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Abstract 

 

Internet of Things (IoT), one of the fastest growing Information and Communication Technologies (ICT), is 

playing a major role in provisioning contextualized, smart services to end-users and organizations. To 

sustain this role, many challenges must be tackled with focus in this paper on the design and development 

of thing composition. The complex nature of today’s needs requires groups of things, and not separate 

things, to work together to satisfy these needs. By analogy with other ICTs like Web services, thing 

composition is specified with a model that uses dependencies to decide upon things that will do what, 

where, when, and why. Two types of dependencies are adopted, regular that schedule the execution 

chronology of things and special that coordinate the operations of things when they run into obstacles like 

unavailability of resources to use. Both resource use and resource availability are specified in compliance 

with Allen’s time intervals upon which reasoning takes place. This reasoning is technically demonstrated 

through a system extending EdgeCloudSim and backed with a set of experiments. 

 

Introduction 

 

Over the years, Information and Communication Technology (ICT) practitioners have been advocating for 

different software solutions to achieve distributed and heterogeneous system integration (aka 

interoperability, [1]). Web services are among these solutions that usually acts as wrappers over systems 

allowing to expose these systems’ functionalities in a standard/homogeneous way. Web services have 

been backed by different standards and specifications such as eXtensible Markup Language (XML), Web 

Services Description Language (WSDL), Simple Object Access Protocol (SOAP), Universal Description, 

Discovery, and Integration (UDDI), and Business Process Execution Language (BPEL) [2]. Among all these 

standards and specifications, BPEL has played a major role in reinforcing the role of Web services as a 

solution integrator. BPEL composes component Web services into what is usually referred as composite 

Web services. The complex and changing nature of users’ and organizations’ needs would require more 

than one component Web service that would wrap all necessary systems contributing collectively to 

satisfy these needs. 

 

In conjunction with Web services, there have been a lot of advances in ICT with focus lately, among many 

others, on the Internet-of-Things (IoT, [3,4]). IoT is about making things/devices like sensors and 

actuators act over the cyber–physical surrounding so, that, contextualized, smart services are 



 

 

provisioned to users and organizations. According to Gartner,1 6.4 billion connected things were in use 

in 2016, up 3% from 2015, and will reach 20.8 billion by 2020. IoT is a perfect demonstration of Weiser’s 

vision about ubiquitous computing when he states in 1999 that ‘‘the most profound technologies are 

those that disappear. They weave themselves into the fabric of everyday life until they are 

indistinguishable from it ’’ [5]. IoT uses are diverse such as controlling the freshness of goods in 

warehouses, monitoring elderly people’s health, and tracking vehicle flows on highways. Despite the 

bright side of IoT, many are still skeptical about IoT’s benefits to users and organizations because of 

things’ limited cognitive capabilities and privacy invasion. Indeed, Wu et al. compare things to ‘‘awkward 

stegosaurus: all brawn and no brains’’ [6] and Green states that IoT needs to be smarter so, that, things 

would go beyond the regular operations of sensing and sometimes actuating [7]. 

 

By analogy with Web services composition [2], we discuss in this paper the necessary steps and means 

for composing things so they could be integrated into complex business applications. Multiple challenges, 

like diversity of things’ development and communication technologies [8] and passive nature of things 

[9], are confining things into silos, which could deprive them from being the technology of choice for 

developing advanced cyber–physical systems, for example. To identify these steps and means, the 

following actions are taken: expose capabilities of things to external stakeholders, identify potential 

dependencies between things based on things’ capabilities, develop mechanisms allowing things to 

engage in compositions, and technically demonstrate these mechanisms. Contrarily to some existing 

works that advocate for thing composition from a service perspective [10–12], we argue that this 

perspective is not appropriate for capturing things’ intrinsic characteristics. Things are completely 

‘‘immersed’’ in cyber–physical surroundings while services are ‘‘immersed’’ in cyber surroundings, only. 

Therefore, a different and novel way to approach thing composition is deemed necessary. 

 

The rest of this paper is organized as follows. Section 2 motivates thing composition using a case study and 

discusses some related works. Section 3 presents conceptual details about our time-centric, resource-

driven approach to compose things. Section 4 suggests ways for enhancing this approach by connecting 

things using social relations and tackling the challenge of resource unavailabilities. The approach’s 

technical details and results of experiments are presented in Section 5. Section 6 concludes the paper and 

identifies future research work. 

 

Background 

 

This section presents a case study that motivates examining thing composition and then, discusses some 

works that touched upon thing composition, as well. 

 

Motivations 

We consider a case study that sheds light on the importance of composing things to assist elderly 

people with their daily activities. Many studies confirm that population ageing is a dominant global 
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demographic trend of the 21st century.2 In the context of a living room, a straightforward scenario 

would consist of composing the remote control, the smart TV, and light switches together to offer a 

seamless watching experience to a group of elderly persons based on their habits and preferences. We 

could think of a temporary composition since the remote control could also be used for other needs 

like opening and closing the blinds in the same living room when the smart TV is off. Another 

scenario would be an elderly person’s smart watch that would team up with her dispenser to 

automatically dispense medicine doses according to her blood-pressure level. The composition between 

the smart watch and dispenser could be set according to the duration of the treatment but, then, 

extended, should the treatment need to be renewed. To complete these two scenarios, our approach 

requires that (i) the capabilities of things should be known (what can the smart TV do?), (ii) the 

dependencies between things should be identified (how can the smart TV and remote control be ‘‘glued’’ 

together?), (iii) the consistency of these dependencies should be checked (when can the remote control 

send instructions to the smart TV?), and (iv) the engagement of things in compositions should be 

regulated (how can the remote control along with the smart TV confirm their participation in a 

composition knowing that the remote control could participate in other on-going compositions?). 

 

Related work 

Many studies have examined thing composition from different perspectives [13–19]. Firstly, Khaled 

and Helal proposed a programming framework to capture inter-thing relations into IoT applications 

[13]. The framework’s objective is to ensure that, on top of things’ services, logical and functional 

ties between services are not overlooked. The framework introduces three primitives that are thing 

service, thing relation (e.g., control/controlled by, drive/driven by, and extend/extended by), and recipe. 

Secondly, Krishna et al. acknowledged the difficult job of composing things due to their heterogeneity and 

suggest a Web-based tool called IoT Composer [14]. This one assists users with selecting, configuring, 

and binding things together. An LNT process-algebraic code is generated and then, submitted to a 

verification toolbox that checks the satisfaction of some properties like comparability and deadlock-

free. Thirdly, Åkesson et al.composed services hosted on IoT devices using ComPOS (Composition 

language for Palcom Oblivious Services) [18]. Native services contain computation and interaction with the 

physical world, while composition services combine native services into applications, mediating and 

adapting messages between them. Fourthly, Seiger et al. relied on mix reality to facilitate the exercise of 

developing IoT processes [19]. They suggested HoloFlows to address the complexity of developing IoT 

applications for users and domain experts with limited technical background. Using HoloFlows, physical 

sensors and actuators are mapped onto virtual components to connect together through virtual 

wires. Finally, Maamar et al. examined thing composition in the context of thingsourcing [15]. They 

argue that by analogy with people who participate in crowdsourcing, things could ‘‘act in the same 

way’’ leading to the formation and management of a crowd of things from which a select group of 

things would be composed and assigned users’ demands to complete. The authors handled an 

unexpected traffic diversion by composing multiple things such as traffic light, traffic cone, speed-

limit sign, speed camera, and flip-disc display to restore normal circulation. Worth mentioning, 

though brief, some works that advocate for blending social computing with IoT. For instance, Atzori et 

al. consider things as intelligent objects that could form social networks of objects [20]. These networks 

 
2 www.weforum.org/agenda/2019/10/ageing-economics-population-health. 
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could be built upon relations such as parental, co-location, co-work, ownership, and social. Also, 

Hussain et al. suggest a software agent-centric semantic social-collaborative network that provides 

functionality to represent and manage cyber–physical resources in a social network [21]. 

