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A B S T R A C T
Federated learning (FL) is an efficient distributed machine learning paradigm for the collab-
orative training of neural network models by many clients with the assistance of a central
server. Currently, the main challenging issue is that malicious clients can send poisoned model
updates to the central server, making FL vulnerable to model poisoning attacks. In this paper,
we propose a new system named DeMAC to improve the detection and defence against model
poisoning attacks by malicious clients. The main idea behind the new system is based on an
observation that, as malicious clients need to reduce the poisoning task learning loss, there will
be obvious increases in the norm of gradients. We define a metric called GradScore to measure
this norm of clients. It is shown through experiments that the GradScores of malicious and
benign clients are distinguishable in all training stages. Therefore, DeMAC can detect malicious
clients by measuring the GradScore of clients. Furthermore, a historical record of the contributed
global model updates is utilized to enhance the DeMAC system, which can spontaneously detect
malicious behaviours without requiring manual settings. Experiment results over two benchmark
datasets show that DeMAC can reduce the attack success rate under various attack strategies. In
addition, DeMAC can eliminate model poisoning attacks under heterogeneous environments.

1. Introduction
Federated learning is a distributed machine learning paradigm [1][2][3]. Each client trains a model locally, and

then all local model updates are aggregated by a central server to derive a global model. This process is repeated
multiple times, and the accuracy of the global model on the main task is gradually improved. FL offers efficiency and
scalability compared to centralised training since many clients execute the training in parallel [4]. In particular, FL
provides client’s privacy as they can keep their training dataset locally [1] rather than sharing it with other participants.
Such a secure aggregation mechanism complies with General Data Protection Regulation (GDPR) [5] and protects
clients against privacy leakage attacks. Due to FL’s potential functions of privacy protection, it has been deployed
in the real world. For example, Android Gboard [6] has been installed with FL for next-word prediction. In finance,
WeBank [7] has applied FL for credit risk prediction. FL has been widely used in pharmaceutical companies for drug
discovery in MELLODDY project [8].

A major challenge faced by FL is that it leaves the door open for malicious clients. A FL system is vulnerable
to model poisoning, especially backdoor attack that may insert backdoors into the trained global models [9]. The
backdoors can make the global machine-learning model misclassify a small set of samples with chosen triggers into
targeted labels, while the backdoored global model can show good performance on both main and backdoor tasks.

Existing defences such as [10][11][12] propose Byzantine-tolerant aggregation rules and remove statistical outliers
by comparing client local model updates. However, these previous works make some assumptions, such as the data
distribution should be IID (Independent and Identically Distributed), which is not valid in non-IID setting [10]. [12]
relies on the aggregation of updates using the geometric median, not the standard arithmetic mean aggregation.
However, our work shows that this method can be bypassed by malicious clients who carefully design their poisoned
updates.

In view of the above drawbacks of the existing works, we propose a system (called DeMAC) to detect and defend
against model poisoning attacks from malicious clients. Our design relies on the key finding that genuine clients
train their model updates following the main federated training task and their local benign datasets, while malicious

∗Corresponding author
hy20497@essex.ac.uk (H. Yang); dgu@essex.ac.uk (D. Gu); j.he@essex.ac.uk (J. He)

ORCID(s):

First Author et al.: Preprint submitted to Elsevier Page 1 of 18



Short Title of the Article

clients will craft their local model updates trained on the poisoning task and poisoned datasets. To succeed in the
poisoning attacks, the adversaries should increase the number of poisoned samples to decrease the training loss of the
poisoning task. Therefore, the 𝐿2-norm of gradients of the poisoned local model updates will be increased. Although
the adversaries can reduce the number of poisoned samples and decrease the deviations from benign models’ norm
of gradients, this may cause the poisoning task to fail. Hence, to measure the 𝐿2-norm of gradients and capture the
abnormal changes, we define a new metric which is called GradScore as the 𝐿2-norm of gradients in the last layer of
the client model updates after the first local epoch training. Using GradScore DeMAC can effectively detect potential
malicious clients with abnormally large GradScore values. When the global model training converges, the loss and the
norm of gradients of the main federated training task will be small. If there are poisoning attacks in this training stage,
the difference between model GradScores of genuine clients and malicious clients will be more obvious. Therefore,
DeMAC can easily detect and mitigate malicious clients. As for poisoning attacks starting from an early stage, our
experiments also show that DeMAC can work effectively.

Furthermore, to improve the defence performance, a historical record of the contributed global model updates is
utilised in DeMAC to help spontaneously estimate the convergence trend of the global model and determine the time
to start detecting malicious behaviours. This historical record will store a list of variables within a flexible look-back
window size. The variables are the absolute values of two adjacent accuracy values of the global model on the validation
set. Once the maximum value among this historical record is below the default threshold, DeMAC would be triggered
and start to detect.

We evaluate DeMAC on two benchmark datasets and model-replacement attack [9], distributed attack [13], scaling-
scale attack and muti-poisoning attack [14]. Experiment results show that DeMAC can effectively mitigate model-
replacement, distributed, and scaling-scale attacks. When malicious clients participate in every training iteration and
insert perturbations, the Attack Success Rate (ASR) of the baseline algorithms increases gradually while the ASR
of DeMAC keeps at a low level. Therefore, DeMAC can effectively suppress the propagation errors. In brief, our
contributions include: 1) We propose DeMAC, a defence system to detect malicious clients and defend against model
poisoning attacks via checking the abnormal model updates from potential malicious clients. 2) We utilize the historical
record in DeMAC for defence against malicious attacks, which can spontaneously detect malicious clients without
manual settings; 3) We extensively evaluate DeMAC by experiments against multiple model poisoning attacks and
backdoor attacks on benchmark datasets, which shows high efficiency in defence against malicious attacks in both
early and late training stages and significant performance improvement over the existing baseline methods.

The remainder of our paper is organized as follows. Section 2 discusses the research related to poisoning attack and
defence. In section 3, we introduce the system and threat models with specific descriptions of adversaries, objectives
and requirements for attacks and defences. In Section 4 and 5, we present our novel DeMAC system to defend against
model poisoning attacks. We present the evaluation setup in Section 6. In Section 7, the evaluation results of DeMAC
are presented. Section 8 concludes the paper and presents our future work.

2. Related Work
Defense mechanisms (against backdoor attacks) in the literature can be roughly classified into two categories:

Byzantine-robust federated learning methods [10][11][15][16][17][18][19][12], and anomaly detection-based meth-
ods [20][21][22][23][24]. Byzantine-robust federated learning methods aim to tolerate Byzantine clients failures. In
contrast, anomaly detection-based methods attempt to filter potential malicious clients.
2.1. Byzantine-robust federated learning methods

The principle of existing Byzantine-robust defences [10][11] is to train a global model with high performance,
even if there are some malicious clients.

