 across EIoT -visited
cells in August 2018. The traffic is highly concentrated spatially, with 10% of
cells carrying about 93% of total EIoT traffic. Comparatively, [18] found 10%
of cells carrying about 55% of total network traffic in a nationwide network in
2007. The high concentration of EIoT devices and traffic can be explained, given
the typical centralization of company campuses compared to normal consumers.

6The definition of visit only includes cells where traffic was sent or received and thus it is
a lower bound on the number of cells attached to by the device.

7We note that devices are only counted in their most visited cell (in terms of hours), though
other definitions such as counting devices in all their visited cells produce similar results.
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Figure 5: ECDF of EIoT device mobility in August 2018

This concentration is important for network planning because the deployment
of EIoT -specific network features or optimizations would require changes to far
fewer cells (and thus cost less) than for non-EIoT features. Finally, in terms of
devices, we find that 10% of cells account for about 44% of devices while 50%
of cells about 90% of devices, showing only moderate spatial concentration.

4.4. EIoT device population statistics

Through leveraging the additional device features dataset, we can analyze
the feature and CM age evolution of the EIoT device population. Figure 7
shows the evolution of the mean CM age by industry, with age defined as the
time since the release year of the CM model8 (and not the manufacturing year
of the CM). We observe that the mean CM age was over 8.5 years, as of August
2018. The Electricity and gas industry has the oldest CM population, with a
mean age of more than ten years. Overall, the increase in mean population
age for all industries illustrates the slow pace of new CM model deployment.
We further analyzed the population of CMs deployed after September 2016 and
found that the mean age in August 2018 was about seven years.

In terms of connectivity features, Figure 8 presents the penetration of 3GPP
connectivity technologies among the EIoT device population. First, we observe
the low penetration (and growth rate) of LTE of about 2% as of August 2018.
This observation is in line with the significant age of the EIoT device CM pop-
ulation and contrasts with LTE penetration of 41% among non-EIoT devices
in Europe in 2017 [19]. Additionally, the growth rate of LTE among Finnish
smartphones was seven times as large as EIoT devices over a comparable yearly

8We assume that CM models are released on Jan. 1st. In other words, we overestimate the
actual age, but this does not preclude tracking temporal dynamics and comparing industries.
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Figure 6: Distribution of traffic and devices among cells for August 2018
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time-frame (specifically when re-basing both series to start at 0.1% penetration)
[20].

We further find that although the penetration of LTE is growing in all in-
dustries, only in the Transportation industry has penetration exceeded 10%.
Furthermore, we observe a significant difference in the penetration of HSDPA
and HSUPA technologies of 70% and 26% respectively. This is surprising given
the prevalence of uplink traffic in EIoT which suggests a stronger need for fast
uplink technologies rather than downlink. Finally, we find the share of 2G only
(GPRS and EDGE) devices is still about 30%. Therefore, discontinuing 2G
service (for spectrum reuse purposes) would indeed affect a significant fraction
of EIoT devices thus posing a problem for network operators.

We also examine the prevalence of NB-IoT/LTE-M capable devices in the
population by using a publicly available list of such devices from GSMA9. How-
ever we find that these devices represent less than 0.05% of all devices and thus
are too small of a sample for reliable analysis. Furthermore the devices currently
using the network are likely primarily testing devices.

We examine the shares of CM vendors in the device population over the ob-
servation period10. Figure 9 illustrates the CM vendor shares over time and the
Herfindahl-Hirschman index (HHI), a measure of market concentration. The
figure indicates quite high concentration with only a small decrease in concen-
tration as quantified by HHI (from 0.53 to 0.47) over the observation period.
Though, we note that if the customer company with the most IoT devices is
removed (to assess sensitivity), the HHI for August 2018 drops to 0.30, thus
illustrating the potential for volatility given large customers.