 

While existing works including those summarized above support the idea of an IoT marketplace where 

things would sign-up and sign-off looking for opportunities to complete demands [22], there is a need for 

mechanisms that would compose those things that would express interest in these demands. We 

associate these mechanisms with a four-stage approach concerned with capabilities of things, 

dependencies between things, consistency of dependencies, and engagement of things. More details 

about these four stages are given in the next sections. 

 

Approach for thing composition 

 

This section details the approach for composing things with emphasis on how to expose capabilities of 

things, how to use dependencies to both connect things together and make resources available for things, 

and how to engage things in composition. Reasoning over dependencies is also discussed in this section. 

 

Exposing capabilities of things 

In preparation for composing things, we expose their capabilities using the concept of duty presented in 

[23,24]. A duty depicts what a thing can do and is specialized into atomic and composite (see Fig. 1). 

On the one hand, atomic duty could be either sensing (s) (collecting data), actuating (a) (processing data), 

or communicating (c) (distributing data). As per Fig. 1 that targets one thing, only, a duty is either 

disabled or enabled (0,1) according to the functional/non-functional requirements of the under-

development IoT applications. Briefly, a thing senses the cyber–physical surrounding so, that, it produces 

data. A thing actuates data including those that are sensed. Finally, a thing communicates with the 

cyber–physical surrounding the sensed and/or actuated data. Accepting data and/or commands from 

peers, for example, is also taken care by the communicating duty but is not discussed further in this 

paper. 

 

On the other hand, composite duty puts some atomic duties together according to one of these 

representative cases: sac (sensed data are passed on to actuating; and the data that result from actuation 

are passed on to communicating for distribution), sa (sensed data are passed on to actuating; and the 

data that result from actuation are finals), sc (sensed data are passed on to communicating for 

distribution), and ac (data that result from actuating are passed on to communicating for distribution). 

Additional cases of composing primitive duties include ca and cas. It is worth noting that composing 

duties belonging to separate things exemplifies thing composition and would require standardization 

between these things to address concerns like semantic and communication protocol heterogeneity. 

These concerns do not fall into the scope of this paper. 

 

Table 1 includes examples of duties of some things mentioned in the case-study. Duties like change and 

display are atomic while others like configure and remind are composite. 

 



 

 

Connecting things together 

Composition is always associated with a model that would define how independent components would be 

put together to achieve joint goals. In the business process community, this model is known as business 

logic or process model and relies on dependencies (e.g., prerequisite and parallel prerequisite) that would 

ensure proper execution arrangement of the activities of a process [25]. By analogy with business process 

dependencies, we adopt two categories of dependencies to achieve thing composition (Ct): regular in 

compliance with project management’s scheduling techniques3 and special in compliance with Decker and 

Lesser’s coordination techniques [26]. We apply these two categories of dependencies to duties (𝑑) 

that they would belong to either the same thing (i.e., 𝑑𝑖, 𝑑𝑗 ∈ 𝑡) or separate things (i.e., 𝑑𝑖 ∈ 𝑡 and 

𝑑𝑗 ∈ 𝑡′) where the last case perfectly exemplifies composition of things. 

 

Regular dependencies between two duties (𝑑𝑖 and 𝑑𝑗 ) are specialized as per Fig. 2 into start-to-

finish (sf), start-to-start (ss), finish-to-start (fs), and finish-to-finish (ff): 

 

1. sf (𝑑𝑖, 𝑑𝑗 ): 𝑑𝑗 cannot end until 𝑑𝑖 begins; e.g., when the display duty begins on a certain date, 

the ongoing dispense duty should end. 

2. ss(𝑑𝑖, 𝑑𝑗 ): 𝑑𝑗 cannot begin before 𝑑𝑖 begins; e.g., when the play duty begins on a certain 

date, the additional record duty should begin too. 

3. fs(𝑑𝑖, 𝑑𝑗 ): 𝑑𝑗 cannot begin before 𝑑𝑖 ends; e.g., when the ongoing remind duty ends on a 

certain date, the relax duty should begin. 

4. ff (𝑑𝑖, 𝑑𝑗 ): 𝑑𝑗 cannot end until 𝑑𝑖 ends; e.g., when the 𝑟𝑒𝑚𝑖𝑛𝑑 duty ends on a certain date, the 

ongoing share duty should end too. 

 

Special dependencies between two duties (𝑑𝑖 and 𝑑𝑗 ) are specialized into facilitate, constrain, enable, 

cause, inhibit, and cancel. According to Decker and Lesser, these dependencies in the context of 

multiagent systems permit to avoid redundant activities, to shift activities to idle executors, and to 

provide predictive results. For instance, if a software agent ‘‘realizes’’ that after some reasoning that 

executing an activity would facilitate the work of a peer, then the agent would expedite the execution 

of this activity in support of the peer. To fit the special dependencies into thing composition, we adopt 

them from a resource perspective where a resource would first, be either hard (e.g., sensor, remote 

control, and light switch) or soft (e.g., data, CPU time, and bandwidth) and second, be used during 

the execution of duties. 

 

1. facilitate(𝑑𝑖, 𝑑𝑗 ): by establishing this dependency, some outcomes of executing 𝑑𝑖 are to 

reinforce the availability of some resources for 𝑑𝑗 , should 𝑑𝑗 become executed. Example of reinforcement 

could be extra bandwidth, should 𝑑𝑗 be of type communicating. 

2. constrain(𝑑𝑖, 𝑑𝑗 ): by establishing this dependency, some outcomes of executing 𝑑𝑖 are to 

restrict the availability of some resources for 𝑑𝑗 , should 𝑑𝑗 become executed. Example of restriction could 

be starting and ending time-period of collecting data from a sensor, should 𝑑𝑗 be of type sensing. 

3. enable(𝑑𝑖, 𝑑𝑗 ): by establishing this dependency, some outcomes of executing 𝑑𝑖 are to unlock 

 
3 https://project-management-knowledge.com/definitions 
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the availability of some resources for 𝑑𝑗 , should 𝑑𝑗 become executed. Example of unlock could be a token 

for updating data, should 𝑑𝑗 be of type actuating. 

4. cause(𝑑𝑖, 𝑑𝑗 ): by establishing this dependency, some outcomes of executing 𝑑𝑖 are to change 

the features of some resources initially assigned for the execution of 𝑑𝑗 , should 𝑑𝑗 become executed. 

Example of change could be CPU-speed increase, should 𝑑𝑗 be of type actuating. 

5. inhibit (𝑑𝑖, 𝑑𝑗 ): by establishing this dependency, some outcomes of executing 𝑑𝑖 are to reduce 

the availability of some resources for 𝑑𝑗 , should 𝑑𝑗 become executed. Example of reduction could be less 

bandwidth, should 𝑑𝑗 be of type communicating. 

6. cancel(𝑑𝑖, 𝑑𝑗 ): by establishing this dependency, some outcomes of executing 𝑑𝑖 are to lock the 

availability of some resources for 𝑑𝑗 , should 𝑑𝑗 become executed. Example of lock could be withdrawal of 

data-sharing token, should 𝑑𝑗 be of type communicating. 