Krum [10] tries to find a representative model update as the aggregated model update. Suppose there are 𝑛 local
clients in every iteration. And 𝑓 among these local clients is malicious. The score for the 𝑖th client is calculated as
𝑠𝑖 =

∑

w𝑗∈Γ𝑖,𝑛−𝑚−2 ‖w𝑗 − w𝑖‖
2
2, where Γ𝑖,𝑛−𝑚−2 is the set of 𝑛 − 𝑚 − 2 local clients that have the smallest Euclidean

distance to w𝑖. So the representative model update is the one that has the smallest score. This representative model
update will be the global model for the next iteration. Krum attempts to limit the iteration between poisoned and clean
models in a single iteration. However, it does not consider compound propagation errors [25]. Therefore, the iterative
nature of learning ensures that small deviations at the start of training compound exponentially.
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Median [11] is a coordinate-wise aggregation rule. The coordinate-wise median of sorted local models is selected
as the aggregated global model update. Instead of using the mean value among local clients, this aggregation rule
considers the coordinate median value of the parameters as the corresponding parameter in the global model for the
next iteration.

Trimmed-mean [11] is another coordinate-wise aggregation rule. Given the trim parameter 𝑘 < 𝑛
2 , the server

removes the 𝑘 maximum and minimum values of the coordinates in client model updates and then computes the mean
of the remaining 𝑛−2𝑘 values as the corresponding parameter in the global model for the next iteration. Trimmed-mean
relies on the assumption that the coordinate of the attacker would either be the minimum or the maximum value of the
corresponding parameters. However, this assumption does not hold for model poisoning attacks [25]. Therefore, even
a single attacker can compromise Trimmed-mean.

RFA [12] is a robust aggregation rule based on similarity metrics. RFA aggregates the model updates and appears
robust to outliers by replacing the weighted arithmetic mean in the aggregation process with an approximate geometric
median. Model-replacement attack [9] is more easily detected by RFA due to the scaling operation [12]. However, by
strictly controlling the total weights of the outliers with only a few attackers poisoning a small set in every batch, the
attacker model updates can have lower distances and can be assigned higher aggregation weights [13]. By doing so,
the attackers can bypass RFA and perform a successful backdoor attack.
2.2. Anomaly detection-based methods

Many existing defences [20][21][22][23][24] follow an anomaly-detection-based strategy and exclude anomalous
model updates. FoolsGold [20] defines indicative features. By measuring the cosine similarity on the indicative
features and checking the Sybil clones, Sybil attacks can be detected in no-IID data scenarios as Sybils have highly
similar updates. However, FoolsGold shows poor performance on one Sybil attack scenario. FLAME [21] uses similar
detecting strategies by calculating the angular differences between all model updates. Rather than comparing the
probabilities of global models, DeepSight [24] compares the local model updates with the previous global model.
However, it does not work in no-IID scenarios. Auror [23] defines indicative features and finds that all the indicative
features come from the final layer. Auror assumes that the indicative features from benign clients would have a similar
distribution while the indicative features from malicious clients would have an anomalous distribution. However, it
does not work in no-IID scenarios.

3. Background
In this section, we give some background knowledge of federated learning and attack strategies against federated

learning systems.
3.1. Definition of symbols and corresponding descriptions

The overall definition of symbols and corresponding descriptions is listed in Tab.1.
3.2. Preliminaries

Here, 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 denotes the training set on local devices, with input vectors 𝑥 ∈ ℝ𝑑 and 𝑦 ∈ {0, 1}𝐾
encoding labels. Each training sample in 𝐷 is drawn from the unknown distribution ℤ. Local clients are assumed to
have the same architecture neural network model in federated learning. For a chosen neural network model on clients,
𝑝(w, 𝑥) = 𝜎(𝑓 (w, 𝑥)) denotes the probability vector of the neural network with activation function 𝜎 and weights
w ∈ ℝ𝐷. For any probability vector 𝑝, let 𝓁(𝑝, 𝑦) denote the loss function.

For any local client, let w0,w1,w2, ...,w𝑡 be the client updates at iterations of SGD (Stochastic Gradient Descent).
𝑆0, 𝑆1, .., 𝑆𝑛−1 ⊆ 𝑆 of size M are mini-batches at one iteration. Here we have

w𝑡+1 = w𝑡 − 𝜂
∑

(𝑥,𝑦)∈𝑆
𝑔𝑡(𝑥, 𝑦) (1)

𝑔𝑡(𝑥, 𝑦) = ∇w𝑡𝓁(𝑝(w𝑡, 𝑥), 𝑦) is the gradient of the loss for a training sample (𝑥, 𝑦).
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Symbol Descriptions
𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 The training set on local devices

𝑁𝐷 the number of samples in training set 𝐷
𝑝(w, 𝑥) The probability vector

𝜎(𝑓 (w, 𝑥)) Activation function
𝓁(𝑝, 𝑦) The loss function
𝓁𝐵(𝑝, 𝜏) The poisoning task loss function

w𝑡 Weights at local iteration 𝑡
𝑆0, 𝑆1, .., 𝑆𝑛−1 ⊆ 𝑆 Mini-batches

𝑔(𝑥, 𝑦) The gradient of the loss function
𝐺𝑡 Global model at global round 𝑡

{𝐶1, ...𝐶𝑛} 𝑛 clients chosen at global round 𝑡
𝑃𝐷𝑅 Poisoned Data Rate
𝑃𝑀𝑅 Poisoned Malicious Clients Rate
𝑚 The number of compromised clients
w′ Compromised client weights
𝐺′ Compromised global model
𝐷𝑃 Poisoned data set on local devices
𝑁𝐷𝑃 the number of samples in 𝐷𝑃

𝜏 Targeted label
𝑦 Genuine label
𝑥′ Poisoned data
𝑥 Genuine data
𝜂 the local learning rate
𝛾 The scaling factor
𝛽 The Scaling-Coefficient parameter
𝑝 The pruning rate
𝜎 The validation threshold
𝑙 The size of sliding window
𝑆 Central server

Table 1
Symbols and Descriptions

3.3. System Setting
We assume that 𝑛 clients train their local models before sending local updates to the central server. The central

server combines these updates by using FedAvg [1]. In addition, all the clients keep their data secret, and no client can
intercept training or testing data. The optimization problem of FL is min

𝐺
𝐹 (𝐺), where 𝐹 (𝐺) = 𝔼𝐷∼ℤ[𝓁(𝑝(𝐺, 𝑥), 𝑦)] is

the expectation of the empirical loss 𝓁(𝑝(𝐺, 𝑥), 𝑦) on the local training set 𝐷 [26].
One iteration of FL training is shown below (see the left part in Fig.1):
∙ Step 1: Synchronizing the global model with local clients: The server sends the current global model 𝐺𝑡 to the

chosen clients.
∙ Step 2: Training local models: Each client initializes its local model as the global model 𝐺𝑡 and trains a local

model using its training set 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1. The optimization problem of clients is minimizing 𝓁(𝑝(w, 𝑥), 𝑦),
where w is the local model. By using SGD, the client updates the local model as described in Eq. (1). Then the
client sends its updates w𝑡+1

