

Time-centric and resource-driven composition for the Internet of Things

Zakaria Maamar – Zayed University, Dubai

Noura Faci – Université Claude Bernard, Lyon

Mohammed Al-Khafajiy – University of Reading

Murtada Dohan, University of Northampton

Abstract

Internet of Things (IoT), one of the fastest growing Information and Communication Technologies (ICT), is

playing a major role in provisioning contextualized, smart services to end-users and organizations. To

sustain this role, many challenges must be tackled with focus in this paper on the design and development

of thing composition. The complex nature of today’s needs requires groups of things, and not separate

things, to work together to satisfy these needs. By analogy with other ICTs like Web services, thing

composition is specified with a model that uses dependencies to decide upon things that will do what,

where, when, and why. Two types of dependencies are adopted, regular that schedule the execution

chronology of things and special that coordinate the operations of things when they run into obstacles like

unavailability of resources to use. Both resource use and resource availability are specified in compliance

with Allen’s time intervals upon which reasoning takes place. This reasoning is technically demonstrated

through a system extending EdgeCloudSim and backed with a set of experiments.

Introduction

Over the years, Information and Communication Technology (ICT) practitioners have been advocating for

different software solutions to achieve distributed and heterogeneous system integration (aka

interoperability, [1]). Web services are among these solutions that usually acts as wrappers over systems

allowing to expose these systems’ functionalities in a standard/homogeneous way. Web services have

been backed by different standards and specifications such as eXtensible Markup Language (XML), Web

Services Description Language (WSDL), Simple Object Access Protocol (SOAP), Universal Description,

Discovery, and Integration (UDDI), and Business Process Execution Language (BPEL) [2]. Among all these

standards and specifications, BPEL has played a major role in reinforcing the role of Web services as a

solution integrator. BPEL composes component Web services into what is usually referred as composite

Web services. The complex and changing nature of users’ and organizations’ needs would require more

than one component Web service that would wrap all necessary systems contributing collectively to

satisfy these needs.

In conjunction with Web services, there have been a lot of advances in ICT with focus lately, among many

others, on the Internet-of-Things (IoT, [3,4]). IoT is about making things/devices like sensors and

actuators act over the cyber–physical surrounding so, that, contextualized, smart services are

provisioned to users and organizations. According to Gartner,1 6.4 billion connected things were in use

in 2016, up 3% from 2015, and will reach 20.8 billion by 2020. IoT is a perfect demonstration of Weiser’s

vision about ubiquitous computing when he states in 1999 that ‘‘the most profound technologies are

those that disappear. They weave themselves into the fabric of everyday life until they are

indistinguishable from it ’’ [5]. IoT uses are diverse such as controlling the freshness of goods in

warehouses, monitoring elderly people’s health, and tracking vehicle flows on highways. Despite the

bright side of IoT, many are still skeptical about IoT’s benefits to users and organizations because of

things’ limited cognitive capabilities and privacy invasion. Indeed, Wu et al. compare things to ‘‘awkward

stegosaurus: all brawn and no brains’’ [6] and Green states that IoT needs to be smarter so, that, things

would go beyond the regular operations of sensing and sometimes actuating [7].

By analogy with Web services composition [2], we discuss in this paper the necessary steps and means

for composing things so they could be integrated into complex business applications. Multiple challenges,

like diversity of things’ development and communication technologies [8] and passive nature of things

[9], are confining things into silos, which could deprive them from being the technology of choice for

developing advanced cyber–physical systems, for example. To identify these steps and means, the

following actions are taken: expose capabilities of things to external stakeholders, identify potential

dependencies between things based on things’ capabilities, develop mechanisms allowing things to

engage in compositions, and technically demonstrate these mechanisms. Contrarily to some existing

works that advocate for thing composition from a service perspective [10–12], we argue that this

perspective is not appropriate for capturing things’ intrinsic characteristics. Things are completely

‘‘immersed’’ in cyber–physical surroundings while services are ‘‘immersed’’ in cyber surroundings, only.

Therefore, a different and novel way to approach thing composition is deemed necessary.

The rest of this paper is organized as follows. Section 2 motivates thing composition using a case study and

discusses some related works. Section 3 presents conceptual details about our time-centric, resource-

driven approach to compose things. Section 4 suggests ways for enhancing this approach by connecting

things using social relations and tackling the challenge of resource unavailabilities. The approach’s

technical details and results of experiments are presented in Section 5. Section 6 concludes the paper and

identifies future research work.

Background

This section presents a case study that motivates examining thing composition and then, discusses some

works that touched upon thing composition, as well.

Motivations

We consider a case study that sheds light on the importance of composing things to assist elderly

people with their daily activities. Many studies confirm that population ageing is a dominant global

1 www.gartner.com/newsroom/id/3165317.

http://www.gartner.com/newsroom/id/3165317

demographic trend of the 21st century.2 In the context of a living room, a straightforward scenario

would consist of composing the remote control, the smart TV, and light switches together to offer a

seamless watching experience to a group of elderly persons based on their habits and preferences. We

could think of a temporary composition since the remote control could also be used for other needs

like opening and closing the blinds in the same living room when the smart TV is off. Another

scenario would be an elderly person’s smart watch that would team up with her dispenser to

automatically dispense medicine doses according to her blood-pressure level. The composition between

the smart watch and dispenser could be set according to the duration of the treatment but, then,

extended, should the treatment need to be renewed. To complete these two scenarios, our approach

requires that (i) the capabilities of things should be known (what can the smart TV do?), (ii) the

dependencies between things should be identified (how can the smart TV and remote control be ‘‘glued’’

together?), (iii) the consistency of these dependencies should be checked (when can the remote control

send instructions to the smart TV?), and (iv) the engagement of things in compositions should be

regulated (how can the remote control along with the smart TV confirm their participation in a

composition knowing that the remote control could participate in other on-going compositions?).

Related work

Many studies have examined thing composition from different perspectives [13–19]. Firstly, Khaled

and Helal proposed a programming framework to capture inter-thing relations into IoT applications

[13]. The framework’s objective is to ensure that, on top of things’ services, logical and functional

ties between services are not overlooked. The framework introduces three primitives that are thing

service, thing relation (e.g., control/controlled by, drive/driven by, and extend/extended by), and recipe.

Secondly, Krishna et al. acknowledged the difficult job of composing things due to their heterogeneity and

suggest a Web-based tool called IoT Composer [14]. This one assists users with selecting, configuring,

and binding things together. An LNT process-algebraic code is generated and then, submitted to a

verification toolbox that checks the satisfaction of some properties like comparability and deadlock-

free. Thirdly, Åkesson et al.composed services hosted on IoT devices using ComPOS (Composition

language for Palcom Oblivious Services) [18]. Native services contain computation and interaction with the

physical world, while composition services combine native services into applications, mediating and

adapting messages between them. Fourthly, Seiger et al. relied on mix reality to facilitate the exercise of

developing IoT processes [19]. They suggested HoloFlows to address the complexity of developing IoT

applications for users and domain experts with limited technical background. Using HoloFlows, physical

sensors and actuators are mapped onto virtual components to connect together through virtual

wires. Finally, Maamar et al. examined thing composition in the context of thingsourcing [15]. They

argue that by analogy with people who participate in crowdsourcing, things could ‘‘act in the same

way’’ leading to the formation and management of a crowd of things from which a select group of

things would be composed and assigned users’ demands to complete. The authors handled an

unexpected traffic diversion by composing multiple things such as traffic light, traffic cone, speed-

limit sign, speed camera, and flip-disc display to restore normal circulation. Worth mentioning,

though brief, some works that advocate for blending social computing with IoT. For instance, Atzori et

al. consider things as intelligent objects that could form social networks of objects [20]. These networks

2 www.weforum.org/agenda/2019/10/ageing-economics-population-health.

http://www.weforum.org/agenda/2019/10/ageing-economics-population-health

could be built upon relations such as parental, co-location, co-work, ownership, and social. Also,

Hussain et al. suggest a software agent-centric semantic social-collaborative network that provides

functionality to represent and manage cyber–physical resources in a social network [21].

While existing works including those summarized above support the idea of an IoT marketplace where

things would sign-up and sign-off looking for opportunities to complete demands [22], there is a need for

mechanisms that would compose those things that would express interest in these demands. We

associate these mechanisms with a four-stage approach concerned with capabilities of things,

dependencies between things, consistency of dependencies, and engagement of things. More details

about these four stages are given in the next sections.