 

From a design perspective, we first, connect things’ duties together using regular dependencies and then, 

look into how special dependencies could either reinforce resource availabilities (Section 3.3) or 

handle resource unavailabilities (Section 4.2) for the benefit of these duties. It happens that a duty that 

executes before another duty uses all the resources, which would inhibit the execution of the other 

duty. Simply put, we use regular dependencies to ‘‘craft’’ the execution chronology of things’ duties 

and special dependencies to manage these resources that these duties would use during execution. To 

avoid raising violations about resources, we assume that all special dependencies are subject to 

conditions that are not discussed further in this paper. 

 

Reasoning over dependencies 

Reasoning over dependencies becomes critical when planning the availability of resources that duties 

(𝑑𝑖,𝑗,𝑘,…) use during execution. In compliance with our previous work on social coordination of 

business processes [27], we associate this availability with four properties, limited (l), limited-but-

extensible (lx), shareable (s), and non-shareable (ns), and define two time intervals: 

 

• [𝑏, 𝑒] corresponds to a pre-defined interval defining the availability time of a resource where 𝑏, 𝑒 ∈ 

𝐍+. 

• [𝛼𝑢𝑖 , 𝛽𝑢𝑖 ] corresponds to a pre-defined interval defining the requested time of using a resource by 

a duty 𝑑𝑖 where 𝛼𝑢𝑖 , 𝛽𝑢𝑖 ∈ 𝐍+. Ideally, we would like to have [𝛼𝑢𝑖 , 𝛽𝑢𝑖 ] ⊆ [𝑏, 𝑒] but this might not 

always be the case due to risks of resource unavailabilities. 

 

Let us analyze the relationship between resource properties and availability-time/use-time intervals (Fig. 

3) where resource use 𝑢𝑖 is associated with duty 𝑑𝑖. 

 

1. limited (l[𝑏, 𝑒], Fig. 3-a): any first-time resource use (𝑢𝑖) happening whether concurrently to other 

ongoing uses (e.g., 𝑢1 and 𝑢2) or sequentially after previous uses (e.g., 𝑢4 and 𝑢5) is associated with [𝛼𝑢𝑖 , 

𝛽𝑢𝑖 ] where 𝛼𝑢𝑖 ≥ 𝑏 and 𝛽𝑢𝑖 ≤ 𝑒. Should there be additional resource uses, e.g., once with 𝑢1.1 and twice 

with 𝑢3.1 and 𝑢3.2, then any new use-time interval [𝛼̂𝑢𝑖 , 𝛽 ̂𝑢𝑖 ] for an additional resource use should fall 

into [𝑏, 𝑒]. Otherwise, the additional resource use would be rejected by the resource’s provider. For 



 

 

instance, all notifications whether regular or special from the 𝑑𝑖𝑠𝑝𝑙𝑎𝑦 duty should happen during a 15-min 

interval from the time of administering medicine. 

2. limited-but-extensible (lx[𝑏, 𝑒], Fig. 3-b): any first-time resource use (𝑢𝑖) happening whether 

concurrently to other ongoing uses (e.g., 𝑢1 and 𝑢2) or sequentially after previous uses (e.g., 𝑢4 and 𝑢5) is 

associated with [𝛼𝑢𝑖 , 𝛽𝑢𝑖 ] where 𝛼𝑢𝑖 ≥ 𝑏 and 𝛽𝑢𝑖 ≤ 𝑒. Should there be a need for additional resource uses, 

then any new use-time interval [𝛼̂𝑢𝑖 , 𝛽 ̂𝑢𝑖 ] for an additional resource use should fall into [𝑏, 𝑒 0[+𝛿] ∗] 

where 𝛿 represents the extended availability time and is set at the discretion of the resource’s provider, 

and 0[...] ∗ denotes zero-2-many repetitions. Otherwise, the additional resource use is rejected by the 

resource’s provider. For instance, any alarm that is set by the dispense duty should last for at least 5 min 

with the option of extending the alarm by 2 min, if necessary. 

3. shareable (s) and non-shareable (ns) would be mixed with limited and limited-but-extensible, as we 

see fit. Unless stated, all resources are shareable allowing their concurrent uses, e.g., ([𝛼
𝑢𝑖 , 𝛽

𝑢𝑖 ] ⊆ [𝑏, 𝑒] 

and [𝛼𝑢𝑗 , 𝛽𝑢𝑗 ] ⊆ [𝑏, 𝑒]). For instance, any sensitive video/audio content that the play duty displays is 

kept private from the share duty. 

 

We now discuss the reasoning over dependencies using some expressions associated with the availability 

and use of resources (Table 2). This reasoning is illustrated with Table 1’s duties. 

 

start-to-finish(𝑑𝑖, 𝑑𝑗 ): after 𝑑𝑗 execution is complete (i.e., 𝑑𝑗 (𝑟[𝛼𝑢𝑗 , 𝛽𝑢𝑗 ])), 𝑑𝑖 could be concerned about 

the post availability-time of a resource 𝑟 since 𝑝.𝑟(𝑑𝑗→𝑑𝑖) could be either 

 

1. l meaning that either 𝑑𝑖(𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖 ]) ⊈ 𝑟[𝛽𝑢𝑗 , 𝑒] or 𝑑𝑖(𝑟[𝛼̂𝑢𝑖 , 𝛽̂𝑢𝑖 ]) ⊈ 𝑟[𝛽𝑢𝑖 , 𝑒]. 

or 

 

2. lx meaning that either 𝑑𝑖(𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖 ]) ⊈ 𝑟[𝛽𝑢𝑗 , 𝑒 0[+ 𝛿] ∗] or 𝑑𝑖(𝑟[𝛼̂𝑢𝑖 , 𝛽̂𝑢𝑖 ]) ⊈ 𝑟[𝛽𝑢𝑖 , 𝑒 0[+ 𝛿] ∗] 

 

then, the reasoning is to ensure that 𝑑𝑘 is included in Ct and to execute 𝑑𝑘 before 𝑑𝑖 starts so, that, 

 

1. should facilitate(𝑑𝑘, 𝑑𝑖) hold, then 𝑑𝑘’s execution outcomes would allow to reinforce the 

availability time of the resource (𝑟[𝛽𝑢𝑗 , 𝑒]) that 𝑑𝑗 would have left for 𝑑𝑖 depending on this resource’s 

property: 

 

(a) l would require ensuring that first, 𝑑𝑖(𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖 ]) ⊆ 𝑟[𝛽𝑢𝑗 , 𝑒] and then, 𝑑𝑖(𝑟[𝛼̂𝑢𝑖 , 𝛽̂𝑢𝑖 ]) ⊆ 𝑟[𝛽𝑢𝑖 , 𝑒], if 

necessary. Otherwise, 𝑟’s unavailability would be handled as per Section 4.2. 

(b) lx should require adjusting 𝑟[𝛽𝑢𝑗 , 𝑒] in a way that 𝑑𝑖(𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖 ]) ⊆ 𝑟[𝛽𝑢𝑗 , 𝑒 0[+ 𝛿] ∗]. 

 

2. should enable(𝑑𝑘, 𝑑𝑖) hold, then 𝑑𝑘’s execution outcomes would allow to unlock a new 

resource (𝑛𝑟 to be similar to 𝑟) for 𝑑𝑖, if the availability time of the resource (𝑟[𝛽𝑢𝑗 , 𝑒]) that 𝑑𝑗 would have 

left for 𝑑𝑖 cannot accommodate its use time. Confirming this unlock would mean the following as per this 

new resource’s property: 

 

(a) l would require ensuring that 𝑑𝑖(𝑛𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖 ]) ⊆ 𝑛𝑟[𝑏, 𝑒]. 