𝑖 to the server.
∙ Step 3: Aggregation: The server the updated global model via aggregating the local updates by some aggregation

rules. The FedAvg[1] is given as: 𝐺𝑡+1 = 𝐺𝑡 + 𝜂
𝑛
∑𝑛

𝑖=1(w
𝑡+1
𝑖 − 𝐺𝑡)

To simulate a non-IID distribution, we assign data to clients according to the Dirichlet distribution [27].
3.4. Attack Strategies

In this paper, we will focus on targeted model poisoning attacks. The adversary manipulates the local models w to
obtain the compromised clients model w′ before being aggregated into the global model 𝐺𝑡+1. The adversary wants
First Author et al.: Preprint submitted to Elsevier Page 4 of 18
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Figure 1: On the left are the three steps of Federated Learning. On the right is the malicious Federated Learning

Figure 2: Weight vectors of genuine and poisoned models

the compromised global model 𝐺′ to behave normally on all samples except for poisoned samples 𝑥′ ∈ 𝐷𝑃 . Once
the adversary attacks successfully, the compromised global model 𝐺′ would misclassify poisoned samples into the
attacker-chosen label 𝜏 rather than the genuine label 𝑦.
3.4.1. Data poisoning

In this attack strategy (see the right part in Fig.1), the adversary can only manipulate the training set on local clients
by adding triggers into data samples or by changing the labels of a group of attacker-chosen data samples. By varying
the Poisoned Data Rate (PDR), i.e., 𝑃𝐷𝑅 = 𝑁𝐷𝑃

𝑁𝐷
, the attacker can make a trade-off between attack impact and attack

stealthiness.
3.4.2. Model Poisoning

In this attack strategy (see the right part in Fig.1 ), the adversary can fully control a subset of the clients. Here, we
denote the fraction of compromised clients as Poisoned Malicious Clients Rate (PMR), i.e., 𝑃𝑀𝑅 = 𝑚

𝑛 . To increase the
attack’s impact on the aggregated model, the adversary can deliberately modify the model updates before submitting
them to the aggregator. This is done by (1) turning up the scaling factor 𝛾 to increase attack impact (e.g., model-
replacement attack [9]) and (2) constraining the training process by setting the scaling-coefficient parameters 𝛽 to
evade anomaly detection (e.g., constrain-and-scale [9]). In this attack strategy, the adversary can create multi-objective
optimization (𝛽𝓁(𝑝, 𝑦)+ (1−𝛽)𝓁𝐵(𝑝, 𝜏)). By tuning the scaling-coefficient parameter 𝛽, the adversary can attack more
stealthily.
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3.4.3. Propagation Error
[25] firstly introduces the propagation error. Suppose clients conduct a protocol 𝑓 = (𝜚, 𝐴, 𝜂) at global iteration

𝑡 ∈ [𝑇 ]. Here, 𝜚(𝐺𝑡, 𝐷, 𝑡) is a gradient oracle that inputs the 𝑡th global model 𝐺𝑡, local dataset 𝐷 and outputs the
updated weights w𝑡. Malicious clients conduct a poisoned protocol 𝑓 ∗ = (𝜚∗, 𝐴, 𝜂) with 𝜚∗(𝐺𝑡, 𝐷𝑃 , 𝑡). For any round 𝑡
and any global model 𝐺𝑡 and any dataset 𝐷, we have 𝜚∗(𝐺𝑡, 𝐷𝑃 , 𝑡) = 𝜚(𝐺𝑡, 𝐷, 𝑡) + 𝜖 with ‖𝜖‖1 ≤ 𝜌. At each iteration
𝑡, the upper bound 𝜌 on 𝜖 gives the additive error introduced by poisoning. Small additive errors introduced at early
iterations can build upon each other and create large divergences. This is referred to as propagation error.

In this work, we design a multi-poisoning attack to instantiate such propagation errors. In this attack strategy, the
adversarial clients perform model poisoning or data poisoning attacks at every iteration. The adversarial clients can
vary the PDR or the PMR. The upper bound 𝜌 would vary with different PDR or PMR.
3.5. Characterization of Model Poisoning Attacks

To illustrate various model poisoning attacks more visually, we use a two-dimensional representation of the weight
vectors of models. Then each model can be characterized by two factors: direction and magnitude. The cosine distance
of the weight vectors can measure the direction between the two given models. The 𝐿2 norm of the distance between
the weight vectors can measure their magnitude difference. Fig.2 shows several types of poisoned models. The first
poisoned client model ⃖⃖⃖⃖⃗w′

1 is trained by adding a large fraction of poisoned data 𝐷𝑃 into genuine dataset 𝐷. ⃖⃖⃖⃖⃗w′

1 has an
obvious direction deviation from the benign client models. The second type ⃖⃖⃖⃖⃗w′

2 consist of four small vectors (⃖⃖⃖⃖⃗w′

5, ⃖⃖⃖⃖⃗w′

6, ⃖⃖⃖⃖⃗w′

7

and ⃖⃖⃖⃖⃗w′

8). This type of attack is achieved by four distributed attacks (Distributed Backdoor Attack (DBA) [13]). Poisoned
models trained by distributed attacks are more undetectable in direction and magnitude than centralised attacks. The
next type is ⃖⃖⃖⃖⃗w′

3, which has a less direction deviation but a larger magnitude difference. Such poisoned client models
can be obtained by boosting the poisoned models with a large scaling factor 𝛾 (model-replacement attack [9]). The
last type ⃖⃖⃖⃖⃗w′

4 has similar representations with genuine models. It is more stealthy compared to the first three types. This
poisoned model can be crafted by constrain-and-scale attacks [9].

4. DeMAC Design Principle and key observation
In this section, we introduce our proposed approach, DeMAC. First of all, we give a novel scoring method,

GradScore. We analyze that the PDR directly impacts the value of GradScore of a poisoned model. Then we describe
how to detect malicious clients by evaluating the corresponding GradScore value in federated learning. Meanwhile, we
analyze that based on GradScore, DeMAC can detect model poisoning attacks no matter the data distribution among
clients. Finally, we give a security analysis that the proposed scoring method is not affected no matter how the adversary
scales its model updates.
4.1. GradScore and analysis

Now, we give the definition of GradScore and analyze why and how this scoring method can be used for detecting
poisoning attacks in FL.
Definition 4.1. The GradScore of training set 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 on a local client at global iteration 𝑡 is
𝐺𝑟𝑎𝑑𝑆𝑐𝑜𝑟𝑒(𝐶 𝑡

𝑖 ) = ‖𝑔𝑡({(𝑥𝑖, 𝑦𝑖)})‖2.