9https://www.gsma.com/iot/mobile-iot-modules/
10We gather CM vendor information including public mergers, acquisitions, and divestment

data (including dates) for all CM vendors that appear in the device population.
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Figure 9: Vendor share of CM population and the Herfindahl-Hirschman index (HHI)

5. Modeling and Prediction Results

5.1. Temporal traffic spectrum and clustering analysis

To obtain additional temporal traffic insights, we perform several types of
temporal analysis on different time scales. Specifically, our approach is to study
the short timescale (hours, weeks) temporal patterns of three different months
roughly evenly spaced over the two years: September 2016, August 2017, and
August 2018. We always present the results from August 2018 and only present
and note the results from the earlier months if substantially different.

First, we perform spectral analysis on a one-month traffic volume series of
each device for uplink and downlink traffic. The spectral density of each series
is estimated as the squared modulus of the discrete Fourier transform, in other
words the periodogram. Then the peak power and corresponding period are
extracted from each periodogram under the assumption that most EIoT devices
will have a dominant timer-driven peak. Figure 10 illustrates the density of these
(peak power, period) pairs for downlink traffic. The plot for uplink is almost
identical. We find large fractions of devices have peaks at 24, 12, and 6 hour
periods including devices with large and small peak traffic volumes (power).
However, we also find other periods such as ~13 hours, though this case is
specific to only two large companies with similar device models. The reason for
the use of a 13 hour period in these companies is unknown. We also note that
some devices have peaks at one week thus reinforcing the patterns from Figure
3, however these devices tend to have small peak traffic volumes.

For a more granular temporal analysis, we perform temporal clustering on
the averaged (over the month) and normalized 24-hour total traffic volume series
of each device. The normalization is performed for each device over the 24-hour
series such that the value for any given hour is the fraction of that device’s total
daily traffic in that hour. This normalization is required due to the order of
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Figure 10: Density of spectrum peaks vs periods of devices for total traffic for August 2018

magnitude differences in traffic volumes between some devices. Each series is
then transformed by a discrete wavelet transform (DWT) with a Daubechies-1
wavelet and a decomposition level of three.

The DWT coefficients are then clustered via bisecting k-means with the
number of clusters chosen by the silhouette score. We use bisecting k-means
because of the O(n) run-time and ease of computational distribution. Compar-
atively, other approaches such as hierarchical clustering with ward linkage have
a run-time of O(n2). Though for robustness, we also cluster a random sample of
2000 devices via hierarchical clustering with ward linkage and with the number
of clusters chosen by the Davies-Bouldin score. This is the same clustering setup
as in [4]. We find the same number of clusters as the full device clustering and
virtually the same cluster centroids.

Regarding clustering results, we find that the optimal number of clusters
is three. The clusters denoted 1, 2, and 3 encompass 25%, 41%, and 34% of
devices respectively. The cluster centroids (in terms of time series rather than
DWT coefficients) of the three clusters are illustrated in Figure 11. We find that
clusters 1 and 3 have significant peaks at 0:00 and 2:00 respectively with over
80% of their traffic within that peak hour, while cluster 2 shows much steadier
and flatter traffic throughout the day.

To better understand these patterns we look at the composition of the clus-
ters by company ID and industries. Interestingly, 88% of cluster 1 devices
belong to a single large company; thus this cluster is company-specific and not
necessarily a general EIoT temporal pattern. Though [4] also found an outlier
cluster with a peak at 02:00 that they attributed mainly to fleet management
applications. For clusters 2 and 3, no single company represents more than
31% of devices and no single industry more than 50% of devices. The main
industries for cluster 2 are Wholesale and retail trade (40%), Electricity and gas
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Figure 11: Cluster centroids of the three temporal clusters from August 2018

(22%), and Information and communication (14%), while the main industries
for cluster 3 are Wholesale and retail trade (51%), Electricity and gas (30%),
Administrative and support services (11%). This overlap in industries highlights
diversity in use cases even within narrow industries such as Electricity and gas.

For an illustration of cluster separation, we plot the t-distributed stochastic
neighbor embedding (t-SNE) of a random sample11 of 4400 devices in Figure
12 with perplexity chosen as in [21]. The clusters appear to be well separated
with only minimal overlap, especially the single-company dominated cluster 1,
thus reinforcing the clustering results.