 

 

(b) lx would require ensuring that 𝑑𝑖(𝑛𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖 ]) ⊆ 𝑛𝑟[𝑏, 𝑒] and then, 𝑑𝑖(𝑛𝑟[𝛼̂𝑢𝑖 , 𝛽̂𝑢𝑖 ]) ⊆ 𝑛𝑟[𝛽𝑢𝑖 , 𝑒 0[+ 𝛿] 

∗], if necessary. 

 

To illustrate enable, let us assume sf (display, dispense) and consider the dispenser’s screen as a lx 

resource (𝑟). Should the dispense duty last more than expected, e.g., 𝑑𝑖𝑠𝑝𝑒𝑛𝑠𝑒(𝑟[5, 7+2]), this would make 

the dispenser’s screen’s availability- time interval, e.g., 𝑟[7, 9], inappropriate for the display duty whose 

use-time interval is set at [7, 10]. Because of enable(play, display ), the 𝑝𝑙𝑎𝑦 duty would make the smart 

TV’s screen (𝑛𝑟) available for the display duty in a way that display ’s use-time interval would be 

accommodated, e.g., 𝑑𝑖𝑠𝑝𝑙𝑎𝑦(𝑛𝑟[7, 10]) ⊆ 𝑛𝑟[7, 12]. 

 

3. should cause(𝑑𝑘, 𝑑𝑖) hold, then 𝑑𝑘’s execution outcomes would allow to change the initial 

availability-time (𝑟[𝑏, 𝑒]) of a resource that was assigned to 𝑑𝑖, with the assumption that this availability-

time would not satisfy 𝑑𝑖’s use- time requirement after 𝑑𝑗 execution is complete. Regardless of this 

resource’s property, l or lx, the new time availability 𝑟[𝑏′, 𝑒′] would allow to satisfy 𝑑𝑖(𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖 ]) ⊆ 𝑟[𝑏′, 

𝑒′ 0[+ 𝛿] ∗] and 𝑑𝑖(𝑟[𝛼̂𝑢𝑖 , 𝛽̂𝑢𝑖 ]) ⊆ 𝑟[𝑏′, 𝑒′ 0[+ 𝛿] ∗]. 

 

start-to-start (𝑑𝑖, 𝑑𝑗 ): before 𝑑𝑖 and 𝑑𝑗 simultaneously start their executions, both could be concerned 

about the pre availability-time of a resource 𝑟 that they would share during these executions (𝑑𝑖(𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖 

]) ⊆ 𝑟[𝑏, 𝑒]) ∧ 𝑑𝑗 (𝑟[𝛼𝑢𝑗 , 𝛽𝑢𝑗 ]) ⊆ 𝑟[𝑏, 𝑒] with 𝛼𝑢𝑖 = 𝛼𝑢𝑗 ) since 𝑝.𝑟 could be either 

 

1. l meaning that (either 𝑑𝑖(𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖 ]) ⊈ 𝑟[𝑏, 𝑒] or 𝑑𝑖(𝑟[𝛼̂𝑢𝑖 , 𝛽̂𝑢𝑖 ]) ⊈ 𝑟[𝑏, 𝑒]) and (either (𝑑𝑗 (𝑟[𝛼𝑢𝑗 , 𝛽𝑢𝑗 

])⊈𝑟[𝑏, 𝑒] or 𝑑𝑗 (𝑟[𝛼̂𝑢𝑗 , 𝛽̂𝑢𝑗 ]) ⊈𝑟[𝑏, 𝑒]). 

 

or 

2. lx meaning that (either 𝑑𝑖(𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖 ]) ⊈ 𝑟[𝑏, 𝑒 0[+ 𝛿] ∗] or 𝑑𝑖(𝑟[𝛼̂𝑢𝑖 , 𝛽 ̂𝑢𝑖 ]) ⊈ 𝑟[𝑏, 𝑒 0[+ 𝛿] ∗]) and (either 

(𝑑𝑗 (𝑟[𝛼𝑢𝑗 , 𝛽𝑢𝑗 ])⊈𝑟[𝑏, 𝑒 0[+ 𝛿] ∗] or 𝑑𝑗 (𝑟[𝛼̂𝑢𝑗 , 𝛽̂𝑢𝑗 ])⊈𝑟[𝑏, 𝑒 0[+ 𝛿] ∗]). 

 

then, the reasoning is to ensure that 𝑑𝑘 is included in Ct and to execute 𝑑𝑘 before 𝑑𝑖/𝑑𝑗 simultaneously start 

so, that, 

 

1. should facilitate(𝑑𝑘, 𝑑𝑖/𝑑𝑗 ) hold, then 𝑑𝑘’s execution outcomes would allow to reinforce the 

availability time of the resource (𝑟[𝑏, 𝑒]) that 𝑑𝑖 and 𝑑𝑗 would use after their simultaneous executions start. 

Reinforcing this availability would depend on this resource’s property: 

 

(a) l would require ensuring that (either 𝑑𝑖(𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖 ]) ⊆ 𝑟[𝑏, 𝑒] or 𝑑𝑖(𝑟[𝛼̂𝑢𝑖 , 𝛽̂𝑢𝑖 ]) ⊆ 𝑟[𝑏, 𝑒]) and (either 𝑑𝑗 

(𝑟[𝛼𝑢𝑗 , 𝛽𝑢𝑗 ])⊆𝑟[𝑏, 𝑒] or 𝑑𝑗 (𝑟[𝛼̂𝑢𝑗 , 𝛽 ̂𝑢𝑗 ])⊆𝑟[𝑏, 𝑒]). Otherwise, 𝑟’s unavailability would be handled as per 

Section 4.2. 

(b) lx should require adjusting 𝑟[𝑏, 𝑒] in a way that (either 𝑑𝑖(𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖 ]) ⊆ 𝑟[𝑏, 𝑒 1[+ 𝛿] ∗] or 𝑑𝑖(𝑟[𝛼̂𝑢𝑖 , 𝛽 ̂𝑢𝑖 

]) ⊆𝑟[𝑏, 𝑒 1[+ 𝛿] ∗]) and (either 𝑑𝑗 (𝑟[𝛼𝑢𝑗 , 𝛽𝑢𝑗 ])⊆𝑟[𝑏, 𝑒 1[+ 𝛿] ∗] or 𝑑𝑗 (𝑟[𝛼̂𝑢𝑗 , 𝛽 ̂𝑢𝑗 ])⊆𝑟[𝑏, 𝑒 1[+ 𝛿] ∗]). 

 

To illustrate facilitate, let us assume ss(play, record) and consider bandwidth as a l resource (𝑟). Should this 

resource’s availability-time interval, e.g., 𝑟[2, 5], does not suit these duties after their simultaneous start, 



 

 

e.g., 𝑝𝑙𝑎𝑦(𝑟[3, 7]) and 𝑟𝑒𝑐𝑜𝑟𝑑(𝑟[3, 7]), this would make completing their executions at risk. Because of 

facilitate(trigger, play /record), the execution of trigger duty would happen allowing to free additional 

availability time of the resource for the benefit of both play and record duties in a way that their respective 

use-time intervals would be accommodated, e.g., 𝑝𝑙𝑎𝑦(𝑟[3, 7]) ⊆ 𝑟[3, 7] and 𝑟𝑒𝑐𝑜𝑟𝑑(𝑟[3, 7]) ⊆ 𝑟[3, 7]. 

 

2. should enable(𝑑𝑘, 𝑑𝑖/𝑑𝑗 ) hold, then 𝑑𝑘’s execution outcomes would allow to unlock a new 

resource (𝑛𝑟 to be similar to 𝑟) for the benefit of 𝑑𝑖/𝑑𝑗 , if the availability time of the resource (𝑟[𝑏, 𝑒]) that 

𝑑𝑖∕𝑑𝑗 would use cannot accommodate their respective use time, once their simultaneous times start. 