It is approximated that the training dynamics are in continuous time. For a labelled example (𝑥, 𝑦) from local data
set 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1, the time derivative of the loss on this labelled sample is Δ𝑡((𝑥, 𝑦), 𝑆𝑖) = − 𝑑𝓁(𝑓 (w𝑡,𝑥),𝑦)

𝑑𝑡 at time 𝑡.
By the chain rule,

Δ𝑡((𝑥, 𝑦), 𝑆𝑖) = 𝑔𝑡(𝑥, 𝑦)𝑑w𝑡

𝑑𝑡
(2)

The instantaneous rate of change in w𝑡 at time 𝑡, 𝑑w𝑡 ≈ w𝑡+1−w𝑡 = −𝜂
∑

(𝑥,𝑦)∈𝑆𝑡
𝑔𝑡(𝑥, 𝑦). The goal is to understand

how poisoned samples from minibatch 𝑆𝑖 affect the time derivative of the loss for any samples (𝑥∗, 𝑦∗) from the same
minibatch.
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Lemma 4.1. Let 𝑆¬𝑗 = 𝑆∖(𝑥𝑗 , 𝑦𝑗) denotes minibatch excluding sample (𝑥𝑗 , 𝑦𝑗). Then for all rest samples (𝑥∗, 𝑦∗),
there exists 𝑐 such that

‖Δ𝑡((𝑥∗, 𝑦∗), 𝑆) − Δ𝑡((𝑥∗, 𝑦∗), 𝑆¬𝑗)‖ = 𝑐‖𝑔𝑡(𝑥𝑗 , 𝑦𝑗)‖. (3)

Proof. For a given example (𝑥∗, 𝑦∗), the chain rule yields Δ𝑡((𝑥∗, 𝑦∗), 𝑆) = 𝑔𝑡(𝑥∗, 𝑦∗) 𝑑w𝑡

𝑑𝑡 . Therefore, for the left part
of Eq. (3),

‖Δ𝑡((𝑥∗, 𝑦∗), 𝑆) − Δ𝑡((𝑥∗, 𝑦∗), 𝑆¬𝑗)‖

= ‖

𝑑𝓁(𝑓𝑡(𝑥∗, 𝑦∗))
𝑑w𝑡 (−𝜂

∑

𝑆𝑖

𝑔𝑡(𝑥, 𝑦))

−
𝑑𝓁(𝑓𝑡(𝑥∗, 𝑦∗))

𝑑w𝑡 (−𝜂
∑

𝑆¬𝑗,𝑡

𝑔𝑡(𝑥∗, 𝑦∗))‖

= ‖

𝑑𝓁(𝑓𝑡(𝑥∗, 𝑦∗))
𝑑w𝑡 (−𝜂𝑔𝑡(𝑥𝑗 , 𝑦𝑗))‖

= 𝜂‖
𝑑𝓁(𝑓𝑡(𝑥∗, 𝑦∗))

𝑑w𝑡 𝑔𝑡(𝑥𝑗 , 𝑦𝑗)‖

(4)

Let 𝑐 = 𝜂‖ 𝑑𝓁(𝑓𝑡(𝑥∗,𝑦∗))
𝑑w𝑡 ‖, we can get the right part of Eq. (3).
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Figure 3: Impact of the PDR on loss value (a), Backdoor Accuracy (b) and GradScore value (c), the GradScore of the last
layer gradients of the malicious updates and benign updates (d)

It can be seen from above that the contribution of a training sample (𝑥𝑗 , 𝑦𝑗) to the decrease of loss on other
samples from the same minibatch can be quantified by Eq. (3). The value of ‖𝑔𝑡(𝑥𝑗 , 𝑦𝑗)‖ is the GradScore of a sample
(𝑥𝑗 , 𝑦𝑗). Samples with large GradScore have a strong influence on learning. For poisoning training, poisoned samples
have a stronger influence. To reduce the poisoning task training loss 𝓁𝐵(𝑝, 𝜏), malicious clients should increase the
PDR. Therefore, the sum of the GradScore of samples is larger with higher PDR on malicious client datasets. In
Fig.3 (a)(b)(c), we evaluated this inference, running backdoor training on MNIST dataset with a minibatch of 64
First Author et al.: Preprint submitted to Elsevier Page 7 of 18
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samples. With the same pre-trained model, the model trained with a higher poisoned data rate causes an obvious
decrease in the backdoor training loss and a higher GradScore value.

Now we analyze how this scoring method can detect the model poisoning attacks in federated learning. No matter
what the data distribution is among clients, the deviations between local models and the global model start to cancel
out, i.e.,∀w ∈ {w𝑖}𝑚𝑖=1,w

𝑡+1
𝑖 −𝐺𝑡 ≈ 0 [9], in the benign setting, as the global model converges. Therefore, the updates

of benign local models, 𝑑w ≈ w𝑡+1−w𝑡 is bounded. Therefore, ‖𝑔𝑡(𝑥𝑗 , 𝑦𝑗)‖ of one example from the benign dataset is
small. The second observation is that when the global model starts to converge, poisoning behaviours on the malicious
client will deviate the malicious updates from the current iteration global model[21] to reduce the training loss on the
poisoning task. The GradScore of benign clients is small, while the GradScore of malicious clients is larger. Fig.3
(d) shows that the GradScore of the last layer gradients of the malicious client model is larger than benign clients.
Therefore, malicious clients can be detected by comparing the GradScore of the last layer of local models.

To avoid detection, the adversary can try weak model poisoning attacks by limiting scaling up the poisoned model.
The Theorem 4.2 shows that GradScore is unaffected if the adversary scales its poisoned model.
Theorem 4.2. The GradScore is not affected by scaling or clipping the model update.