In terms of longer scale temporal phenomena, we did not find large differ-
ences in either temporal analysis method between the examined months. This
suggests that EIoT phenomena change slowly; such behavior reinforces the pre-
viously identified slow change in, for example, device feature penetration.

5.2. Temporal traffic forecasting

Finally, we examine the possibility of EIoT traffic forecasting (a common
network operator goal). Specifically, we evaluate the potential for medium-
term forecasting of daily EIoT traffic through a state of the art forecasting
model. This medium-term (from 30 to 365 day horizons) forecasting is the
most practical given the length of our observation period (about two years) and
granularity (hourly).

Namely, we use the Prophet time series model [22] which is a decomposable
additive regression model. Equation 1 details the high-level model formula-
tion consisting of piece-wise (linear or logistic growth) trends g(t), seasonality
(weekly or yearly) s(t), and holiday h(t) components plus an error term εt. The

11t-SNE has a run-time complexity of O(n2) and thus does not scale to large data.
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Figure 12: T-SNE of sample of 4400 devices from the three temporal clusters from August
2018

model fitting is flexible and automatically selects the appropriate trend change
points and components. Specifically, the model fitting is performed through the
probabilistic programming language Stan [23] via maximum a posteriori parame-
ter estimation. The holiday component of the model uses the national holidays
of Finland. The main justification for using Prophet over alternative models
such as autoregressive integrated moving average (ARIMA) is that Prophet was
designed for web event modeling and thus natively supports common network
traffic properties such as the aforementioned piecewise trends, seasonality, and
holidays.

y(t) = g(t) + s(t) + h(t) + εt (1)

Firstly, for reference Figure 13 illustrates the daily traffic per device series
for all EIoT devices (hereafter All-EIoT ), the model fitted on that series for the
entire observation period, and a one year forecast. The model illustrates two
distinct trends with a visible change point at Oct. 2017 and a weekly seasonality
that aligns with a weekday/weekend dichotomy. Visually, the model appears to
provide a simple though reasonable fit of the series.

Next, to estimate the accuracy of forecasting we use a rolling window vali-
dation method known as simulated historical forecasts (SHF) [22]. In the SHF
method forecasts are made for rolling historical horizons given a fixed training
window size, a variable horizon window size, and a fixed period for shifting these
windows within the full historical window. We use a training window size of 365
days, horizon window sizes from 30 to 180 days, and a period of 90 days. This
allows the estimation of forecasting accuracy for time horizons ranging from 30
to 180 days. This estimation is performed for the all-EIoT daily traffic per de-
vice series and each daily industry series individually. For easy interpretation,
accuracy is quantified by the mean absolute percent error (MAPE).
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Figure 13: All-EIoT daily traffic per device and fitted model including one year forecast

In terms of results, Figure 14 details the estimated MAPE for forecasts over
different time horizons for both the all-EIoT and industry-specific models. In-
terestingly, accuracy for the all-EIoT model is respectable with an error between
10-20%; whereas for the different industries the model accuracies vary more sub-
stantially. The low accuracy for the Professional activities industry is due to
the high series variance and lack of a clear trend (see again Figure 2) suggesting
that the industry may be too diverse to be a useful as an aggregation. Generally,
as expected, accuracy decreases with longer time horizons. The overall moder-
ate accuracy implies that network operators could use such models at least for
general high-level planning of EIoT usage in the medium-term.

Additionally, forecasting of individual customer company traffic over time
may be useful especially for large companies. To assess the viability of such fore-
casting, we perform the same procedure as previously but for the ten largest
companies by number of devices. These companies are from six different indus-
tries and thus relatively diverse. We find the mean MAPEs (over the 30-180
day horizons) for the companies range between 2% to 55%; therefore illustrating
similar diversity as on the industry level. This also reinforces that the traffic
variation that impinges forecasting is both intra-industry and intra-company.

For research purposes we release publicly the all-EIoT and industry specific
models as serialized Python pickle files12. These files can be imported into the
Prophet library to allow forecasting and interrogation of the parameters.