Confirming this unlock would mean the following as per this new resource’s property: 

 

1. l would have to ensure that (either 𝑑𝑖(𝑛𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖 ]) ⊆ 𝑛𝑟[𝑏, 𝑒] or 𝑑𝑖(𝑛𝑟[𝛼̂𝑢𝑖 , 𝛽̂𝑢𝑖 ]) ⊆ 𝑛𝑟[𝑏, 𝑒]) and 

(either 𝑑𝑗 (𝑟[𝛼𝑢𝑗 , 𝛽𝑢𝑗 ])⊆𝑛𝑟[𝑏, 𝑒] or 𝑑𝑗 (𝑛𝑟[𝛼̂𝑢𝑗 , 𝛽̂𝑢𝑗 ])⊆𝑛𝑟[𝑏, 𝑒]). Otherwise, 𝑟’s unavailability would be 

handled as per Section 4.2. 

 

2. lx would have to ensure that (either 𝑑𝑖(𝑛𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖 ]) ⊆ 𝑛𝑟[𝑏, 𝑒 0[+ 𝛿] ∗] or 𝑑𝑖(𝑛𝑟[𝛼̂𝑢𝑖 , 𝛽̂𝑢𝑖 ]) ⊆ 𝑛𝑟[𝑏, 𝑒 0[+ 

𝛿] ∗]) and (either 𝑑𝑗 (𝑟[𝛼𝑢𝑗 , 𝛽𝑢𝑗 ])⊆𝑛𝑟[𝑏, 𝑒 0[+ 𝛿] ∗] or 𝑑𝑗 (𝑛𝑟[𝛼̂𝑢𝑗 , 𝛽̂𝑢𝑗 ])⊆𝑛𝑟[𝑏, 𝑒 0[+ 𝛿] ∗]). 

 

finish-to-start (𝑑𝑖, 𝑑𝑗 ): should 𝑑𝑗 be concerned about the post availability-time of a resource after 𝑑𝑖 

execution is complete, then the reasoning is to ensure that 𝑑𝑘 is included in Ct and to execute 𝑑𝑘 before 𝑑𝑗 

starts so, that, 

 

- should facilitate(𝑑𝑘, 𝑑𝑗 ) hold, then 𝑑𝑘’s execution outcomes would allow to reinforce the 

resource’s availability time that 𝑑𝑖 would have left for the benefit of 𝑑𝑗 with the assumption that these 

availability times were not enough for 𝑑𝑗 . 

- should enable(𝑑𝑘, 𝑑𝑗 ) hold, then 𝑑𝑘’s execution outcomes would allow to unlock new 

resources for the benefit of 𝑑𝑗 with the assumption that 𝑑𝑖 would have purged some (or all) of the 

resources that 𝑑𝑗 would need. 

- should cause(𝑑𝑘, 𝑑𝑗 ) hold, then 𝑑𝑘’s execution outcomes would allow to change the features 

of the resource for the benefit of 𝑑𝑗 with the assumption that the resource initially assigned to 𝑑𝑗 would 

not satisfy its requirements after 𝑑𝑖 execution is complete. 

 

To illustrate cause, let us assume fs(remind, relax) and consider CPU as a lx resource (𝑟). Should this 

resource’s availability-time interval, e.g., 𝑟[3, 7], after executing the remind duty, indicate a low speed that 

would not be convenient during the relax duty’s use-time interval, e.g., 𝑟𝑒𝑙𝑎𝑥(𝑟[4, 6]), this would degrade 

the performance of relax duty. Because of cause(𝑝𝑜𝑠𝑡, 𝑟𝑒𝑙𝑎𝑥), the execution of 𝑝𝑜𝑠𝑡 duty would happen 

allowing to overclock the resource (speed increase) for the 𝑟𝑒𝑙𝑎𝑥 duty in a way that its execution would be 

complete during its use-time interval, e.g., 𝑟𝑒𝑙𝑎𝑥(𝑟[4, 6])⊆ 𝑟[3, 7]. 

 

finish-to-finish(𝑑𝑖, 𝑑𝑗 ): should 𝑑𝑖/𝑑𝑗 be concerned about the ongoing availability-time of a resource before 

its simultaneous execution-end with 𝑑𝑗 /𝑑𝑖, then the reasoning is to ensure that 𝑑𝑘 is included in Ct and to 

execute 𝑑𝑘 before 𝑑𝑖/𝑑𝑗 complete so, that, 

- should facilitate(𝑑𝑘, 𝑑𝑖/𝑑𝑗 ) hold, then 𝑑𝑘’s execution outcomes would allow to reinforce the 



 

 

resource’s availability time for the benefit of 𝑑𝑖/𝑑𝑗 with the assumption that 𝑑𝑖/𝑑𝑗 would share the 

resource, so, that, both would finish simultaneously. 

- should enable(𝑑𝑘, 𝑑𝑖/𝑑𝑗 ) hold, then 𝑑𝑘’s execution outcomes would allow to unlock new 

resources for the benefit of 𝑑𝑖/𝑑𝑗 with the assumption that 𝑑𝑗 /𝑑𝑖 would use the resource that 𝑑𝑖/𝑑𝑗 would 

need so, that, both would finish simultaneously. 

- should cancel(𝑑𝑘, 𝑑𝑖/𝑑𝑗 ) hold, then 𝑑𝑘’s execution outcomes would allow to lock the 

availability of the resource for the benefit of 𝑑𝑗 /𝑑𝑖 with the assumption that 𝑑𝑖/𝑑𝑗 would need this 

resource, so, that, both would finish simultaneously. To illustrate cancel, let us assume ff (remind, share) 

and consider data-sharing token as a lx resource (𝑟). Should this resource become obsolete during its 

availability time, e.g., 𝑟[2, 7], and ongoing execution of remind and share duties, e.g., 𝑟𝑒𝑚𝑖𝑛𝑑(𝑟[3, 8]) and 

𝑠ℎ𝑎𝑟𝑒(𝑟[5, 8]), this would make the simultaneous execution-ends of these duties at risk. Because of 

cancel(post, remind/share), the execution of post duty would allow to extend the resource’s availability 

time and hence, its validity for the benefit of remind/share duties in a way that their use-time intervals 

would be accommodated, e.g., 𝑟𝑒𝑚𝑖𝑛𝑑(𝑟[3, 8]) ⊆ 𝑟[2, 9] and 𝑠ℎ𝑎𝑟𝑒(𝑟[5, 8]) ⊆ 𝑟[2, 9]. 

 

Engaging things in composition 

Fig. 4 illustrates the four modules that would support the participation of component things (𝑇𝑖) in 

composite things (𝐶𝑇𝑗 ). These modules are composer, reasoner, monitor, and executor interacting with 

three repositories, trace, dependency, and resource, and some run-time platforms upon which the 

composite things will be deployed for execution. In this figure, numbers correspond to the chronology of 

operations. 