Let 𝐺𝑡 denote the global model of round 𝑡. An arbitrary local model update is u𝑡+1
𝑖 , with u𝑡+1

𝑖 = w𝑡+1
𝑖 − 𝐺𝑡. Let 𝛾

denote the scaling factor. Let u𝑡+1,∗
𝑖 denote the scaled model. u𝑡+1,∗

𝑖 = 𝛾u𝑡+1
𝑖 = 𝛾(w𝑡+1

𝑖 −𝐺𝑡) holds. Let 𝐶𝑖 denote client
𝑖 and analogously for the scaled client 𝐶∗

𝑖
Then for ∀𝛾 ∈ ℝ∖{0} : GradScore(𝐶𝑖)=GradScore(𝐶∗

𝑖 )

Proof. ←
𝐺𝑟𝑎𝑑𝑆𝑐𝑜𝑟𝑒(𝐶∗

𝑖 ) = ‖𝑔({(𝑥𝑖, 𝑦𝑖)})‖2 = ‖

∑

(𝑥,𝑦)∈𝑆𝑡

𝑔𝑡(𝑥, 𝑦)‖2

= ‖

∑

(𝑥,𝑦)∈𝑆𝑡

∇𝑤𝓁(𝑝(w𝑡+1
𝑖 , 𝑥), 𝑦)‖2

(5)

𝐺𝑟𝑎𝑑𝑆𝑐𝑜𝑟𝑒(𝐶𝑖) = ‖𝑔({(𝑥𝑖, 𝑦𝑖)})‖2 = ‖

∑

(𝑥,𝑦)∈𝑆𝑡

𝑔𝑡(𝑥, 𝑦)‖2

= ‖

∑

(𝑥,𝑦)∈𝑆𝑡

∇𝑤𝓁(𝑝(w𝑡+1
𝑖 , 𝑥), 𝑦)‖2

(6)

Therefore,
𝐺𝑟𝑎𝑑𝑆𝑐𝑜𝑟𝑒(𝐶∗

𝑖 ) = 𝐺𝑟𝑎𝑑𝑆𝑐𝑜𝑟𝑒(𝐶𝑖) (7)
holds.

5. Overview and Design of DeMAC
In this section, we instantiate DeMAC for deep inspection and analysis of model updates to discover model

poisoning attacks. We describe the design details of DeMAC below.
5.1. DeMAC Design

Fig.4 shows the main components and the workflow of DeMAC during global iteration 𝑡. It follows a deterministic
algorithm and does not know the attack strategies or data distributions. DeMAC is deployed during the training session
before the testing phase. Firstly, it should identify malicious behaviours in federated learning systems. Here comes a
design challenge. At the beginning of federated learning training, benign local models should update their parameters
continually to make the global model converge to the global minimum. So how can we perceive the convergent trend?
To solve this problem, we design a historical global model update record with a flexible look-back window size 𝑙. This
history record records the continuous variation of model accuracy on the validation set. When the maximum value
among this history record is lower than a threshold value 𝛼, the defence approach can start to process.
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Figure 4: Illustration of DeMAC’s workflow in global iteration 𝑡

After malicious behaviours are identified, the GradScore values of corresponding clients would be sorted in
ascending order to detect anomalous clients. The top 𝑝 with the highest scores can be pruned and excluded from
benign clients. The value of 𝑝 depends on the number of malicious clients in one global iteration. Finally, DeMAC
trains the global model, excluding the updates sent by malicious clients. DeMAC automatically generates a clean global
model given the training algorithm, which means the proposed technique, DeMAC, is an efficient defence for federated
learning systems.

In the rest of this section, we demonstrate a detailed description of every main component of DeMAC. Algorithm
1 outlines the procedure of DeMAC.
5.2. Identifying malicious behaviours

In designing DeMAC, the first step is identifying and measuring malicious behaviours in the federated learning
system.

𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 denotes the training dataset on client 𝐶𝑖. If the 𝐺𝑟𝑎𝑑𝑆𝑐𝑜𝑟𝑒 value for a client is significantly
higher than other client 𝐺𝑟𝑎𝑑𝑆𝑐𝑜𝑟𝑒 values in the same global iteration round, it indicates that malicious behaviours
might happen on this client. The step of calculating 𝐺𝑟𝑎𝑑𝑆𝑐𝑜𝑟𝑒 is shown in line 7 of Algorithm 1.

To avoid benign clients being misidentified when the global model is not yet converging, we demonstrate a
validation phase to monitor the convergent trend. This validation phase consists of recording a group of previous global
models and measuring the distance between the validation accuracies of two neighbouring global models. In the first
step, we design a historical global model record, ℎ𝑖𝑠𝑡𝑜𝑟𝑦(𝐺0, ..., 𝐺𝑙), where (𝐺0, ..., 𝐺𝑙) refers to a list of previous global
models, and 𝑙 is the size of the sliding window. In the second step, we define the distance between neighbouring global
model validation accuracies as:

𝑣(𝐺𝑖−1, 𝐺𝑖) = |𝐴𝑐𝑐(𝐺𝑖) − 𝐴𝑐𝑐(𝐺𝑖−1)| (8)
Where 𝐴𝑐𝑐(𝐺𝑖) is the accuracy of global model 𝐺𝑖 on the validation dataset. We use a list 𝑉 (𝐺0), ..., 𝑉 (𝐺𝑙−1),

to contain neighboring validation variations of a historical record, ℎ𝑖𝑠𝑡𝑜𝑟𝑦(𝐺0, ..., 𝐺𝑙). The related steps are shown in
lines 2-3 of Algorithm 1. If the maximal 𝑉 (𝐺𝑖) ∈ [𝑉 (𝐺0), ..., 𝑉 (𝐺𝑙−1)] is below the threshold 𝜎, the global model can
be regarded as convergence.

When the aggregator detects unusually large 𝐺𝑟𝑎𝑑𝑆𝑐𝑜𝑟𝑒 values sent by some clients and the global model
converges, malicious behaviours can be identified in the federated system.
5.3. Pruning and excluding malicious clients

After malicious behaviours are identified, the next step in DeMAC is to identify and exclude anomalous clients
based on corresponding 𝐺𝑟𝑎𝑑𝑆𝑐𝑜𝑟𝑒 values. First, the 𝐺𝑟𝑎𝑑𝑆𝑐𝑜𝑟𝑒𝑠 to corresponding clients are sorted in ascending
order. The top 𝑝 clients with the highest scores are pruned and excluded from the benign client list. The parameter
First Author et al.: Preprint submitted to Elsevier Page 9 of 18
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Algorithm 1: Design of DeMAC
Input: n, 𝐺0, 𝑇
// 𝑛 is the number of clients in one iteration, 𝐺0 is the initial global model, 𝑇

is the number of global iterations
Output: 𝐺𝑇

// 𝐺𝑇 is the updated global model after 𝑇 iterations
1 for 𝑡 ∈ [1, .., 𝑇 ] do
2 ℎ𝑖𝑠𝑡𝑜𝑟𝑦𝑅𝑒𝑐𝑜𝑟𝑑 ← (𝐺𝑡−𝑙, ..., 𝐺𝑡) ;