5.3. Mobility modeling and analysis

Next, we perform mobility modeling to capture the typical patterns EIoT
devices follow across cells. To do so we utilize a finite mixture model of Markov

12The models can be found at (link omitted for double blind review purposes).
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Figure 14: Estimated MAPE of forecasts over varying time horizons (30 to 180 days) for all
EIoT and industry-specific models

models fit through a library known as Clickclust [24]. Each Markov model
represents the transitions between a fixed set of categories (specifically cells).

More specifically, Clickclust [24] estimates a finite mixture model of Markov
models for a set of categorical sequences where the probability distribution of
the finite mixture model is

f(γ|ϑ) =

K∑
k=1

αkfk(γ|ϑk)

where K is the number of component distributions fk(·|ϑk) with parameter
vectors (and mixing proportions α1, . . . , αK−1) subject to restrictions αk > 0

and
K∑

k=1

αk = 1. Each component distribution is a first order Markov model

representing a cluster of similar cell sequences. The number of component
distributions K is selected through agglomerative clustering to minimize the
Bayesian information criterion (BIC) via a two-stage iterative procedure with
an expectation-maximization (EM) algorithm.

Due to computational complexity issues, the assumption of diurnal patterns,
and the desire to model mobile (rather than mostly stationary) devices, we
perform some initial processing and filtering. Specifically, we only model the
cell sequences of devices from September 30 to 31, 2018. We also remove runs of
the same cell in the cell sequences and thus focus only on the notion of mobility.
We then select a random sample of 2000 devices with a cell sequence length of at
least five (i.e., sent or received in at least five hour-cell combinations) and a cell
sequence with between three and 50 distinct cells. Finally, we normalize each
cell sequence by encoding the most frequent cell as 0, the next most frequent as
1, and so on.
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In terms of results, a simple application of the EM algorithm suggests
an optimal mixture model with one component, as shown in Table 2 (where
BIC is minimized at K = 1). This result suggests potential model over-
parameterization and order underestimation, which is possible with a large
Markov state space (our state space is 50 due to the distinct cell limit from
our filtering). Fortunately, Clickclust contains a forward state selection (FSS)
algorithm, allowing for the aggregation of Markov states into equivalence blocks
considering their transition probabilities. The application of the FSS proce-
dure estimates an optimal mixture model with three components with a BIC of
66014.44. Table 2 provides a performance summary for both the EM and FSS
procedure13 including the number of equivalence blocks d for FSS.

Table 2: Clickclust mixture model fitting BIC scores for different numbers of Markov models
(in parentheses is the number of equivalence classes in FSS)

Method K = 1 K = 2 K = 3 K = 4

EM 88203.11 104810.3 121983 139020.2

FSS 66961.61 (9) 66236.89 (8) 66014.44 (7) 66177.28 (6)

The optimal solution provided by the FSS procedure has the mixing propor-
tions α1, α2, α3 of 0.67, 0.04, 0.29, indicating an unbalanced weight distribution
for the components. The FSS procedure aggregated the 50 distinct cells into
seven equivalence blocks, as shown in Table 3. We observe that the number
of distinct cells per block increases when including less visited cells, indicat-
ing that transition probabilities among less visited cells are more similar than
among more visited cells.

Table 3: Mapping of distinct cells to equivalence blocks in FSS

Cell Order Equivalence Blocks

1st-25th most visited 4 5 6 7 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1

25th-50th most visited 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 15 illustrates the transition probabilities between equivalence blocks
for each component of the mixture model. Component 1, which has the highest
weight, mainly models the bidirectional transitions between the two most visited
cells (equivalence blocks 4 and 5, as shown in Table 3). Component 2, which
has the smallest weight, primarily models the transitions between the least
visited cells (blocks 1 and 2) and other blocks. Finally, component 3 models
transitions between multiple other blocks excluding block 1. The high transition
probabilities between the top cells may partly be the result, as discussed earlier,
of devices at cell edges that jump between cells depending on signal strength
fluctuations or cell load balancing. Remember also that sequences with less

13For reference, the EM and FSS procedures use the following parameters iter = 3, eps =
1e-8, r = 50, min.gamma = 1e-2, and min.beta = 1e-2. The computation time for FSS for
K=4 was approximately ten hours on eight Intel Xeon X5650 CPUs with 80GB total RAM.
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than three unique cells were removed from the mobility modeling.
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Figure 15: Transition matrices between equivalence blocks for each component of the FSS
model

For research purposes we release publicly the 3-cluster FSS mixture model
and script14 (as serialized R objects and files) thus allowing for model interro-
gation and the synthetic generation of cell sequences. Transition matrices can
also be found within the script.