Approach for thing composition

This section details the approach for composing things with emphasis on how to expose capabilities of

things, how to use dependencies to both connect things together and make resources available for things,

and how to engage things in composition. Reasoning over dependencies is also discussed in this section.

Exposing capabilities of things

In preparation for composing things, we expose their capabilities using the concept of duty presented in

[23,24]. A duty depicts what a thing can do and is specialized into atomic and composite (see Fig. 1).

On the one hand, atomic duty could be either sensing (s) (collecting data), actuating (a) (processing data),

or communicating (c) (distributing data). As per Fig. 1 that targets one thing, only, a duty is either

disabled or enabled (0,1) according to the functional/non-functional requirements of the under-

development IoT applications. Briefly, a thing senses the cyber–physical surrounding so, that, it produces

data. A thing actuates data including those that are sensed. Finally, a thing communicates with the

cyber–physical surrounding the sensed and/or actuated data. Accepting data and/or commands from

peers, for example, is also taken care by the communicating duty but is not discussed further in this

paper.

On the other hand, composite duty puts some atomic duties together according to one of these

representative cases: sac (sensed data are passed on to actuating; and the data that result from actuation

are passed on to communicating for distribution), sa (sensed data are passed on to actuating; and the

data that result from actuation are finals), sc (sensed data are passed on to communicating for

distribution), and ac (data that result from actuating are passed on to communicating for distribution).

Additional cases of composing primitive duties include ca and cas. It is worth noting that composing

duties belonging to separate things exemplifies thing composition and would require standardization

between these things to address concerns like semantic and communication protocol heterogeneity.

These concerns do not fall into the scope of this paper.

Table 1 includes examples of duties of some things mentioned in the case-study. Duties like change and

display are atomic while others like configure and remind are composite.

Connecting things together

Composition is always associated with a model that would define how independent components would be

put together to achieve joint goals. In the business process community, this model is known as business

logic or process model and relies on dependencies (e.g., prerequisite and parallel prerequisite) that would

ensure proper execution arrangement of the activities of a process [25]. By analogy with business process

dependencies, we adopt two categories of dependencies to achieve thing composition (Ct): regular in

compliance with project management’s scheduling techniques3 and special in compliance with Decker and

Lesser’s coordination techniques [26]. We apply these two categories of dependencies to duties (𝑑)

that they would belong to either the same thing (i.e., 𝑑𝑖, 𝑑𝑗 ∈ 𝑡) or separate things (i.e., 𝑑𝑖 ∈ 𝑡 and

𝑑𝑗 ∈ 𝑡′) where the last case perfectly exemplifies composition of things.

Regular dependencies between two duties (𝑑𝑖 and 𝑑𝑗) are specialized as per Fig. 2 into start-to-

finish (sf), start-to-start (ss), finish-to-start (fs), and finish-to-finish (ff):

1. sf (𝑑𝑖, 𝑑𝑗): 𝑑𝑗 cannot end until 𝑑𝑖 begins; e.g., when the display duty begins on a certain date,

the ongoing dispense duty should end.

2. ss(𝑑𝑖, 𝑑𝑗): 𝑑𝑗 cannot begin before 𝑑𝑖 begins; e.g., when the play duty begins on a certain

date, the additional record duty should begin too.

3. fs(𝑑𝑖, 𝑑𝑗): 𝑑𝑗 cannot begin before 𝑑𝑖 ends; e.g., when the ongoing remind duty ends on a

certain date, the relax duty should begin.

4. ff (𝑑𝑖, 𝑑𝑗): 𝑑𝑗 cannot end until 𝑑𝑖 ends; e.g., when the 𝑟𝑒𝑚𝑖𝑛𝑑 duty ends on a certain date, the

ongoing share duty should end too.

Special dependencies between two duties (𝑑𝑖 and 𝑑𝑗) are specialized into facilitate, constrain, enable,

cause, inhibit, and cancel. According to Decker and Lesser, these dependencies in the context of

multiagent systems permit to avoid redundant activities, to shift activities to idle executors, and to

provide predictive results. For instance, if a software agent ‘‘realizes’’ that after some reasoning that

executing an activity would facilitate the work of a peer, then the agent would expedite the execution

of this activity in support of the peer. To fit the special dependencies into thing composition, we adopt

them from a resource perspective where a resource would first, be either hard (e.g., sensor, remote

control, and light switch) or soft (e.g., data, CPU time, and bandwidth) and second, be used during

the execution of duties.

1. facilitate(𝑑𝑖, 𝑑𝑗): by establishing this dependency, some outcomes of executing 𝑑𝑖 are to

reinforce the availability of some resources for 𝑑𝑗 , should 𝑑𝑗 become executed. Example of reinforcement

could be extra bandwidth, should 𝑑𝑗 be of type communicating.

2. constrain(𝑑𝑖, 𝑑𝑗): by establishing this dependency, some outcomes of executing 𝑑𝑖 are to

restrict the availability of some resources for 𝑑𝑗 , should 𝑑𝑗 become executed. Example of restriction could

be starting and ending time-period of collecting data from a sensor, should 𝑑𝑗 be of type sensing.

3. enable(𝑑𝑖, 𝑑𝑗): by establishing this dependency, some outcomes of executing 𝑑𝑖 are to unlock

3 https://project-management-knowledge.com/definitions

https://project-management-knowledge.com/definitions

the availability of some resources for 𝑑𝑗 , should 𝑑𝑗 become executed. Example of unlock could be a token

for updating data, should 𝑑𝑗 be of type actuating.

4. cause(𝑑𝑖, 𝑑𝑗): by establishing this dependency, some outcomes of executing 𝑑𝑖 are to change

the features of some resources initially assigned for the execution of 𝑑𝑗 , should 𝑑𝑗 become executed.

Example of change could be CPU-speed increase, should 𝑑𝑗 be of type actuating.

5. inhibit (𝑑𝑖, 𝑑𝑗): by establishing this dependency, some outcomes of executing 𝑑𝑖 are to reduce

the availability of some resources for 𝑑𝑗 , should 𝑑𝑗 become executed. Example of reduction could be less

bandwidth, should 𝑑𝑗 be of type communicating.

6. cancel(𝑑𝑖, 𝑑𝑗): by establishing this dependency, some outcomes of executing 𝑑𝑖 are to lock the

availability of some resources for 𝑑𝑗 , should 𝑑𝑗 become executed. Example of lock could be withdrawal of

data-sharing token, should 𝑑𝑗 be of type communicating.

From a design perspective, we first, connect things’ duties together using regular dependencies and then,

look into how special dependencies could either reinforce resource availabilities (Section 3.3) or

handle resource unavailabilities (Section 4.2) for the benefit of these duties. It happens that a duty that

executes before another duty uses all the resources, which would inhibit the execution of the other

duty. Simply put, we use regular dependencies to ‘‘craft’’ the execution chronology of things’ duties

and special dependencies to manage these resources that these duties would use during execution. To

avoid raising violations about resources, we assume that all special dependencies are subject to

conditions that are not discussed further in this paper.

Reasoning over dependencies

Reasoning over dependencies becomes critical when planning the availability of resources that duties

(𝑑𝑖,𝑗,𝑘,…) use during execution. In compliance with our previous work on social coordination of

business processes [27], we associate this availability with four properties, limited (l), limited-but-

extensible (lx), shareable (s), and non-shareable (ns), and define two time intervals:

• [𝑏, 𝑒] corresponds to a pre-defined interval defining the availability time of a resource where 𝑏, 𝑒 ∈

𝐍+.

• [𝛼𝑢𝑖 , 𝛽𝑢𝑖] corresponds to a pre-defined interval defining the requested time of using a resource by

a duty 𝑑𝑖 where 𝛼𝑢𝑖 , 𝛽𝑢𝑖 ∈ 𝐍+. Ideally, we would like to have [𝛼𝑢𝑖 , 𝛽𝑢𝑖] ⊆ [𝑏, 𝑒] but this might not

always be the case due to risks of resource unavailabilities.

Let us analyze the relationship between resource properties and availability-time/use-time intervals (Fig.

3) where resource use 𝑢𝑖 is associated with duty 𝑑𝑖.