 

It all starts when an IoT engineer specifies the component things in terms of duties and dependencies 

between duties (0 & 1). Standards like the Web of Things (WoT) Thing Description (WoT-TD, [28]) could be 

used for specifying things, but this does not fall into the scope of this paper. Next, the composer module 

screens the available component things (2) so, that, it matches their atomic/composite duties with the 

needs of users as per the interactions the users would have had with the IoT engineer when expressing 

their needs. The matching leads to the development of composite things whose execution chronologies 

would refer to regular dependencies between the duties of the component things that have been selected 

to participate in these composite things. Upon the user’s approval of the definition of a composite thing in 

terms of component things and execution chronology, the composer module ‘‘transfers’’ the composite 

thing to the composite layer (3) along with informing the executor module of the readiness of this 

composite thing for deployment on the run-time platforms (4). Prior to initiating the deployment, the 

executor module ensures that the component things of this composite thing have the necessary resources 

to execute their duties. To this end, the executor module submits the composite thing’s execution 

chronology (5) to the reasoner module that consults the resource repository (6) (i.e., resources’ availability 

times) and reasons over this chronology’s regular dependencies (7) in order to identify the special 

dependencies (e.g., enable and facilitate) that could be deemed necessary for executing these duties. 

Should some special dependencies hold between the duties (duties’ time uses versus resources’ availability 

times), the reasoner module notifies both the executor module and the composer module about these 

special dependencies (8) so, that, the necessary changes in the composite thing’s execution chronology are 

made as per Section 3.3. All these interactions happen under the supervision of the IoT engineer/user who 



 

 

are made aware of the needs of duties of resources as well as how these resources are secured thanks to 

the special dependencies that would allow to release more resources from a availability-time perspective, 

for example. After the necessary changes are made in the composite thing’s execution chronology, the 

executor module initiates the composite thing, which means invoking the duties of the component things 

participating in this composite thing (9 to 12). 

 

During invocation, the executor module tracks the execution progress of the composite thing (13) 

along with asking the monitor module to consult the trace repository where details about this progress 

are stored. These details are about which duties are executed, which resources are used, and which 

resources are requested. The objective of consulting the trace repository is to analyze the execution traces 

of composite things (14) and notify both the reasoner module and the IoT engineer/user of any 

dependency violation (15). This violation could have many reasons like non-implementation of a special 

dependency, which has led to resource unavailability for some duties. More details about this 

unavailability are presented in Section 4.2. 

 

Thing composition enhancement 

 

This section discusses how to weave social relations into thing composition for the needs of thing 

identification and how to handle resource unavailabilities despite special dependencies. 

 

Making things socialize 

In Fig. 4, operation (2) is about the composer module that takes care of identifying the necessary 

things according to their atomic/composite duties and users’ needs. Usually, this identification is 

known as discovery that could benefit from potential social relations between things [29] and trust 

between things as well [30]. In the context of the Internet of Social Things (IoST), Atzori et al. 

mention that models used to study social networks of humans can be extended to social networks 

of objects/things [20,31]. These networks could be built upon relations such as parental (similar objects 

built in the same period by the same manufacturer), co-location (objects in the same venue), co-work 

(objects participating in the same scenario), ownership (objects having the same user), and social (when 

objects come into contact sporadically or continuously). Atzori et al. also mention the paradigm shift 

that is happening from human–object interaction to object–object interaction. Based on our previous work 

on weaving social computing into IoT [32], we adopt three social relations namely complementary 

exposing recommendation between things, antagonism exposing opposition between things, and 

competition exposing exclusion between things. 

 

1. Complementary(𝑡𝑖, 𝑡𝑗 ) refers to the ‘‘joint’’ participation of things, e.g., smart TV and remote 

control, in satisfying users’ demands (𝑢𝑑). Eq. (1) assesses the complementary level between 𝑡𝑖 and 𝑡𝑗 

where 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑅𝑒𝑐𝑢𝑑 (𝑡𝑖, 𝑡𝑗 ) is the number of times that 𝑡𝑖’s recommendations for 𝑡𝑗 are accepted by the 

IoT engineer and 𝑚𝑎𝑑𝑒 𝑅𝑒𝑐𝑢𝑑 (𝑡𝑖, 𝑡𝑗 ) is the number of times that 𝑡𝑖 recommended 𝑡𝑗 (including the 

declined recommendations, 𝑑𝑒𝑐𝑙𝑖𝑛𝑒𝑑 𝑅𝑒𝑐𝑢𝑑 (𝑡𝑖, 𝑡𝑗 )). 

2. Antagonism(𝑡𝑖, 𝑡𝑗 ) refers to the ‘‘sensitivity’’ that exists between things, e.g., coffee machine and 

espresso machine, when they jointly participate in satisfying users’ demands. Eq. (2) assesses the 



 

 

antagonism level between 𝑡𝑖 and 𝑡𝑗 where 𝑗𝑜𝑖𝑛𝑡𝑢𝑑 (𝑡𝑖, 𝑡𝑗 ) is the number of times that 𝑡𝑖 and 𝑡𝑗 jointly 

participated in satisfying users’ demands and 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑒𝑑𝑢𝑑 (𝑡𝑖 ∣ ¬𝑡𝑗 ) is the number of times that 𝑡𝑖 

participated in satisfying users’ demands without the participation of 𝑡𝑗 in these demands and vice versa. 

3. Competition(𝑡𝑖, 𝑡𝑗 ) refers to the ‘‘exclusion’’ between things, e.g., either cordless phone or regular 

phone, as one thing, only, can participate in satisfying a user’s demand. Eq. (3) assesses the competition 

level between 𝑡𝑖 and 𝑡𝑗 where 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑢𝑑 (𝑡𝑖, 𝑡𝑗 ) is the number of times that 𝑡𝑖 is selected over 𝑡𝑗 to 

participate in satisfying users’ demands and 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑢𝑑 (𝑡𝑖, 𝑡𝑗 ) is the number of times that both 𝑡𝑖 and 𝑡𝑗 

are potential candidates for participation in satisfying users’ demands. 

 

The aforementioned social relations could impact the execution chronology of the composite thing as 

per the analysis below: 

 

1. Regular dependencies: tapping into the complementary relation could mean inserting new things 

into the under-development composition of things, which means connecting the new things’ duties to 

those that are already in the composition using either start-to-start, start-to-finish, finish-to-finish, or 

finish-to-start dependency. The IoT engineer is responsible for the connection, as he sees fit. Prior to 

confirming the insertion, it is recommended to tap into the antagonism relation to avoid any potential 

‘‘frictions’’ between the newly inserted things and existing things. These ‘‘frictions’’ mean conflicts 

between things and hence, the IoT engineer could decide of not inserting some things into the 

composition if the antagonism level is above a threshold (Eq. (2)). 

2. Special dependencies: because some special dependencies like enable and facilitate require 

invoking new duties that could belong to things that are not already included in the under-

development composition of things, it is recommended to tap into the antagonism relation to avoid 

any potential ‘‘frictions’’ between the newly included things because of their duties and existing 

things. Once the newly included things are confirmed, the IoT engineer connects their respective duties to 

other things’ duties using regular dependencies, as he sees fit. It is also recommended to tap into the 

competition relation, should a necessary duty be offered by many similar competing things and thus, 

only one thing should be selected. 

 

Handling resource unavailabilities 

In Section 3.3, we illustrated the role of regular dependencies in connecting duties of things together and 

special dependencies in handling resource unavailabilities and reinforcing resource availabilities. However, 

it happens that special dependencies do not hold (i.e., resource’s availability time is neither secured nor 

reinforced), which confirms resource unavailability impacting the completion of thing composition. In the 

following, we put forward some potential solutions for handling this unavailability. To start with, we 

model duty and resource as state diagrams allowing to indicate with respect to specific states when a duty 

is put on-hold and when a resource is unavailable. The states and transitions in both diagrams are 

activated in a synchronized way. 