We also perform an alternative mobility analysis using an information theory
framework. Specifically, we quantify for all devices the potential for next cell
prediction and optimization by estimating the information theoretical upper
bound of predictability (hereafter Πmax) similar to [25]. Πmax denotes the
theoretical maximum percentage of cell visits that could be predicted given the
entropy of the cell sequence. Though in contrast to [25] we only estimate the
predictability of cell attachments with data transfer (as this is our definition of
cell visit) rather than of all cell attachments (which would infer the full mobility
as in [25]). This formulation avoids a common missing data problem from prior
work in that cell attachments without data transfer do not generate CDRs or
DDRs and are therefore often absent from mobile network datasets.

The entropy of a sequence is estimated through a Lempel-Ziv compression
based estimator detailed in Equation 2 where n is the length of the sequence
and Λi is the length of the longest subsequence starting from i and not seen
earlier from 1 to i−1. This estimator quickly converges to the true entropy rate
as n → ∞. This entropy is then used to numerically solve for Πmax through
Equation 3 (which is derived from Fano’s inequality [25]) where N is the number
of distinct symbols (i.e., cells) in the sequence.

Hrate =

(
1

n

n∑
i=1

Λi

log2 n

)−1

(2)

Hrate = −Πmax log2 (Πmax)− (1−Πmax) log2 (1−Πmax)+

(1−Πmax) log2 (N − 1)
(3)

14The models can be found at (link omitted for double blind review purposes).
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Figure 16: ECDF of Πmax (upper bound of predictability) for devices by industry for period
of March to August 2018.

We examine the single cell sequence covering from March to August 2018
(last six months of the observation period). As before we remove runs of the
same cell in the cell sequence. We also limit the analysis to devices with a cell
sequence length of at least 20. The longer observation period and length limit
are necessary because the entropy estimator requires a reasonable length for
accurate estimation15. This limitation removes lower activity, mostly stationary
devices (about 39% of devices).

Figure 16 illustrates the ECDF of Πmax for devices by industry for the period
of March to August 2018. The results illustrate that a non-trivial fraction
of EIoT devices have unpredictable cell mobility dynamics; especially in the
Transportation and Information and communication industries. This suggests
that network operators could first focus their predictive optimization efforts on
industries with high predictability to gain quick wins.

6. Limitations

We next discuss two major study limitations. First, the study is not fully
representative since the dataset is from only a single MNO in a single country
and includes only EIoT and not consumer IoT. However, as previously men-
tioned, we hope that similar studies from other countries and MNOs can help
to build up a wide-ranging and practical understanding of IoT dynamics. Sec-
ond, the time resolution of one hour means that the study might have missed

15Specifically, the variance and bias decrease proportionally as 1/n and 1/log2(n) respec-
tively. The threshold of 20 is somewhat arbitrary, unfortunately determining the sequence
length required for a specific entropy estimation accuracy is non-trivial and current methods
(i.e [26]) assume i.i.d. and Zipfian symbol probabilities.
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more granular phenomenon on the minute and second timescales. However, we
note that potentially more intrusive data collection methods would be required
for those timescales, thus potentially hindering collection. Therefore, we leave
such granular work for future studies.

7. Conclusions

Overall, this work presented an analysis of cellular EIoT traffic and mobility
patterns over several different timescales for a major Finnish MNO. The analysis
includes trends over a two-year span thus allowing a view of the evolution of
EIoT . Moreover, trends were broken down by industry, and the penetration
of device features in the EIoT device population was analyzed. Finally, the
analysis evaluated EIoT traffic forecasting and mobility modeling. Overall the
analysis provided a diverse set of results of which we highlight a few.