1. limited (l[𝑏, 𝑒], Fig. 3-a): any first-time resource use (𝑢𝑖) happening whether concurrently to other

ongoing uses (e.g., 𝑢1 and 𝑢2) or sequentially after previous uses (e.g., 𝑢4 and 𝑢5) is associated with [𝛼𝑢𝑖 ,

𝛽𝑢𝑖] where 𝛼𝑢𝑖 ≥ 𝑏 and 𝛽𝑢𝑖 ≤ 𝑒. Should there be additional resource uses, e.g., once with 𝑢1.1 and twice

with 𝑢3.1 and 𝑢3.2, then any new use-time interval [𝛼̂𝑢𝑖 , 𝛽 ̂𝑢𝑖] for an additional resource use should fall

into [𝑏, 𝑒]. Otherwise, the additional resource use would be rejected by the resource’s provider. For

instance, all notifications whether regular or special from the 𝑑𝑖𝑠𝑝𝑙𝑎𝑦 duty should happen during a 15-min

interval from the time of administering medicine.

2. limited-but-extensible (lx[𝑏, 𝑒], Fig. 3-b): any first-time resource use (𝑢𝑖) happening whether

concurrently to other ongoing uses (e.g., 𝑢1 and 𝑢2) or sequentially after previous uses (e.g., 𝑢4 and 𝑢5) is

associated with [𝛼𝑢𝑖 , 𝛽𝑢𝑖] where 𝛼𝑢𝑖 ≥ 𝑏 and 𝛽𝑢𝑖 ≤ 𝑒. Should there be a need for additional resource uses,

then any new use-time interval [𝛼̂𝑢𝑖 , 𝛽 ̂𝑢𝑖] for an additional resource use should fall into [𝑏, 𝑒 0[+𝛿] ∗]

where 𝛿 represents the extended availability time and is set at the discretion of the resource’s provider,

and 0[...] ∗ denotes zero-2-many repetitions. Otherwise, the additional resource use is rejected by the

resource’s provider. For instance, any alarm that is set by the dispense duty should last for at least 5 min

with the option of extending the alarm by 2 min, if necessary.

3. shareable (s) and non-shareable (ns) would be mixed with limited and limited-but-extensible, as we

see fit. Unless stated, all resources are shareable allowing their concurrent uses, e.g., ([𝛼
𝑢𝑖 , 𝛽

𝑢𝑖] ⊆ [𝑏, 𝑒]

and [𝛼𝑢𝑗 , 𝛽𝑢𝑗] ⊆ [𝑏, 𝑒]). For instance, any sensitive video/audio content that the play duty displays is

kept private from the share duty.

We now discuss the reasoning over dependencies using some expressions associated with the availability

and use of resources (Table 2). This reasoning is illustrated with Table 1’s duties.

start-to-finish(𝑑𝑖, 𝑑𝑗): after 𝑑𝑗 execution is complete (i.e., 𝑑𝑗 (𝑟[𝛼𝑢𝑗 , 𝛽𝑢𝑗])), 𝑑𝑖 could be concerned about

the post availability-time of a resource 𝑟 since 𝑝.𝑟(𝑑𝑗→𝑑𝑖) could be either

1. l meaning that either 𝑑𝑖(𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖]) ⊈ 𝑟[𝛽𝑢𝑗 , 𝑒] or 𝑑𝑖(𝑟[𝛼̂𝑢𝑖 , 𝛽̂𝑢𝑖]) ⊈ 𝑟[𝛽𝑢𝑖 , 𝑒].

or

2. lx meaning that either 𝑑𝑖(𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖]) ⊈ 𝑟[𝛽𝑢𝑗 , 𝑒 0[+ 𝛿] ∗] or 𝑑𝑖(𝑟[𝛼̂𝑢𝑖 , 𝛽̂𝑢𝑖]) ⊈ 𝑟[𝛽𝑢𝑖 , 𝑒 0[+ 𝛿] ∗]

then, the reasoning is to ensure that 𝑑𝑘 is included in Ct and to execute 𝑑𝑘 before 𝑑𝑖 starts so, that,

1. should facilitate(𝑑𝑘, 𝑑𝑖) hold, then 𝑑𝑘’s execution outcomes would allow to reinforce the

availability time of the resource (𝑟[𝛽𝑢𝑗 , 𝑒]) that 𝑑𝑗 would have left for 𝑑𝑖 depending on this resource’s

property:

(a) l would require ensuring that first, 𝑑𝑖(𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖]) ⊆ 𝑟[𝛽𝑢𝑗 , 𝑒] and then, 𝑑𝑖(𝑟[𝛼̂𝑢𝑖 , 𝛽̂𝑢𝑖]) ⊆ 𝑟[𝛽𝑢𝑖 , 𝑒], if

necessary. Otherwise, 𝑟’s unavailability would be handled as per Section 4.2.

(b) lx should require adjusting 𝑟[𝛽𝑢𝑗 , 𝑒] in a way that 𝑑𝑖(𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖]) ⊆ 𝑟[𝛽𝑢𝑗 , 𝑒 0[+ 𝛿] ∗].

2. should enable(𝑑𝑘, 𝑑𝑖) hold, then 𝑑𝑘’s execution outcomes would allow to unlock a new

resource (𝑛𝑟 to be similar to 𝑟) for 𝑑𝑖, if the availability time of the resource (𝑟[𝛽𝑢𝑗 , 𝑒]) that 𝑑𝑗 would have

left for 𝑑𝑖 cannot accommodate its use time. Confirming this unlock would mean the following as per this

new resource’s property:

(a) l would require ensuring that 𝑑𝑖(𝑛𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖]) ⊆ 𝑛𝑟[𝑏, 𝑒].

(b) lx would require ensuring that 𝑑𝑖(𝑛𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖]) ⊆ 𝑛𝑟[𝑏, 𝑒] and then, 𝑑𝑖(𝑛𝑟[𝛼̂𝑢𝑖 , 𝛽̂𝑢𝑖]) ⊆ 𝑛𝑟[𝛽𝑢𝑖 , 𝑒 0[+ 𝛿]

∗], if necessary.

To illustrate enable, let us assume sf (display, dispense) and consider the dispenser’s screen as a lx

resource (𝑟). Should the dispense duty last more than expected, e.g., 𝑑𝑖𝑠𝑝𝑒𝑛𝑠𝑒(𝑟[5, 7+2]), this would make

the dispenser’s screen’s availability- time interval, e.g., 𝑟[7, 9], inappropriate for the display duty whose

use-time interval is set at [7, 10]. Because of enable(play, display), the 𝑝𝑙𝑎𝑦 duty would make the smart

TV’s screen (𝑛𝑟) available for the display duty in a way that display ’s use-time interval would be

accommodated, e.g., 𝑑𝑖𝑠𝑝𝑙𝑎𝑦(𝑛𝑟[7, 10]) ⊆ 𝑛𝑟[7, 12].

3. should cause(𝑑𝑘, 𝑑𝑖) hold, then 𝑑𝑘’s execution outcomes would allow to change the initial

availability-time (𝑟[𝑏, 𝑒]) of a resource that was assigned to 𝑑𝑖, with the assumption that this availability-

time would not satisfy 𝑑𝑖’s use- time requirement after 𝑑𝑗 execution is complete. Regardless of this

resource’s property, l or lx, the new time availability 𝑟[𝑏′, 𝑒′] would allow to satisfy 𝑑𝑖(𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖]) ⊆ 𝑟[𝑏′,

𝑒′ 0[+ 𝛿] ∗] and 𝑑𝑖(𝑟[𝛼̂𝑢𝑖 , 𝛽̂𝑢𝑖]) ⊆ 𝑟[𝑏′, 𝑒′ 0[+ 𝛿] ∗].

start-to-start (𝑑𝑖, 𝑑𝑗): before 𝑑𝑖 and 𝑑𝑗 simultaneously start their executions, both could be concerned

about the pre availability-time of a resource 𝑟 that they would share during these executions (𝑑𝑖(𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖

]) ⊆ 𝑟[𝑏, 𝑒]) ∧ 𝑑𝑗 (𝑟[𝛼𝑢𝑗 , 𝛽𝑢𝑗]) ⊆ 𝑟[𝑏, 𝑒] with 𝛼𝑢𝑖 = 𝛼𝑢𝑗) since 𝑝.𝑟 could be either

1. l meaning that (either 𝑑𝑖(𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖]) ⊈ 𝑟[𝑏, 𝑒] or 𝑑𝑖(𝑟[𝛼̂𝑢𝑖 , 𝛽̂𝑢𝑖]) ⊈ 𝑟[𝑏, 𝑒]) and (either (𝑑𝑗 (𝑟[𝛼𝑢𝑗 , 𝛽𝑢𝑗