// 𝑙 is the look-back size
3 [𝑉 (𝐺𝑡−𝑙), ..., 𝑉 (𝐺𝑡)] ← 𝑉 𝐴𝐿𝐼𝐷𝐴𝑇𝐸(ℎ𝑖𝑠𝑡𝑜𝑟𝑦𝑅𝑒𝑐𝑜𝑟𝑑) ;
4 if 𝑚𝑎𝑥[𝑉 (𝐺𝑡−𝑙), ..., 𝑉 (𝐺𝑡)] < 𝜎 // 𝜎 is the convergence threshold; Malicious behaviours

exist
5 then
6 for 𝑖 ∈ [𝐶 𝑡+1

0 , ..., 𝐶 𝑡+1
𝑛−1] do

7 𝐺𝑟𝑎𝑑𝑆𝑐𝑜𝑟𝑒(𝐶 𝑡+1
𝑖 ) = ‖𝑔{(𝑥, 𝑦)}‖2 // ‖𝑔{(𝑥, 𝑦)}‖2 is the 𝐿2-norm of gradients of

parameters in final layer of models
8 end
9 𝑆𝐶𝑂𝑅𝐸 ← [𝐺𝑟𝑎𝑑𝑆𝑐𝑜𝑟𝑒(𝐶 𝑡+1

0 ), ..., 𝐺𝑟𝑎𝑑𝑆𝑐𝑜𝑟𝑒(𝐶 𝑡+1
𝑛−1)] ;

10 𝑆𝑜𝑟𝑡(𝑆𝐶𝑂𝑅𝐸) ;
11 𝑃𝑟𝑢𝑛𝑒𝑑(w∗𝑡+1

0 , ...,w∗𝑡+1
𝑛−𝑛𝑝) ← 𝑃𝑟𝑢𝑛𝑖𝑛𝑔𝑝%([w𝑡+1

0 , ...,w𝑡+1
𝑛−1]) // 𝑝% is the pruning rate

12 𝑆𝑒𝑛𝑑𝑃 𝑟𝑢𝑛𝑒𝑑(w∗𝑡+1
0 , ...,w∗𝑡+1

𝑛−𝑛𝑝) → 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟
13 else
14 𝑆𝑒𝑛𝑑𝑈𝑛𝑝𝑟𝑢𝑛𝑒𝑑(w𝑡+1

0 , ...,w𝑡+1
𝑛−1) → 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 // Malicious behaviours do not exist

15 end
16 𝐺𝑡+1 ← 𝐺𝑡 + 𝜂

𝐿−1
∑𝐿

0 (w
𝑡+1
𝑖 − 𝐺𝑡) // Global Aggregating, 𝜂 is the global learning rate

17 end

𝑝 depends on the number of anomalous clients in one global iteration. Only one malicious client should be excluded
when the adversary takes model-replacement attack strategies. However, malicious clients may collude and strengthen
the impact of poisoning in one iteration. Considering the real-world federated learning deployments, it is unrealistic
to assume that the fraction of malicious clients is above the range (0 < 𝑚 < 𝑛∕2). In an application scenario like
Gboard [6], over 50% malicious clients mean the adversary should control at least 500 million Android devices. That
is incredible [28]. So we only consider below 50% cases. Generally, 𝑝 is set to 0.5. In this work, we assume the server
has a knowledge of the number of malicious clients at one iteration. Hence, the server can decide the value of 𝑝. The
sorting and pruning step is shown in lines 9-11 of Algorithm 1.

The aggregator excludes the updates sent by malicious users in the current iteration and trains the global model on
the remaining model updates (line 16 of Algorithm 1). The global training algorithm varies based on the underlying
training algorithm used in the application. We use FedAvg [1] to train the global model in this proposed work.

6. Evaluation Setup
In this section, we give the details of the experimental setup and evaluation metrics used in this work for evaluating

the effectiveness of DeMAC.
6.1. Experimental Setup

Datasets and global-model settings: In this work, two well-known benchmark datasets MNIST [29] and
CIFAR10 [30] are considered to evaluate DeMAC. MNIST dataset is a ten-class-balanced image classification task
with 70000 grey-scale images. And CIFAR10 dataset is a ten-class image classification task with 60000 RGB images.
It is assumed there are 100 clients for global training. To simulate non-IID distribution, data is assigned to clients
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Layer Size
Input 28 × 28 × 1

Convolutional + ReLU 3 × 3 × 30
Max Pooling 2 × 2

Convolutional + ReLU 3 × 3 × 5
Max Pooling 2 × 2

Fully Connected + ReLU 100
Softmax 10

Table 2
the CNN Network Architecture
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Figure 5: Measuring the maximum 𝑣𝑎𝑙𝑖_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑉 (𝐺𝑖) enables DeMAC to detect convergence of the global model (a)(c).
DeMAC with history global model record vs DeMAC without history global model record (b)(d)

according to Dirichlet distribution with concentration parameter 𝛼, so client datasets are unbalanced to classes. The
distribution is more concentrated when the value of 𝛼 is smaller. On the contrary, the distribution tends to be more
uniform. Without Dirichlet sampling, data are uniformly distributed (IID) to clients. Unless otherwise mentioned, the
concentration parameter 𝛼 is set to 0.5. For MNIST dataset, a four-layer Convolutional Neural Network (see Tab.2) is
used. For CIFAR10, ResNet18 [31] architecture is considered the global model.

Federated Learning settings: FedAvg [1] is considered as the FL method. In each global round, 10 of 100 clients
are randomly selected. Considering the different characteristics of the datasets, we adopt the following parameter
settings for federated training: for MNIST, clients train for 1 local epoch with a local learning rate of 0.1. For CIFAR10,
clients train for 2 local epochs with a local learning rate of 0.1.

Attack strategy. We consider four targeted model poisoning attacks, single-shot model-replacement attacks [9],
constrain-and-scale [9], and DBA [13] and multi-poisoning attacks.

(1) Model-replacement attacks, constrain-and-scale and DBA. In the case of MNIST, we modify the pixels of
the digital image at training time, causing the images with pixel-pattern to be classified towards a target class. On
CIFAR10 dataset, we apply the same attack strategy as on MNIST dataset. The attackers can set the scaling parameter
𝛾 for single-shot and DBA to control the impact of model poisoning. Unless otherwise mentioned, we set 𝛾 to 30, and
PDR is set to 30∕64 with a local batch size of 64. For single-shot model replacement attacks and constrain-and-scale
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Figure 6: The ASR for DeMAC against model-replacement attack under different non-IID settings (a)(c). The ASR for
DeMAC against model-replacement attack, where 0.1 of concentration parameter 𝛼, threshold 𝜎 value 2 for CIFAR10,
and 𝜎 value 0.6 for MNIST are used (b)(d). Impact of the poisoned data rate on DeMAC against model-replacement
attack (e)(g) and distributed backdoor attack (f)(h). MA and BA of the global model under the protection of DeMAC
against constrain-and-scale attack with different 𝛽 values (i)(j)(k)(l).

attacks, we assume that attackers perform attacks after 60 rounds for MNIST and 400 rounds for CIFAR10. For DBA,
as attackers split triggers into four equal parts, it is assumed that malicious clients attack at round 62, 64, 66, and 68
for MNIST and at round 402, 404, 406, and 408 for CIFAR10.