 

In Fig. 5(a), prepared state signals that a thing offering a duty is under consideration for possible 

participation in a composition scenario. In this state, the thing checks the availability of the resources 

that the duty needs and then, proceeds with enabling either the activation transition when the check is 



 

 

positive (Fig. 5(b):engaged state) making the duty take on activated state or the pause transition when the 

check is negative (Fig. 5(b):idle state) making the duty take on suspended state. When the duty is in 

activated state, it could transition to either done state signaling the success of the duty execution, 

or suspended state signaling the necessity of handling a resource unavailability identified with Fig. 5(b): 

suspended state. Should this handling be possible (Fig. 5(b): from suspended state to engaged state), the 

duty transitions back from suspended state to activated state. Otherwise, the duty transitions from 

suspended state to failed state. In a duty’s state diagram, failed and done states lead to the final 

state. Our objective is to avoid 𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑 state and, particularly, 𝑓𝑎𝑖𝑙𝑒𝑑 state since this latter would 

terminate the ongoing thing composition. 

 

In Fig. 5(b), idle state signals that a resource is available for use by some things’ duties. Following a request-

to-use from a thing, the resource transitions to engaged state confirming that it is available for use. 

Should this use complete successfully by a duty (Fig. 5(a):done state), the resource transitions back to idle 

state. Otherwise, i.e., incomplete use, the resource becomes unavailable taking on suspended state and 

impacting the duty (Fig. 5(a):from activated state to suspended state). If the unavailability cannot be 

handled, the resource takes on failed state impacting the duty as well (Fig. 5(a):from suspended state to 

failed state). In the resource’s state diagram, idle and failed states lead to the final state. Our objective is 

to avoid 𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑 state and, particularly, 𝑓𝑎𝑖𝑙𝑒𝑑 state since this latter would terminate the thing 

composition. 

 

To mitigate the impact of resource unavailabilities on duties, we track when these unavailabilities would 

happen, i.e., design-time versus run-time, and associate duties with qualitative criteria and transactional 

properties as per the options below. 

 

Option 1 refers to a set of qualitative criteria that we suggested in [33] to evaluate the criticality of 

things/duties in a process- of-things. These criteria are known as value-adding (va𝑡), business value-

adding (bva𝑡), and non value-adding (nva𝑡) and are built upon similar criteria that the BP community 

uses [34]. For the needs of our work, we restrict ourselves to value-adding and non value-adding 

criteria, only. 

 

Option 2 refers to a set of transactional properties that the ICT community uses to decide on the 

acceptable outcomes of executing transactions. These properties are referred to as pivot, retriable, and 

compensatable [35], Fig. 6. Pivot means that once an execution successfully completes, its effects remain 

unchanged forever and cannot be undone. Additionally, this execution cannot be retried following failure. 

Compensatable means that a successful execution’s effects can be semantically undone. Finally, retriable 

means that an execution is guaranteed to successfully complete after several finite activations. For 

the needs of our work, we first, suggest semi-compensatable property that would require dropping failed 

state from the compensatable definition and second, combine semi-compensatable and retriable 

properties together. 

 

We now illustrate the role of qualitative criteria and transactional properties in handling resource 

unavailabilities. To this end, we adopt two regular dependencies. Let us start with sf (𝑑𝑖, 𝑑𝑗 ) where the 



 

 

𝑖,𝑗 𝑖,𝑗 𝑖,𝑗 

is 𝑖,𝑗 . 

potential resource unavailability impacting 𝑑𝑖 would be known at run-time and hence, would prevent the 

execution of 𝑑𝑖. 

 

• Should both 𝑑𝑖 and 𝑑𝑗 be value-adding duties, i.e., must be executed, then we recommend at 

design-time to consider a composite duty 𝑐𝑑𝑖,𝑗 whose component duties, e.g., 𝑐𝑑1 , 𝑐𝑑2 , ⋯ , 𝑐𝑑𝑛 , would 

provide the same outcomes as 𝑑𝑗 and 𝑑𝑖 would do. Prior to launching the execution of the composite 

duty, we ensure that two components, e.g., 𝑐𝑑𝑘 and 𝑐𝑑𝑘′ , at least in the composite duty are 

connected through sf like d i  a n d  d j  and that 𝑐𝑑𝑘′ is semi-compensatable and cdkij is retriable. At run-

time, the composite duty (acting as a controller) tracks the execution progress of the different 

component things’ duties. Should 𝑐𝑑𝑘′ produce resources that are inappropriate for 𝑐𝑑𝑘 , the 

composite duty would make 𝑐𝑑𝑘′ take on semi-compensatable: compensated state so, that, this 

inappropriateness is handled. Then, the composite duty would initiate the execution of 𝑐𝑑𝑘 that will 

for sure succeed being retriable. 

• Should 𝑑𝑖 be a value-adding duty, i.e., must be executed, then we recommend at design-time to 

substitute 𝑑𝑗 with an atomic duty 𝑑′ (or composite duty 𝑐𝑑𝑗.) that would provide the same outcome 

as 𝑑𝑗 would do. Prior to launching the execution of the substituting duty, we ensure that its 

transactional property is semi-compensatable. Should 𝑑′ produce resources that are inappropriate for 𝑑𝑖, 

𝑑𝑗
′ would transition from semi-compensatable: done state to semi-compensatable: compensated state so 

that, this inappropriateness is handled. 

• Should 𝑑𝑖 be a non value-adding duty, then its execution would be skipped when 𝑑𝑗 would 

produce inappropriate resources for 𝑑𝑖. 

 

We now examine ss(𝑑𝑖, 𝑑𝑗 ) where the potential resource unavailability impacting both 𝑑𝑖 and 𝑑𝑗 would be 

known at design-time and hence, would prevent their executions. 

 

• Should both 𝑑𝑖 and 𝑑𝑗 be both value-adding duties, i.e., must be executed, then we recommend to 

adjust the resource’s availability time in a way that 𝑑𝑖’s and 𝑑𝑗 ’s consumption times are accommodated. 

• Should both 𝑑𝑖 and 𝑑𝑗 be both non-value-adding duties, then their executions would be skipped 

when the resources made available for them would be inappropriate. 

 

Implementation and experiments 

 

We present the implementation work that was performed to demonstrate the technical feasibility of our 

time-centric, resource-driven thing-composition approach and then, discuss some experimental 

results. 

 

Testbed set-up 

Our testbed extends the Java-based discrete event simulator EdgeCloudSim that we deployed on top 

of a Toshiba dynabook with Intel Core 𝑖5-825 processor and 8GB of RAM. EdgeCloudSim is one of the 

most popular simulators for IoT scenarios [36]. The extension was necessary since EdgeCloudSim does not 



 

 

consider multiple Virtual Machines (VMs) for processing nor how tasks (duties in our work) would be 

connected through (regular and special) dependencies. Fig. 7 depicts the testbed architecture along with 

the main modules. Extending EdgeCloudSim was associated with a resource-duty module (not shown in 

this figure) that for instance, attaches dependencies (defined as Enums) to duties, isolates things from 

their duties, and specifies resource availabilities and duty uses of resources as time intervals. The 

resource-duty module includes three others referred to as duty generator, dependency, and resource 

orchestrator. 

 

• Core-simulation module manages the simulator based on a configuration file that includes details 

such as resources, dependencies between duties, and time intervals related to resources and duties. This 

module also supports saving simulation results in Comma-Separated Value (CSV) format so, that, 

numerical data is extracted for plotting. 

• Networking module does not have a direct impact on the simulation nor output results, but is 

required for managing the IoT communication components including devices, VMs, and routers. This 

module also handles transmission delays, via an internal cost-delay function, when 

uploading/downloading data about duties is communicated to/from the VMs. 