For example, we found that EIoT traffic per device tripled over the last
two years; however, the mean age of CM models in the device population also
increased significantly to over eight years. Furthermore, the penetration of LTE-
enabled EIoT devices is very low (2%) and growing very slowly. Also we found
significant variation between devices of different industries with orders of magni-
tude differences in traffic volume and mobility. Furthermore, we illustrated that
total daily EIoT traffic can be accurately forecast (˜15% error) over a medium-
term (30 to 180 day) horizon. Finally, we presented that a non-trivial fraction
of EIoT devices have inherent unpredictability in terms of their mobility.

The results have implications for mobile ecosystem players. We note the
following example implications:

• MNOs should be cautious in discontinuing 2G service (for spectrum re-
farming purposes) since a large fraction of EIoT devices likely still use
GPRS and EDGE and the EIoT device life cycle is lengthy.

• Network managers should consider EIoT spatio-temporal traffic patterns
when defining mesoscale (on order of hours or days) IoT network con-
figurations and optimizations (such as the powering down of certain BSs
for energy saving purposes) or when developing ML models that perform
such optimizations. For example, given the very high spatial traffic con-
centration and thus inter-base station variability, the use of cell level or
multi-level (rather than global) ML models is likely to be important.

• Network planners should consider the specific requirements of those indus-
tries targeted by business development plans given the significant inter-
industry traffic and mobility differences. An example of relevant planning
could be the optimal placement of resources for edge computing. Specif-
ically, in the administrative and support industry, uplink capacity could
be saved by enabling the edge processing of video streams from CCTV
systems with no built-in ML object detection.
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• Industry customers, MNOs, and EIoT device manufacturers should col-
laborate with multiple CM vendors to avoid the risk of over-reliance on a
single vendor (given the potential for high CM market concentration).
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finland 2005-2013, Tech. rep., Aalto University, Department of Communi-
cations and Networking (01 2014).

24

https://doi.org/10.1016/J.COMNET.2016.04.020
https://doi.org/10.1016/J.COMNET.2016.04.020
https://doi.org/10.1109/ICC.2015.7248398


[21] Y. Cao, L. Wang, Automatic selection of t-sne perplexity, arXiv preprint
arXiv:1708.03229 (2017).

[22] S. J. Taylor, B. Letham, Forecasting at scale, The American Statistician
72 (1) (2018) 37–45. doi:10.1080/00031305.2017.1380080.

[23] B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Be-
tancourt, M. Brubaker, J. Guo, P. Li, A. Riddell, Stan: A probabilistic
programming language, Journal of statistical software 76 (1) (2017).

[24] V. Melnykov, Clickclust: An r package for model-based clustering of cat-
egorical sequences, Journal of Statistical Software, Articles 74 (9) (2016)
1–34. doi:10.18637/jss.v074.i09.

[25] C. Song, Z. Qu, N. Blumm, A.-L. Barabási, Limits of predictability in
human mobility, Science 327 (5968) (2010) 1018–1021.

[26] A. D. Back, D. Angus, J. Wiles, Determining the number of samples re-
quired to estimate entropy in natural sequences, IEEE Transactions on
Information Theory 65 (7) (2019) 4345–4352. doi:10.1109/TIT.2019.

2898412.

25

https://doi.org/10.1080/00031305.2017.1380080
https://doi.org/10.18637/jss.v074.i09
https://doi.org/10.1109/TIT.2019.2898412
https://doi.org/10.1109/TIT.2019.2898412

	1 Introduction
	2 Related Work
	3 Dataset
	4 Descriptive Results
	4.1 Traffic statistics
	4.2 Mobility statistics
	4.3 Cell statistics
	4.4 EIoT device population statistics

	5 Modeling and Prediction Results
	5.1 Temporal traffic spectrum and clustering analysis
	5.2 Temporal traffic forecasting
	5.3 Mobility modeling and analysis

	6 Limitations
	7 Conclusions
	8 Acknowledgments