])⊈𝑟[𝑏, 𝑒] or 𝑑𝑗 (𝑟[𝛼̂𝑢𝑗 , 𝛽̂𝑢𝑗]) ⊈𝑟[𝑏, 𝑒]).

or

2. lx meaning that (either 𝑑𝑖(𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖]) ⊈ 𝑟[𝑏, 𝑒 0[+ 𝛿] ∗] or 𝑑𝑖(𝑟[𝛼̂𝑢𝑖 , 𝛽 ̂𝑢𝑖]) ⊈ 𝑟[𝑏, 𝑒 0[+ 𝛿] ∗]) and (either

(𝑑𝑗 (𝑟[𝛼𝑢𝑗 , 𝛽𝑢𝑗])⊈𝑟[𝑏, 𝑒 0[+ 𝛿] ∗] or 𝑑𝑗 (𝑟[𝛼̂𝑢𝑗 , 𝛽̂𝑢𝑗])⊈𝑟[𝑏, 𝑒 0[+ 𝛿] ∗]).

then, the reasoning is to ensure that 𝑑𝑘 is included in Ct and to execute 𝑑𝑘 before 𝑑𝑖/𝑑𝑗 simultaneously start

so, that,

1. should facilitate(𝑑𝑘, 𝑑𝑖/𝑑𝑗) hold, then 𝑑𝑘’s execution outcomes would allow to reinforce the

availability time of the resource (𝑟[𝑏, 𝑒]) that 𝑑𝑖 and 𝑑𝑗 would use after their simultaneous executions start.

Reinforcing this availability would depend on this resource’s property:

(a) l would require ensuring that (either 𝑑𝑖(𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖]) ⊆ 𝑟[𝑏, 𝑒] or 𝑑𝑖(𝑟[𝛼̂𝑢𝑖 , 𝛽̂𝑢𝑖]) ⊆ 𝑟[𝑏, 𝑒]) and (either 𝑑𝑗

(𝑟[𝛼𝑢𝑗 , 𝛽𝑢𝑗])⊆𝑟[𝑏, 𝑒] or 𝑑𝑗 (𝑟[𝛼̂𝑢𝑗 , 𝛽 ̂𝑢𝑗])⊆𝑟[𝑏, 𝑒]). Otherwise, 𝑟’s unavailability would be handled as per

Section 4.2.

(b) lx should require adjusting 𝑟[𝑏, 𝑒] in a way that (either 𝑑𝑖(𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖]) ⊆ 𝑟[𝑏, 𝑒 1[+ 𝛿] ∗] or 𝑑𝑖(𝑟[𝛼̂𝑢𝑖 , 𝛽 ̂𝑢𝑖

]) ⊆𝑟[𝑏, 𝑒 1[+ 𝛿] ∗]) and (either 𝑑𝑗 (𝑟[𝛼𝑢𝑗 , 𝛽𝑢𝑗])⊆𝑟[𝑏, 𝑒 1[+ 𝛿] ∗] or 𝑑𝑗 (𝑟[𝛼̂𝑢𝑗 , 𝛽 ̂𝑢𝑗])⊆𝑟[𝑏, 𝑒 1[+ 𝛿] ∗]).

To illustrate facilitate, let us assume ss(play, record) and consider bandwidth as a l resource (𝑟). Should this

resource’s availability-time interval, e.g., 𝑟[2, 5], does not suit these duties after their simultaneous start,

e.g., 𝑝𝑙𝑎𝑦(𝑟[3, 7]) and 𝑟𝑒𝑐𝑜𝑟𝑑(𝑟[3, 7]), this would make completing their executions at risk. Because of

facilitate(trigger, play /record), the execution of trigger duty would happen allowing to free additional

availability time of the resource for the benefit of both play and record duties in a way that their respective

use-time intervals would be accommodated, e.g., 𝑝𝑙𝑎𝑦(𝑟[3, 7]) ⊆ 𝑟[3, 7] and 𝑟𝑒𝑐𝑜𝑟𝑑(𝑟[3, 7]) ⊆ 𝑟[3, 7].

2. should enable(𝑑𝑘, 𝑑𝑖/𝑑𝑗) hold, then 𝑑𝑘’s execution outcomes would allow to unlock a new

resource (𝑛𝑟 to be similar to 𝑟) for the benefit of 𝑑𝑖/𝑑𝑗 , if the availability time of the resource (𝑟[𝑏, 𝑒]) that

𝑑𝑖∕𝑑𝑗 would use cannot accommodate their respective use time, once their simultaneous times start.

Confirming this unlock would mean the following as per this new resource’s property:

1. l would have to ensure that (either 𝑑𝑖(𝑛𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖]) ⊆ 𝑛𝑟[𝑏, 𝑒] or 𝑑𝑖(𝑛𝑟[𝛼̂𝑢𝑖 , 𝛽̂𝑢𝑖]) ⊆ 𝑛𝑟[𝑏, 𝑒]) and

(either 𝑑𝑗 (𝑟[𝛼𝑢𝑗 , 𝛽𝑢𝑗])⊆𝑛𝑟[𝑏, 𝑒] or 𝑑𝑗 (𝑛𝑟[𝛼̂𝑢𝑗 , 𝛽̂𝑢𝑗])⊆𝑛𝑟[𝑏, 𝑒]). Otherwise, 𝑟’s unavailability would be

handled as per Section 4.2.

2. lx would have to ensure that (either 𝑑𝑖(𝑛𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖]) ⊆ 𝑛𝑟[𝑏, 𝑒 0[+ 𝛿] ∗] or 𝑑𝑖(𝑛𝑟[𝛼̂𝑢𝑖 , 𝛽̂𝑢𝑖]) ⊆ 𝑛𝑟[𝑏, 𝑒 0[+

𝛿] ∗]) and (either 𝑑𝑗 (𝑟[𝛼𝑢𝑗 , 𝛽𝑢𝑗])⊆𝑛𝑟[𝑏, 𝑒 0[+ 𝛿] ∗] or 𝑑𝑗 (𝑛𝑟[𝛼̂𝑢𝑗 , 𝛽̂𝑢𝑗])⊆𝑛𝑟[𝑏, 𝑒 0[+ 𝛿] ∗]).

finish-to-start (𝑑𝑖, 𝑑𝑗): should 𝑑𝑗 be concerned about the post availability-time of a resource after 𝑑𝑖

execution is complete, then the reasoning is to ensure that 𝑑𝑘 is included in Ct and to execute 𝑑𝑘 before 𝑑𝑗

starts so, that,

- should facilitate(𝑑𝑘, 𝑑𝑗) hold, then 𝑑𝑘’s execution outcomes would allow to reinforce the

resource’s availability time that 𝑑𝑖 would have left for the benefit of 𝑑𝑗 with the assumption that these

availability times were not enough for 𝑑𝑗 .

- should enable(𝑑𝑘, 𝑑𝑗) hold, then 𝑑𝑘’s execution outcomes would allow to unlock new

resources for the benefit of 𝑑𝑗 with the assumption that 𝑑𝑖 would have purged some (or all) of the

resources that 𝑑𝑗 would need.

- should cause(𝑑𝑘, 𝑑𝑗) hold, then 𝑑𝑘’s execution outcomes would allow to change the features

of the resource for the benefit of 𝑑𝑗 with the assumption that the resource initially assigned to 𝑑𝑗 would

not satisfy its requirements after 𝑑𝑖 execution is complete.

To illustrate cause, let us assume fs(remind, relax) and consider CPU as a lx resource (𝑟). Should this

resource’s availability-time interval, e.g., 𝑟[3, 7], after executing the remind duty, indicate a low speed that

would not be convenient during the relax duty’s use-time interval, e.g., 𝑟𝑒𝑙𝑎𝑥(𝑟[4, 6]), this would degrade

the performance of relax duty. Because of cause(𝑝𝑜𝑠𝑡, 𝑟𝑒𝑙𝑎𝑥), the execution of 𝑝𝑜𝑠𝑡 duty would happen

allowing to overclock the resource (speed increase) for the 𝑟𝑒𝑙𝑎𝑥 duty in a way that its execution would be

complete during its use-time interval, e.g., 𝑟𝑒𝑙𝑎𝑥(𝑟[4, 6])⊆ 𝑟[3, 7].

finish-to-finish(𝑑𝑖, 𝑑𝑗): should 𝑑𝑖/𝑑𝑗 be concerned about the ongoing availability-time of a resource before

its simultaneous execution-end with 𝑑𝑗 /𝑑𝑖, then the reasoning is to ensure that 𝑑𝑘 is included in Ct and to

execute 𝑑𝑘 before 𝑑𝑖/𝑑𝑗 complete so, that,

- should facilitate(𝑑𝑘, 𝑑𝑖/𝑑𝑗) hold, then 𝑑𝑘’s execution outcomes would allow to reinforce the

resource’s availability time for the benefit of 𝑑𝑖/𝑑𝑗 with the assumption that 𝑑𝑖/𝑑𝑗 would share the

resource, so, that, both would finish simultaneously.