• Duty-generator module produces the necessary duties with their deadlines for a given configuration 

working closely with the dependency module to attach regular/special dependencies to these duties. In 

addition, duties’ data sizes and duties’ needs in terms of resource uses are also set according to a 

distribution and scheduling mechanism that complies with a Poisson distribution via active/idle duty 

generation pattern [37]. Since the duty-generator module schedules the execution of duties, it also 

tracks their execution progress as per Section 3.4. 

• Resource-orchestrator module makes decisions about duty execution with respect to their 

dependencies. In fact, this module uses the information collected from the duty-generator and 

dependency modules to decide on how to handle incoming duties and in what order so, that, 

dependency requirements are met. 

 

Discussions 

The simulation starts by an initialization stage where the duty-generator module creates a set of duties 

according to a Poisson distribution4 via active/idle duties generation pattern,. considering both regular 

and special dependencies. Each created duty would have a set of parameters such as dependency type, 

duty start-time, duty end-time (aka deadline), and duty data size (includes both input and output data). 

These parameters are exponentially distributed based on the simulation time and number of iterations. 

Afterwards, the duties are sorted based on their start times, dependencies, and other details like 

network medium between VM resources. It is worth noting that during simulation we used almost a 

consistent number of regular and special dependencies as per Table 3, where each dependency would 

have at least 230 simulated instances. 

 

The duty-generator module takes in account not, only, the duties’ deadlines but, also, the dependencies 

associated with each duty before submitting a duty for execution on one of the available VMs. The 

 
4 Poisson distribution is a discrete distribution model that measures the probability of the occurrence of a given 
number of duties over specified time period during the simulation. 



 

 

total number of VMs is fixed to 10 for each run-time. Therefore, some duties may wait some time 

before they get executed to meet their dependency requirements as per Fig. 8 showing the ideal 

execution time versus the actual execution time in milliseconds. The delay in accrued execution is due 

to the consideration of dependencies during simulation. Moreover, the duty creation and arrival rates can 

vary during simulation to mimic real-world scenarios where the demand on resources can vary from time 

to time according to things’ needs. Therefore, the previous experiment has been extended to have 

different arrival rates of duties during simulation; the duties at the start are 100, then increased by 𝑥 

amount (adjustable based on the simulation scenario) till the end of the simulation time or a 

maximum number of duties to execute, such as 2500 as per Fig. 9. 

 

Another observation is related to resource use during run-time with respect to duties’ regular 

dependencies. The objective here is to simulate cases of limited resources versus limited-but-extensible 

resources. Fig. 10 shows duties grouped by their regular dependencies and the accumulative time (in 

milliseconds) required for those groups to extend the resources (regardless of which VM) usage during 

the simulation run-time. It is also worth noting that the number of duties in iteration #1 is fixed to 100 

and increased by 200 until it gets to 1000 duties in the final iteration #5. In each iteration, the same 

ratio of duty dependencies was maintained. 

 

To illustrate the resource consumption with respect to limited resources and limited-but-extensible 

resources, we observed VMs usage at a specific timestamp (randomly chosen around mid-simulation 

time) to verify that duties can extend their times on the VM resources when required as per Fig. 11 

which shows duties running on VM2, VM4, VM5, VM7, VM8, and VM10 have extended their times to 

finish, unlike duties running on VM1, VM3, VM6, and VM9 that are done according to the scheduled 

times, hence no resource usage extension was required. 

 

Conclusion 

 

To sustain the rapid development of the Internet-of-Things, this paper presented a time-centric, resource-

driven approach to compose things based on a set of regular and special dependencies. The former 

specialized into start-to-start, finish-to-finish, start- to-finish, and finish-to-start, allow to define the 

chronology of executing things and their duties. And, the latter specialized into facilitate, constrain, 

enable, cause, inhibit, and cancel, allow to tackle the challenge of resource unavailabilities during the 

execution of things and their duties. Resources were assigned properties known as limited, limited-but-

extensible, shareable, and not-shareable having each an impact on the availability of these resources. 

Duties use resources at run-time according to specific time intervals. The composition approach 

presented in this paper consists of exposing capabilities of things as a set of duties, identifying necessary 

dependencies to connect things’ duties together, reasoning over time intervals that depict when things’ 

duties need to use resources, and finally, demonstrating thing composition through a system 

extending EdgeCloudSim. 

 

In term of future work we would like to examine the impact of first, mixing resource properties like 

limited-and-extensible and shareable on the identification of the necessary dependencies and second, 



 

 

adopting other restrictions like privacy on thing composition in terms of what data could be collected, 

processed, and shared. We expect that mixing properties and adopting new restrictions would require 

adjusting regular and special dependencies between things. We would also like to examine the 

scalability of our system when a large number of things participate in composition scenarios. Resource 

unavailabilities could become a major concern that could delay the completion of thing composition 

scenarios. 
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[39] Fig. 1. Atomic duties of a thing. 

[40] Source: Adopted from [23]. 

 

Table 1 

Examples of duties for different things. 

Thing Duty type Duty name Description 

 
𝑎 Change Modify pill’s intake frequency 

𝑠𝑎 Configure Select a container per pill’s type 

Smart Dispenser 

 

 

Smart TV 

 

 

Smart Phone 



 

 

𝑎𝑐 Dispense Release a pill in a Container and blink lights 

𝑐 Display Show quantity of pills left per container 

𝑎 Refill Request for more pills 

𝑎 Play Enable program for viewing 

𝑎 Record Tape ongoing program 

𝑎 Trigger Initiate voice control 

𝑐 Share Send details to the cable TV company 

𝑠𝑐 Remind Record pill’s intake and notify for next intake 

𝑐 Post Present content on the screen 

𝑠𝑎 Relax Adjust luminosity and play music 



 

 

 

 
 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

Fig. 2. Representation of regular dependencies. 

 

 

 

 
Fig. 3. Representation of a resource in terms of availability-time interval and use-time interval. 

 

Table 2 

Expressions associated with availability and use of resources.  Expression Description 

𝑝.𝑟 𝑟’s property (either l or lx) 

𝑟[𝑏, 𝑒] 𝑟’s availability-time interval 

𝑑𝑖(𝑟[𝛼𝑢𝑖 , 𝛽𝑢𝑖 ]) 𝑟’s use-time interval upon the request of 𝑑𝑖 

𝑙𝑒𝑓 𝑡 

𝑟(𝑑𝑖 ←→←  𝑑𝑗 ) 𝑑𝑖 has left 𝑟 for use by 𝑑𝑗 

 𝑟(𝑑𝑖|𝑑𝑗 ) 𝑑𝑖 and 𝑑𝑗 concurrently use 𝑟  

 

 

 



 

 

 
 

Fig. 4. Modules, repositories, and platforms to support thing composition. 

 

 

 

 

 

 

 

Fig. 5. Representation of duty and resource as state diagrams. 

 

 

 



 

 

 

 
 

Fig. 6. Execution’s life cycle per transactional property. 

 

 

 
Fig. 7. EdgeCloudSim-based testbed’s main modules. 

 

 

Table 3 

Number of regular and special dependencies during simulation.  

Type Number 

 of dependencies of dependencies 

ss 264 

Regular 



 

 

sf 271 

fs 244 

 ff 240  

Facilitate 250 

Constrain 232 

Special 



 

 

Enable 261 

Cause 239 

Inhibit 258 



 

 

 Cancel 241  

 

 

 

Fig. 8. Ideal-execution time vs. Actual-execution time in milliseconds. 

 

 

Fig. 9. Duties’ arrival and execution times. 

 

 



 

 

 
 

Fig. 10. Resource extended times per type of regular dependency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Resource extended time at a certain timestamp during the execution. 

 