(2) Multi-poisoning attacks. In the case of MNIST, adversarial clients perform the multi-poisoning attack at round
10 and 20, respectively. In the case of CIFAR10, adversarial clients perform the multi-poisoning attack at round 80 and
300, respectively. Unlike the three types of attacks described above, the multi-poisoning attack executes every round
after being performed. We set 𝛾 to 1, and the PDR is set to 30∕64.

Detecting time.
(1) Single-shot model-replacement attack, constrain-and-scale and DBA. Unlike existing works [22][14] manually

setting detecting time, DeMAC can spontaneously detect malicious clients according to the information provided by
the historical record. We set the sliding window size 𝑙 to 15 for MNIST and 20 for CIFAR10. DeMAC will be triggered
when the maximum distance between neighbouring global model accuracies on the validation set 𝑉 (𝐺𝑖) is below the
predefined threshold 𝜎. We choose 𝜎 = 0.5 for MNIST and 𝜎 = 2 for CIFAR10.
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(2) Multi-poisoning attacks. Our experiments show that the increase in global model accuracy has an obvious
oscillation rather than increasing monotonically during the early training stage. Hence, the predefined threshold 𝜎 is
looser than the above setting in this case.
6.2. Evaluation Metrics

We consider two evaluation metrics for evaluating the accuracy and efficiency of DeMAC. Main task accuracy (MA)
is used to evaluate the accuracy of the global model on the main task. MA is the ratio of testing examples that are
correctly classified. Backdoor Accuracy (BA) or Attack Success Rate (ASR) is the ratio of poisoned examples that
are classified as target labels by the global model. We define an evaluation metric for measuring the performance of
DeMAC. Computation cost per round (CCR) measures the computation cost at one round in the Byzantine-robust FL
system.

7. Evaluation Results
Efficiency of history record. Detecting/Attacking timing is rarely discussed in previous defence works. [22][9]

discussed that the impact of model-replacement attacks in early rounds is not durable as the ASR decreases sharply
within several rounds. The poisoning impact tends to stay long in the later training rounds. The simple way is to detect
when the global model starts training. However, it is not cost-friendly to start detecting from train-from-scratch to
defend against poisoning attacks, such as model-replacement attacks. To solve this problem, we combine DeMAC
with a historical record. By applying this historical global model record, DeMAC can track the convergence of global
training. Fig.5(a)(b) shows that DeMAC will be triggered when the maximum 𝑣𝑎𝑙𝑖_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑉 (𝐺𝑖) is below the
predefined threshold (pink area in Fig.5(a)(b)). The DeMAC defence is performed only when the global model starts
to stabilize. Fig.5(b)(d) shows the comparison between DeMAC with a historical global model record and DeMAC
without a historical global model. It is not difficult to see that enabling DeMAC in early rounds may cause a delay in
the convergence of the global model. It might be a drawback in federated learning deployments. In Fig.5(b) for MNIST,
in the initial 20 rounds, DeMAC without a historical global model record shows a higher error rate than DeMAC with
a historical global model record. The same result is shown in Fig.5(d).

Impact of the degree of non-IID: Fig.6(a)(b)(c)(d) shows the impact of the non-IID degree on DeMAC. First,
from Fig.6(a)(c), we observe that with PDR (30∕64) and threshold 𝜎 fixed, the ASR can be reduced to nearly 0% when
the non-IID degree is larger than some threshold. When 𝛼 is set to 0.1 for CIFAR10 or 𝛼 is set below 0.3 for MNIST,
DeMAC cannot detect malicious clients, which causes a high ASR on the global model. In Fig.6(b), we postpone the
attacking time at round 600, when the global model stabilises. We observe that at the same PDR (30∕64), threshold
𝜎 value (2) and non-IID setting (𝛼 = 0.1), DeMAC can mitigate poisoned updates and reduce backdoor accuracy to a
low level compared with the failure of detection in Fig.6(a). In Fig.6(d), we set threshold 𝜎 value to 0.6 rather than the
default value 0.5 with non-IID setting(𝛼 = 0.1). So, DeMAC would be triggered and start to detect malicious clients
earlier. BA of the global model can be reduced to nearly 0% under all PDR settings. From the above analysis, it is not
difficult to see that the success of model poisoning attacks is highly rated to the convergent trend of the global model.

Impact of Poisoned Data Rate (PDR): Fig.6(e)(f)(g)(h) shows the impact of the poisoned data rate on DeMAC.
In Fig.6(e)(g), DeMAC can mitigate malicious client updates and reduce the ASR to a low level for both two datasets.
In Fig.6(f)(h), we evaluate the efficiency of DeMAC against distributed backdoor attacks. Fig.6(f) shows that DeMAC
cannot mitigate the last split backdoor attack when PDR is low. One possible reason is that compared with the central
backdoor attack, distributed property of DBA makes attack behaviour more stealthy. In Fig.6(h), DeMAC can decrease
the attack impact under all the attack strategies.

Defending Anomaly-Evasion Attack: As discussed in section 3, attackers can balance the impact and stealth
of attack by varying the scaling-coefficient parameter 𝛽. 𝓁𝐵(𝑝, 𝜏) is calculated as the 𝐿2 norm between the current
poisoned and round global models. Figure 6(i)(j)(k)(l) shows that DeMAC can successfully mitigate attack impact for
both datasets and different 𝛽 values. We also add some tables for corresponding to the results in the appendix 9.

Detecting multi-poisoning attacks: Fig.7 and Fig.8 show the comparison results on two datasets for detection
methods, different attack timing, and different numbers of malicious clients. From our results, it is not difficult to see
that malicious perturbations in every iteration can gradually compromise baseline Byzantine-robust FL algorithms
and cause high ASR. DeMAC can effectively suppress such propagation errors. Here are several observations. Firstly,
DeMAC can mitigate attack impact and reduce the ASR to a low level in most cases, except in the case (MNIST dataset,
PMR(4/10), attack after ten rounds, Fig.7(a)(b)). All the Byzantine robust methods fail in this case (Fig.7(a)(b)). The
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Figure 7: ASR and MA of malicious detection for different detection methods. Concentration parameter 𝛼(0.5), MNIST
dataset and scaling parameter 𝛾(1) are used.