- should enable(𝑑𝑘, 𝑑𝑖/𝑑𝑗) hold, then 𝑑𝑘’s execution outcomes would allow to unlock new

resources for the benefit of 𝑑𝑖/𝑑𝑗 with the assumption that 𝑑𝑗 /𝑑𝑖 would use the resource that 𝑑𝑖/𝑑𝑗 would

need so, that, both would finish simultaneously.

- should cancel(𝑑𝑘, 𝑑𝑖/𝑑𝑗) hold, then 𝑑𝑘’s execution outcomes would allow to lock the

availability of the resource for the benefit of 𝑑𝑗 /𝑑𝑖 with the assumption that 𝑑𝑖/𝑑𝑗 would need this

resource, so, that, both would finish simultaneously. To illustrate cancel, let us assume ff (remind, share)

and consider data-sharing token as a lx resource (𝑟). Should this resource become obsolete during its

availability time, e.g., 𝑟[2, 7], and ongoing execution of remind and share duties, e.g., 𝑟𝑒𝑚𝑖𝑛𝑑(𝑟[3, 8]) and

𝑠ℎ𝑎𝑟𝑒(𝑟[5, 8]), this would make the simultaneous execution-ends of these duties at risk. Because of

cancel(post, remind/share), the execution of post duty would allow to extend the resource’s availability

time and hence, its validity for the benefit of remind/share duties in a way that their use-time intervals

would be accommodated, e.g., 𝑟𝑒𝑚𝑖𝑛𝑑(𝑟[3, 8]) ⊆ 𝑟[2, 9] and 𝑠ℎ𝑎𝑟𝑒(𝑟[5, 8]) ⊆ 𝑟[2, 9].

Engaging things in composition

Fig. 4 illustrates the four modules that would support the participation of component things (𝑇𝑖) in

composite things (𝐶𝑇𝑗). These modules are composer, reasoner, monitor, and executor interacting with

three repositories, trace, dependency, and resource, and some run-time platforms upon which the

composite things will be deployed for execution. In this figure, numbers correspond to the chronology of

operations.

It all starts when an IoT engineer specifies the component things in terms of duties and dependencies

between duties (0 & 1). Standards like the Web of Things (WoT) Thing Description (WoT-TD, [28]) could be

used for specifying things, but this does not fall into the scope of this paper. Next, the composer module

screens the available component things (2) so, that, it matches their atomic/composite duties with the

needs of users as per the interactions the users would have had with the IoT engineer when expressing

their needs. The matching leads to the development of composite things whose execution chronologies

would refer to regular dependencies between the duties of the component things that have been selected

to participate in these composite things. Upon the user’s approval of the definition of a composite thing in

terms of component things and execution chronology, the composer module ‘‘transfers’’ the composite

thing to the composite layer (3) along with informing the executor module of the readiness of this

composite thing for deployment on the run-time platforms (4). Prior to initiating the deployment, the

executor module ensures that the component things of this composite thing have the necessary resources

to execute their duties. To this end, the executor module submits the composite thing’s execution

chronology (5) to the reasoner module that consults the resource repository (6) (i.e., resources’ availability

times) and reasons over this chronology’s regular dependencies (7) in order to identify the special

dependencies (e.g., enable and facilitate) that could be deemed necessary for executing these duties.

Should some special dependencies hold between the duties (duties’ time uses versus resources’ availability

times), the reasoner module notifies both the executor module and the composer module about these

special dependencies (8) so, that, the necessary changes in the composite thing’s execution chronology are

made as per Section 3.3. All these interactions happen under the supervision of the IoT engineer/user who

are made aware of the needs of duties of resources as well as how these resources are secured thanks to

the special dependencies that would allow to release more resources from a availability-time perspective,

for example. After the necessary changes are made in the composite thing’s execution chronology, the

executor module initiates the composite thing, which means invoking the duties of the component things

participating in this composite thing (9 to 12).

During invocation, the executor module tracks the execution progress of the composite thing (13)

along with asking the monitor module to consult the trace repository where details about this progress

are stored. These details are about which duties are executed, which resources are used, and which

resources are requested. The objective of consulting the trace repository is to analyze the execution traces

of composite things (14) and notify both the reasoner module and the IoT engineer/user of any

dependency violation (15). This violation could have many reasons like non-implementation of a special

dependency, which has led to resource unavailability for some duties. More details about this

unavailability are presented in Section 4.2.

Thing composition enhancement

This section discusses how to weave social relations into thing composition for the needs of thing

identification and how to handle resource unavailabilities despite special dependencies.

Making things socialize

In Fig. 4, operation (2) is about the composer module that takes care of identifying the necessary

things according to their atomic/composite duties and users’ needs. Usually, this identification is

known as discovery that could benefit from potential social relations between things [29] and trust

between things as well [30]. In the context of the Internet of Social Things (IoST), Atzori et al.

mention that models used to study social networks of humans can be extended to social networks

of objects/things [20,31]. These networks could be built upon relations such as parental (similar objects

built in the same period by the same manufacturer), co-location (objects in the same venue), co-work

(objects participating in the same scenario), ownership (objects having the same user), and social (when

objects come into contact sporadically or continuously). Atzori et al. also mention the paradigm shift

that is happening from human–object interaction to object–object interaction. Based on our previous work

on weaving social computing into IoT [32], we adopt three social relations namely complementary

exposing recommendation between things, antagonism exposing opposition between things, and

competition exposing exclusion between things.

1. Complementary(𝑡𝑖, 𝑡𝑗) refers to the ‘‘joint’’ participation of things, e.g., smart TV and remote

control, in satisfying users’ demands (𝑢𝑑). Eq. (1) assesses the complementary level between 𝑡𝑖 and 𝑡𝑗

where 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑅𝑒𝑐𝑢𝑑 (𝑡𝑖, 𝑡𝑗) is the number of times that 𝑡𝑖’s recommendations for 𝑡𝑗 are accepted by the

IoT engineer and 𝑚𝑎𝑑𝑒 𝑅𝑒𝑐𝑢𝑑 (𝑡𝑖, 𝑡𝑗) is the number of times that 𝑡𝑖 recommended 𝑡𝑗 (including the

declined recommendations, 𝑑𝑒𝑐𝑙𝑖𝑛𝑒𝑑 𝑅𝑒𝑐𝑢𝑑 (𝑡𝑖, 𝑡𝑗)).

2. Antagonism(𝑡𝑖, 𝑡𝑗) refers to the ‘‘sensitivity’’ that exists between things, e.g., coffee machine and

espresso machine, when they jointly participate in satisfying users’ demands. Eq. (2) assesses the

antagonism level between 𝑡𝑖 and 𝑡𝑗 where 𝑗𝑜𝑖𝑛𝑡𝑢𝑑 (𝑡𝑖, 𝑡𝑗) is the number of times that 𝑡𝑖 and 𝑡𝑗 jointly

participated in satisfying users’ demands and 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑒𝑑𝑢𝑑 (𝑡𝑖 ∣ ¬𝑡𝑗) is the number of times that 𝑡𝑖

participated in satisfying users’ demands without the participation of 𝑡𝑗 in these demands and vice versa.

3. Competition(𝑡𝑖, 𝑡𝑗) refers to the ‘‘exclusion’’ between things, e.g., either cordless phone or regular

phone, as one thing, only, can participate in satisfying a user’s demand. Eq. (3) assesses the competition

level between 𝑡𝑖 and 𝑡𝑗 where 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑢𝑑 (𝑡𝑖, 𝑡𝑗) is the number of times that 𝑡𝑖 is selected over 𝑡𝑗 to

participate in satisfying users’ demands and 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑢𝑑 (𝑡𝑖, 𝑡𝑗) is the number of times that both 𝑡𝑖 and 𝑡𝑗

are potential candidates for participation in satisfying users’ demands.

The aforementioned social relations could impact the execution chronology of the composite thing as

per the analysis below:

1. Regular dependencies: tapping into the complementary relation could mean inserting new things

into the under-development composition of things, which means connecting the new things’ duties to

those that are already in the composition using either start-to-start, start-to-finish, finish-to-finish, or

finish-to-start dependency. The IoT engineer is responsible for the connection, as he sees fit. Prior to

confirming the insertion, it is recommended to tap into the antagonism relation to avoid any potential

‘‘frictions’’ between the newly inserted things and existing things. These ‘‘frictions’’ mean conflicts

between things and hence, the IoT engineer could decide of not inserting some things into the

composition if the antagonism level is above a threshold (Eq. (2)).

2. Special dependencies: because some special dependencies like enable and facilitate require

invoking new duties that could belong to things that are not already included in the under-

development composition of things, it is recommended to tap into the antagonism relation to avoid

any potential ‘‘frictions’’ between the newly included things because of their duties and existing

things. Once the newly included things are confirmed, the IoT engineer connects their respective duties to

other things’ duties using regular dependencies, as he sees fit. It is also recommended to tap into the

competition relation, should a necessary duty be offered by many similar competing things and thus,

only one thing should be selected.

Handling resource unavailabilities

In Section 3.3, we illustrated the role of regular dependencies in connecting duties of things together and

special dependencies in handling resource unavailabilities and reinforcing resource availabilities. However,

it happens that special dependencies do not hold (i.e., resource’s availability time is neither secured nor

reinforced), which confirms resource unavailability impacting the completion of thing composition. In the

following, we put forward some potential solutions for handling this unavailability. To start with, we

model duty and resource as state diagrams allowing to indicate with respect to specific states when a duty

is put on-hold and when a resource is unavailable. The states and transitions in both diagrams are

activated in a synchronized way.

In Fig. 5(a), prepared state signals that a thing offering a duty is under consideration for possible

participation in a composition scenario. In this state, the thing checks the availability of the resources

that the duty needs and then, proceeds with enabling either the activation transition when the check is

positive (Fig. 5(b):engaged state) making the duty take on activated state or the pause transition when the

check is negative (Fig. 5(b):idle state) making the duty take on suspended state. When the duty is in

activated state, it could transition to either done state signaling the success of the duty execution,

or suspended state signaling the necessity of handling a resource unavailability identified with Fig. 5(b):

suspended state. Should this handling be possible (Fig. 5(b): from suspended state to engaged state), the

duty transitions back from suspended state to activated state. Otherwise, the duty transitions from

suspended state to failed state. In a duty’s state diagram, failed and done states lead to the final

state. Our objective is to avoid 𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑 state and, particularly, 𝑓𝑎𝑖𝑙𝑒𝑑 state since this latter would

terminate the ongoing thing composition.

In Fig. 5(b), idle state signals that a resource is available for use by some things’ duties. Following a request-

to-use from a thing, the resource transitions to engaged state confirming that it is available for use.

Should this use complete successfully by a duty (Fig. 5(a):done state), the resource transitions back to idle

state. Otherwise, i.e., incomplete use, the resource becomes unavailable taking on suspended state and

impacting the duty (Fig. 5(a):from activated state to suspended state). If the unavailability cannot be

handled, the resource takes on failed state impacting the duty as well (Fig. 5(a):from suspended state to

failed state). In the resource’s state diagram, idle and failed states lead to the final state. Our objective is

to avoid 𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑 state and, particularly, 𝑓𝑎𝑖𝑙𝑒𝑑 state since this latter would terminate the thing

composition.

To mitigate the impact of resource unavailabilities on duties, we track when these unavailabilities would

happen, i.e., design-time versus run-time, and associate duties with qualitative criteria and transactional

properties as per the options below.

Option 1 refers to a set of qualitative criteria that we suggested in [33] to evaluate the criticality of

things/duties in a process- of-things. These criteria are known as value-adding (va𝑡), business value-

adding (bva𝑡), and non value-adding (nva𝑡) and are built upon similar criteria that the BP community

uses [34]. For the needs of our work, we restrict ourselves to value-adding and non value-adding

criteria, only.

Option 2 refers to a set of transactional properties that the ICT community uses to decide on the

acceptable outcomes of executing transactions. These properties are referred to as pivot, retriable, and

compensatable [35], Fig. 6. Pivot means that once an execution successfully completes, its effects remain

unchanged forever and cannot be undone. Additionally, this execution cannot be retried following failure.

Compensatable means that a successful execution’s effects can be semantically undone. Finally, retriable

means that an execution is guaranteed to successfully complete after several finite activations. For

the needs of our work, we first, suggest semi-compensatable property that would require dropping failed

state from the compensatable definition and second, combine semi-compensatable and retriable

properties together.

We now illustrate the role of qualitative criteria and transactional properties in handling resource

unavailabilities. To this end, we adopt two regular dependencies. Let us start with sf (𝑑𝑖, 𝑑𝑗) where the

𝑖,𝑗 𝑖,𝑗 𝑖,𝑗

is 𝑖,𝑗 .

potential resource unavailability impacting 𝑑𝑖 would be known at run-time and hence, would prevent the

execution of 𝑑𝑖.

• Should both 𝑑𝑖 and 𝑑𝑗 be value-adding duties, i.e., must be executed, then we recommend at

design-time to consider a composite duty 𝑐𝑑𝑖,𝑗 whose component duties, e.g., 𝑐𝑑1 , 𝑐𝑑2 , ⋯ , 𝑐𝑑𝑛 , would

provide the same outcomes as 𝑑𝑗 and 𝑑𝑖 would do. Prior to launching the execution of the composite

duty, we ensure that two components, e.g., 𝑐𝑑𝑘 and 𝑐𝑑𝑘′ , at least in the composite duty are

connected through sf like d i a n d d j and that 𝑐𝑑𝑘′ is semi-compensatable and cdkij is retriable. At run-

time, the composite duty (acting as a controller) tracks the execution progress of the different

component things’ duties. Should 𝑐𝑑𝑘′ produce resources that are inappropriate for 𝑐𝑑𝑘 , the

composite duty would make 𝑐𝑑𝑘′ take on semi-compensatable: compensated state so, that, this

inappropriateness is handled. Then, the composite duty would initiate the execution of 𝑐𝑑𝑘 that will

for sure succeed being retriable.

• Should 𝑑𝑖 be a value-adding duty, i.e., must be executed, then we recommend at design-time to

substitute 𝑑𝑗 with an atomic duty 𝑑′ (or composite duty 𝑐𝑑𝑗.) that would provide the same outcome

as 𝑑𝑗 would do. Prior to launching the execution of the substituting duty, we ensure that its

transactional property is semi-compensatable. Should 𝑑′ produce resources that are inappropriate for 𝑑𝑖,

𝑑𝑗
′ would transition from semi-compensatable: done state to semi-compensatable: compensated state so

that, this inappropriateness is handled.

• Should 𝑑𝑖 be a non value-adding duty, then its execution would be skipped when 𝑑𝑗 would

produce inappropriate resources for 𝑑𝑖.

We now examine ss(𝑑𝑖, 𝑑𝑗) where the potential resource unavailability impacting both 𝑑𝑖 and 𝑑𝑗 would be

known at design-time and hence, would prevent their executions.

• Should both 𝑑𝑖 and 𝑑𝑗 be both value-adding duties, i.e., must be executed, then we recommend to

adjust the resource’s availability time in a way that 𝑑𝑖’s and 𝑑𝑗 ’s consumption times are accommodated.

• Should both 𝑑𝑖 and 𝑑𝑗 be both non-value-adding duties, then their executions would be skipped

when the resources made available for them would be inappropriate.

Implementation and experiments

We present the implementation work that was performed to demonstrate the technical feasibility of our

time-centric, resource-driven thing-composition approach and then, discuss some experimental

results.

Testbed set-up

Our testbed extends the Java-based discrete event simulator EdgeCloudSim that we deployed on top

of a Toshiba dynabook with Intel Core 𝑖5-825 processor and 8GB of RAM. EdgeCloudSim is one of the

most popular simulators for IoT scenarios [36]. The extension was necessary since EdgeCloudSim does not

consider multiple Virtual Machines (VMs) for processing nor how tasks (duties in our work) would be

connected through (regular and special) dependencies. Fig. 7 depicts the testbed architecture along with

the main modules. Extending EdgeCloudSim was associated with a resource-duty module (not shown in

this figure) that for instance, attaches dependencies (defined as Enums) to duties, isolates things from

their duties, and specifies resource availabilities and duty uses of resources as time intervals. The

resource-duty module includes three others referred to as duty generator, dependency, and resource

orchestrator.