main reason could be that the detection methods are too hard to distinguish benign clients from many malicious clients,
as the global model is unstable in the first ten rounds. Second, in the case (MNIST dataset, PMR(2/10), attack after ten
rounds) and case (MNIST dataset, PMR(2/10), attack after 20 rounds), all the defending methods except RFA [12] can
mitigate attack impact. In subsection 2.1, we discuss that by carefully setting the scaling factor 𝛾 and then controlling
the total weights of the outliers, the attacker can bypass RFA. We set the scaling factor 𝛾 as 1 and PDR as 30∕64. RFA
fails to detect malicious behaviours. This conclusion is in line with conclusions from previous work [13]. DeMAC,
trimmed_mean [11], and median achieve comparable main accuracy and outperform Krum [10]. The main reason
could be that Krum selects one client update to represent the global model. Therefore, due to the heterogeneous data
distribution, these chosen model updates cannot achieve the same performance as on the global test dataset. This
conclusion is in line with conclusions from previous work [25]. Third, in cases (CIFAR10 dataset, attack after 80
rounds), all the defending methods except DeMAC fail to eliminate attack impact. In cases (CIFAR10 dataset, attack
after 300 rounds), DeMAC, Krum, and RFA can reduce the ASR to a low level, but median and trimmed-mean still
cannot defend attack behaviours. As we discuss in subsection 2.1, the assumption of trimmed-mean does not hold for
model poisoning attacks. Therefore, this observation is in line with the discussion from prior sections. Fourth, in the
case (CIFAR10 dataset, attack after 300 rounds), other defending methods can achieve comparable main accuracy as
DeMAC. However, in the case (CIFAR10 dataset, attack after 80 rounds), the main accuracy of DeMAC outperforms
other defending methods after 400 rounds.
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Figure 8: ASR and MA of malicious detection for different detection methods. Concentration parameter 𝛼(0.5), MNIST
dataset and scaling parameter 𝛾(1) are used.

Defense methods Before Attack (sec) After Attack (sec)
Krum 62.648 127.47

Median 44.867 105.304
RFA 61.892 141.256

Trimmed-mean 43.933 108.236
DeMAC 58.688 126.37

Table 3
The comparison of the effectiveness of DeMAC with other Byzantine-robust methods on CIFAR set

Performance Comparison: In this work, we define the CCR as the time for one iteration of training in the FL
system equipped with the chosen defence method. We use two tables to show the comparison of the effectiveness
of DeMAC with other Byzantine-robust methods on two different datasets. In these experiments, we take the multi-
poisoning attack strategy. The details of this attack strategy are described in section 6.1. Experimental Setup. In Table 3,
RFA [12] is the most time-consuming method. Median [11] and trimmed-mean [11] are the most time-saving methods.
DeMAC and Krum [10] show similar performance.
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Defense methods Before Attack (sec) After Attack (sec)
Krum [10] 19.837 59.609

Median [11] 19.652 61.403
RFA [12] 18.086 59.699

Trimmed-mean [11] 18.700 62.448
DeMAC 21.473 67.260

Table 4
The comparison of the effectiveness of DeMAC with other byzantine-robust methods on MNIST set

8. Conclusion
Backdoor attacks and, more specifically, model poisoning attacks are a big challenge faced by federated learning.

To address the shortcomings of the existing defence approaches, we proposed a novel defence system, which is called
DeMAC to defend against malicious attacks by measuring the difference in the contribution of benign clients and
malicious clients to the global model. We defined a new metric GradScore, to compute the L2-norm of the gradients
of the last layer of contributed model updates, which is shown to be effective in detecting updates from malicious
clients. Furthermore, we utilized the history records of the contributed model updates to enhance the malicious client
detection performance. We evaluated and compared DeMAC with state-of-the-art defence techniques over various
attack strategies and datasets. Experiment results show that DeMAC can effectively mitigate the model poisoning
attacks without sacrificing the performance of the main task and significantly outperforms the existing defence
approaches. Future research directions include extending the proposed method to defend against adaptive attacks
based on well-known non-targeted model poisoning frameworks. This proposed method can also be combined with
Byzantine-robust aggregation rules. We leave it for future work.
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9. Appendix
9.1. Tables corresponding to Evaluation Results

Impact of the degree of non-IID: Tables 5, 6 show the impact of the non-IID degree on DeMAC. From Table 5,
with other hyperparameters fixed, DeMAC can decrease the ASR to a very low level when 𝛼 is larger than 0.1. When
𝛼 is set to 0.1 and the attacking time is postponed to 600 round, DeMAC can mitigate the poisoned updates. Table 6
shows similar results. When threshold 𝜎 is set from 0.5 up to 0.6, DeMAC is able to reduce the ASR to a low level.
From above analysis, we can see that the success of model poisoning attacks is closely related to the convergence of
FL training.

Dirichlet (𝛼) PDR 𝜎 Round ASR (%)
0.1 30∕64 2 400 99.98
0.1 30∕64 2 600 2.411
0.3 30∕64 2 400 7.888
0.5 30∕64 2 400 5.133
0.7 30∕64 2 400 3.033

Table 5: Impact of the degree of non-IID on CIFAR10

Dirichlet (𝛼) PDR 𝜎 Round ASR (%)
0.1 30∕64 0.6 60 1.260
0.1 30∕64 0.5 60 99.77
0.3 30∕64 0.5 60 99.97
0.5 30∕64 0.5 60 0.657
0.7 30∕64 0.6 60 0.680

Table 6: Impact of the degree of non-IID on MNIST
Impact of Poisoned Data Rate (PDR): Tables 7, 8, 9, 10 show the impact of PDR on DeMAC. From Tables 7, 8,

DeMAC can effectively mitigate the malicious behaviours. From Table 9, DeMAC cannot work well when PDR is set
to 10∕64. The possible reason is that with few data samples being poisoned, DBA is too stealthy to be detected.
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PDR 𝜎 Round ASR (%)
10∕64 2 400 3.022
20∕64 2 400 2.211
30∕64 2 400 4.722

Table 7: Impact of Poisoned data rate (PDR) on
CIFAR

PDR 𝜎 Round ASR (%)
5∕64 0.5 60 0.635
10∕64 0.5 60 0.646
30∕64 0.5 60 0.635
45∕64 0.5 60 0.644

Table 8: Impact of Poisoned data rate (PDR) on
MNIST

PDR 𝜎 Round ASR (%)
10∕64 2 400 34.42
30∕64 2 400 3.488

Table 9: Impact of Poisoned data rate (PDR) on
CIFAR for defending DBA

PDR 𝜎 Round ASR (%)
5∕64 0.5 60 0.657
10∕64 0.5 60 0.747
30∕64 0.5 60 0.724

Table 10: Impact of Poisoned data rate (PDR) on
MNIST for defending DBA

Defending Anomaly-Evasion Attack: Tables 11, 12 show DeMAC can successfully mitigate attack impact for
two datasets.

𝛽 𝜎 Round ASR (%) MA (%)
0.1 2 400 5.133 64.25
0.3 2 400 5.6 66.65
0.7 2 400 3.133 63.43

Table 11: Defending Anomaly-Evasion Attack on
CIFAR

𝛽 𝜎 Round ASR (%) MA (%)
0.1 0.5 60 0.635 94.4
0.3 0.5 60 0.646 94.45
0.5 0.5 60 2.531 94.07
0.7 0.5 60 0.635 94.42

Table 12: Defending Anomaly-Evasion Attack on
MNIST
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