• Core-simulation module manages the simulator based on a configuration file that includes details

such as resources, dependencies between duties, and time intervals related to resources and duties. This

module also supports saving simulation results in Comma-Separated Value (CSV) format so, that,

numerical data is extracted for plotting.

• Networking module does not have a direct impact on the simulation nor output results, but is

required for managing the IoT communication components including devices, VMs, and routers. This

module also handles transmission delays, via an internal cost-delay function, when

uploading/downloading data about duties is communicated to/from the VMs.

• Duty-generator module produces the necessary duties with their deadlines for a given configuration

working closely with the dependency module to attach regular/special dependencies to these duties. In

addition, duties’ data sizes and duties’ needs in terms of resource uses are also set according to a

distribution and scheduling mechanism that complies with a Poisson distribution via active/idle duty

generation pattern [37]. Since the duty-generator module schedules the execution of duties, it also

tracks their execution progress as per Section 3.4.

• Resource-orchestrator module makes decisions about duty execution with respect to their

dependencies. In fact, this module uses the information collected from the duty-generator and

dependency modules to decide on how to handle incoming duties and in what order so, that,

dependency requirements are met.

Discussions

The simulation starts by an initialization stage where the duty-generator module creates a set of duties

according to a Poisson distribution4 via active/idle duties generation pattern,. considering both regular

and special dependencies. Each created duty would have a set of parameters such as dependency type,

duty start-time, duty end-time (aka deadline), and duty data size (includes both input and output data).

These parameters are exponentially distributed based on the simulation time and number of iterations.

Afterwards, the duties are sorted based on their start times, dependencies, and other details like

network medium between VM resources. It is worth noting that during simulation we used almost a

consistent number of regular and special dependencies as per Table 3, where each dependency would

have at least 230 simulated instances.

The duty-generator module takes in account not, only, the duties’ deadlines but, also, the dependencies

associated with each duty before submitting a duty for execution on one of the available VMs. The

4 Poisson distribution is a discrete distribution model that measures the probability of the occurrence of a given
number of duties over specified time period during the simulation.

total number of VMs is fixed to 10 for each run-time. Therefore, some duties may wait some time

before they get executed to meet their dependency requirements as per Fig. 8 showing the ideal

execution time versus the actual execution time in milliseconds. The delay in accrued execution is due

to the consideration of dependencies during simulation. Moreover, the duty creation and arrival rates can

vary during simulation to mimic real-world scenarios where the demand on resources can vary from time

to time according to things’ needs. Therefore, the previous experiment has been extended to have

different arrival rates of duties during simulation; the duties at the start are 100, then increased by 𝑥

amount (adjustable based on the simulation scenario) till the end of the simulation time or a

maximum number of duties to execute, such as 2500 as per Fig. 9.

Another observation is related to resource use during run-time with respect to duties’ regular

dependencies. The objective here is to simulate cases of limited resources versus limited-but-extensible

resources. Fig. 10 shows duties grouped by their regular dependencies and the accumulative time (in

milliseconds) required for those groups to extend the resources (regardless of which VM) usage during

the simulation run-time. It is also worth noting that the number of duties in iteration #1 is fixed to 100

and increased by 200 until it gets to 1000 duties in the final iteration #5. In each iteration, the same

ratio of duty dependencies was maintained.

To illustrate the resource consumption with respect to limited resources and limited-but-extensible

resources, we observed VMs usage at a specific timestamp (randomly chosen around mid-simulation

time) to verify that duties can extend their times on the VM resources when required as per Fig. 11

which shows duties running on VM2, VM4, VM5, VM7, VM8, and VM10 have extended their times to

finish, unlike duties running on VM1, VM3, VM6, and VM9 that are done according to the scheduled

times, hence no resource usage extension was required.

Conclusion

To sustain the rapid development of the Internet-of-Things, this paper presented a time-centric, resource-

driven approach to compose things based on a set of regular and special dependencies. The former

specialized into start-to-start, finish-to-finish, start- to-finish, and finish-to-start, allow to define the

chronology of executing things and their duties. And, the latter specialized into facilitate, constrain,

enable, cause, inhibit, and cancel, allow to tackle the challenge of resource unavailabilities during the

execution of things and their duties. Resources were assigned properties known as limited, limited-but-

extensible, shareable, and not-shareable having each an impact on the availability of these resources.

Duties use resources at run-time according to specific time intervals. The composition approach

presented in this paper consists of exposing capabilities of things as a set of duties, identifying necessary

dependencies to connect things’ duties together, reasoning over time intervals that depict when things’

duties need to use resources, and finally, demonstrating thing composition through a system

extending EdgeCloudSim.

In term of future work we would like to examine the impact of first, mixing resource properties like

limited-and-extensible and shareable on the identification of the necessary dependencies and second,

adopting other restrictions like privacy on thing composition in terms of what data could be collected,

processed, and shared. We expect that mixing properties and adopting new restrictions would require

adjusting regular and special dependencies between things. We would also like to examine the

scalability of our system when a large number of things participate in composition scenarios. Resource

unavailabilities could become a major concern that could delay the completion of thing composition

scenarios.

References

[1] A. Ouksel, A. Sheth, Semantic interoperability in global information systems: A brief introduction

to the research area and the special section, SIGMOD Rec. 28 (1) (1999).

[2] A. Bouguettaya, M. Singh, M. Huhns, Q. Sheng, H. Dong, Q. Yu, A. Ghari Neiat, S. Mistry, B.

Benatallah, B. Medjahed, M. Ouzzani, F. Casati, X. Liu, H. Wang, D. Georgakopoulos, L. Chen, S. Nepal,

Z. Malik, A. Erradi, Y. Wang, M. Blake, S. Dustdar, F. Leymann, M. Papazoglou, A service computing

manifesto: The next 10 years, Commun. ACM 60 (4) (2017).

[3] A. Sheth, Internet of things to smart IoT through semantic, cognitive, and perceptual computing,

IEEE Intell. Syst. 31 (2) (March/April 2016).

[4] A. Taivalsaari, T. Mikkonen, A roadmap to the programmable world: Software challenges in the

IoT era, IEEE Softw. 34 (1) (2017).

[5] M. Weiser, The computer for the 21st century, Newslett. ACM SIGMOBILE Mob. Comput.

Commun. Rev. 3 (3) (1999).

[6] Q. Wu, G. Ding, Y. Xu, S. Feg, Z. Du, J. Wang, K. Long, Cognitive internet of things: A new paradigm

beyond connection, IEEE Internet Things J. 1 (2) (April 2014).

[7] H. Green, The internet of things in the cognitive era: Realizing the future and full potential of

connected devices, 2015, https://www-01.ibm.com/common/ssi/cgi-

bin/ssialias?htmlfid=WWW12366USEN.

[8] D. Androec, B. Tomas, T. Kisasondi, Interoperability and lightweight security for simple IoT devices,

in: Proceedings of the Information Systems Security Conference (ISS’2017) Held in Conjunction with the

40Th Jubilee International Convention on Information and Communication Technology, Electronics, and

Microelectronics, MIPRO’2017, Opatija, Croatia, 2017.

[9] DZone, The Internet of Things, Application, Protocols, and Best Practices, Tech. Rep., 2017,

https://dzone.com/guides/iot-applications-protocols-and-best- practices (visited in May 2017).

[10] G. Chen, J. Huang, B. Cheng, J. Chen, A social network based approach for IoT device management

and service composition, in: Proceedings of the IEEE World Congress on Services, SERVICES’2015, New

York, USA, 2015.

[11] L. Li, Z. Jin, G. Li, L. Zheng, Q. Wei, Modeling and analyzing the reliability and cost of service

composition in the IoT: A probabilistic approach, in: Proceedings of the IEEE 19th International

Conference on Web Services, ICWS’2012, Honolulu, HI, USA, 2012.

[12] A. Parvaneh, R. Amir Masoud, J. Hamid Haj Seyyed, Service composition approaches in IoT: A

systematic review, J. Netw. Comput. Appl. 120 (2018).

[13] A. Khaled, S. Helal, A framework for inter-thing relationships for programming the social IoT, in:

Proceedings of WF-IoT’2018, Singapore, 2018.

[14] A. Krishna, M. Le Pallec, R. Mateescu, L. Noirie, G. Salaün, IoT composer: Composition and

deployment of IoT applications, in: Companion Proceedings of the 41st International Conference on

Software Engineering, ICSE’2019, Montreal, QC, Canada, 1999.

[15] Z. Maamar, K. Boukadi, B. Koné, D. Benslimane, S. Elnaffar, Thingsourcing to enable iot

collaboration, in: Proceedings of the 29th IEEE International Conference on Enabling Technologies:

Infrastructure for Collaborative Enterprises (WETICE’2020), France (online), 2020.

[16] J. Middleton, Long live the thing! temporal ubiquity in a smart vintage wardrobe, Ubiquity:J.

Pervas. Media 1 (1) (September 2012).

http://refhub.elsevier.com/S2542-6605(21)00101-3/sb1
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb1
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb1
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb2
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb2
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb2
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb2
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb2
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb3
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb3
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb4
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb4
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb5
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb5
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb6
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb6
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb6
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=WWW12366USEN
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=WWW12366USEN
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=WWW12366USEN
https://dzone.com/guides/iot-applications-protocols-and-best-practices
https://dzone.com/guides/iot-applications-protocols-and-best-practices
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb12
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb12
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb15
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb15
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb15
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb15
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb16
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb16

[17] J. Phuttharak, S. Loke, A review of mobile crowdsourcing architectures and challenges: Toward

crowd-empowered internet-of-things, IEEE Access 7 (2019).

[18] A. Åkesson, G. Hedin, M. Nordahl, B. Magnusson, ComPOS: Composing oblivious services, in:

Proceedings of the Third International Workshop on Mobile and Pervasive Internet of Things,

PerIoT’2019, Kyoto, Japan, 2019.

[19] R. Seiger, R. Kühn, M. Korzetz, U. Aßmann, HoloFlows: Modelling of processes for the

internet of things in mixed reality, Softw. Syst. Model. (2021 (forthcoming)).

[20] L. Militano, M. Nitti, L. Atzori, A. Iera, Enhancing the navigability in a social network of smart

objects: A Shapley-value based approach, Comput. Netw. 103 (2016).

[21] N. Hussain, H. Wang, C. Buckingham, X. Zhang, Software agent-centric semantic social network for

cyber-physical interaction and collaboration, Int. J. Softw. Eng. Knowl. Eng. 30 (6) (2020).

[22] C. Perera, C. Liu, S. Jayawardena, M. Chen, A survey on internet of things from industrial market

perspective, IEEE Access 2 (2014).

[23] Z. Maamar, T. Baker, M. Sellami, M. Asim, E. Ugljanin, N. Faci, Cloud versus edge: who serves the

internet-of-things better?, Internet Technology Letters, Wiley 1 (5) (2018).

[24] A. Qamar, A. Muhammad, Z. Maamar, T. Baker, S. Saeed, A quality-of-things model for

assessing the internet-of-thing’s non-functional properties, Transactions on Emerging

Telecommunications Technologies (2019) (forthcoming).

[25] M. Weske, Business Process Management - Concepts, Languages, Architectures, second ed.,

Springer, 2012.

[26] K. Decker, V. Lesser, Generalizing the partial global planning algorithm, Int. J. Coop. Inf. Syst. 1 (2)

(1992).

[27] Z. Maamar, N. Faci, S. Sakr, M. Boukhebouze, A. Barnawi, Network-based social coordination of

business processes, Information Systems 58 (2016).

[28] W3C, Web of things (WoT) thing description, 2020, (Visited January 2021), www.w3.org/TR/wot-

thing-description.

[29] G. Thangavel, M. Memedi, K. Hedström, A systematic review of social internet of things:

Concepts and application areas, in: Proceedings of the 25th Americas Conference on Information

Systems, AMCIS’2019, Cancun, Mexico, 2019.

[30] M. Aslam, S. Din, J. Rodrigues, A. Ahmad, G. Choi, Defining service-oriented trust assessment for

social internet of things, IEEE Access 8 (2020).

[31] L. Atzori, A. Iera, G. Morabito, M. Nitti, The social internet of things (sIoT)-when social networks

meet the internet of things: Concept, architecture and network characterization, Comput. Netw. 56

(16) (2012).

[32] K. Boukadi, N. Faci, Z. Maamar, E. Ugljanin, M. Sellami, T. Baker, M. Al-Khafajiy, Norm-

based and commitment-driven agentification of the internet of things, Internet of Things 6 (2019).

[33] Z. Maamar, N. Faci, E. Kajan, S. Purkovic, E. Ugljanin, Process-of-things: weaving film industry’s

practices into the internet-of-things, Internet of Things 11 (2020).

[34] M. Dumas, M. La Rosa, J. Mendling, H. Reijers, Fundamentals of Business Process Management,

Springer, 978-3-642-33142-8, 2013.

[35] M. Little, Transactions and web services, Commun. ACM 46 (10) (2003).

[36] C. Sonmez, A. Ozgovde, C. Ersoy, EdgeCloudSim: An environment for performance evaluation of edge

http://refhub.elsevier.com/S2542-6605(21)00101-3/sb17
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb17
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb19
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb19
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb19
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb20
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb20
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb20
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb21
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb21
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb21
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb22
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb22
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb23
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb23
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb23
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb24
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb24
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb24
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb24
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb25
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb25
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb26
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb26
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb27
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb27
http://www.w3.org/TR/wot-thing-description
http://www.w3.org/TR/wot-thing-description
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb30
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb30
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb31
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb31
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb31
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb31
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb32
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb32
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb32
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb33
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb33
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb33
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb34
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb34
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb35

computing systems, in: Proceedings of the International Conference on Fog and Mobile Edge

Computing, FMEC’2017, Valencia, Spain, 2017.

[37] J. Gart, The Poisson distribution: The theory and application of some conditional tests, in: G.P.

Patil, S. Kotz, J.K. Ord (Eds.), Statistical Distributions in Scientific Work, Vol. 2, 1975.

http://refhub.elsevier.com/S2542-6605(21)00101-3/sb37
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb37
http://refhub.elsevier.com/S2542-6605(21)00101-3/sb37

[38]
[39] Fig. 1. Atomic duties of a thing.

[40] Source: Adopted from [23].

Table 1

Examples of duties for different things.

Thing Duty type Duty name Description

𝑎 Change Modify pill’s intake frequency

𝑠𝑎 Configure Select a container per pill’s type

Smart Dispenser

Smart TV

Smart Phone

𝑎𝑐 Dispense Release a pill in a Container and blink lights

𝑐 Display Show quantity of pills left per container

𝑎 Refill Request for more pills

𝑎 Play Enable program for viewing

𝑎 Record Tape ongoing program

𝑎 Trigger Initiate voice control

𝑐 Share Send details to the cable TV company

𝑠𝑐 Remind Record pill’s intake and notify for next intake

𝑐 Post Present content on the screen

𝑠𝑎 Relax Adjust luminosity and play music

Fig. 2. Representation of regular dependencies.

Fig. 3. Representation of a resource in terms of availability-time interval and use-time interval.

Table 2

Expressions associated with availability and use of resources. Expression Description

𝑝.𝑟 𝑟’s property (either l or lx)

𝑟[𝑏, 𝑒] 𝑟’s availability-time interval

𝑑𝑖(𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖]) 𝑟’s use-time interval upon the request of 𝑑𝑖

𝑙𝑒𝑓 𝑡

𝑟(𝑑𝑖 ←→← 𝑑𝑗) 𝑑𝑖 has left 𝑟 for use by 𝑑𝑗

 𝑟(𝑑𝑖|𝑑𝑗) 𝑑𝑖 and 𝑑𝑗 concurrently use 𝑟

Fig. 4. Modules, repositories, and platforms to support thing composition.

Fig. 5. Representation of duty and resource as state diagrams.

Fig. 6. Execution’s life cycle per transactional property.

Fig. 7. EdgeCloudSim-based testbed’s main modules.

Table 3

Number of regular and special dependencies during simulation.

Type Number

 of dependencies of dependencies

ss 264

Regular

sf 271

fs 244

 ff 240

Facilitate 250

Constrain 232

Special

Enable 261

Cause 239

Inhibit 258

 Cancel 241

Fig. 8. Ideal-execution time vs. Actual-execution time in milliseconds.

Fig. 9. Duties’ arrival and execution times.

Fig. 10. Resource extended times per type of regular dependency.

Fig. 11. Resource extended time at a certain timestamp during the execution.

