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Abstract—The growing landscape of emerging wireless ap-
plications is a key driver toward the development of novel
wireless system designs. Such a design can be based on the
metaverse that uses a virtual model of the physical world
systems along with other schemes/technologies (e.g., optimization
theory, machine learning, and blockchain). A metaverse using
a virtual model performs proactive intelligent analytics prior to
a user request for efficient management of the wireless system
resources. Additionally, a metaverse will enable self-sustainability
to operate wireless systems with the least possible intervention
from network operators. Although the metaverse can offer many
benefits, it faces some challenges as well. Therefore, in this
tutorial, we discuss the role of a metaverse in enabling wireless
applications. We present an overview, key enablers, design aspects
(i.e., metaverse for wireless and wireless for metaverse), and
high-level architecture of metaverse-based wireless systems. Then,
we discuss network management, reliability, and security of the
metaverse-based system. Finally, we outline open challenges and
present possible solutions.

Index Terms—Virtual reality, mixed reality, augmented reality,
digital twins, and metaverse.

I. INTRODUCTION

The landscape of wireless systems incurred significant
growth during the last few decades. Emerging wireless system
applications have diverse requirements. The diverse require-
ments are in terms of user-defined metrics (e.g., quality of
physical experience) and quality of service (QoS) requirements
(e.g., strict latency and ultra-high reliability). Fulfilling these
diverse requirements is difficult for existing wireless system
infrastructures (e.g., SG). Many recent works proposed the
use of 6G for such applications [1]-[3]. 6G is still in its
infancy and many milestones are needed to realize its true
implementation. The work in [3] proposed digital twin-based
architecture for 6G that consists of three layers, such as the
physical interaction layer, twin layer, and service layer. A
twin-based architecture tried to follow the trends of self-
sustaining wireless systems and proactive-online learning-
based systems. Self-sustaining wireless systems require the
minimum possible intervention from the network operators and
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Fig. 1: Example of a metaverse-based wireless system.

users for their operation to operate autonomously. On the other
hand, proactive online-based wireless systems || are needed
because of the strict latency requirements of many emerging
applications (e.g., healthcare and intelligent transportation
systems). To manage wireless and computing resources for
wireless applications with strict latency, there is a need to
proactively analyze the wireless system.

Although a digital twin-based system can offer benefits,
it seems difficult to truly meet the diverse requirements of
wireless systems [1]], [3]. For instance, digital twin does not
effectively consider the users/devices mobility which signifi-
cantly affects the performance of wireless systems. Consider
a terahertz (THz) communication system that is significantly
affected (e.g., loss in line of sight (LOS) path) by the human
body. Similarly, the mobility of devices/users significantly
affects the performance of wireless systems. Therefore, we
must effectively take into account the effect of user/device

INote that in this work we use the term proactive to refer to learning ML
models before users request a service.
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Fig. 2: Metaverse for wireless systems: Applications, design trends, and key enablers.

mobility. To do so, the work in [4] introduced the concept
of metaverse that uses digital avatars to account for mobile
devices/users. A metaverse-based system can be divided into
two spaces, such as (a) meta space and (b) physical space
[5]. A meta space is a logical space implemented either using
edge or cloud or both edge and cloud. On the other hand,
the physical space contains all the physical entities (e.g.,
edge/cloud servers and devices) that are required for wireless
systems. An example of a metaverse-based wireless system is
given in Fig. [T} The static entities are represented by twins in
the meta space, whereas the mobile entities are represented by
digital avatars. We will discuss more regarding the architecture
of a metaverse-based wireless system in Section [[I-C] An
overview of emerging applications, design trends, and key
enablers is given Fig. 2] Emerging applications are charac-
terized by diverse requirements that must be fulfilled. These
requirements can be fulfilled by following the design trends
of self-sustainability and proactive online learning analytics.
These design trends are met using a metaverse-enabled design
that predominantly uses avatars, digital twins, and interac-
tive experience technologies. Next, we discuss the research
statistics and research trends of the metaverse and Internet of
Everything (IoE).
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Fig. 3: Market value of metaverse.

A. Research Trends and Statistics

According to statistics of , the market value of
metaverse in 2021 was USD 51.69 billion and it is expected to
increase at a compound annual growth rate (CAGR) of 44.5%
to reach USD 1.3 trillion by 2030, as shown in Fig. @ In 2021,
the market share of North America was 46% which made it



TABLE I: Summary of existing surveys and tutorials and their primary focus

Reference Wireless for Metaverse for Recent Standardization Focus Remark

metaverse wireless advances

Ning ez al. [6] X X X X Surveyed the N/A

concept and
current activities
in various
countries
for realizing
metaverse.

Wang et al. [7] X X X v (only for  Surveyed Our work will present stan-
communication concept, security, dardization for ML-enable
between virtual and privacy of  wireless metaverse
and real world) metaverse.

Gadekallu et X X X X Surveyed the role ~ N/A

al. [8] of blockchain for

metaverse

Khan et al. [4] X v X X Presented vision N/A

of metaverse
for wireless
networks

Khan et al. [5] X X X X Presented role of N/A

ML in enabling
metaverse-based
wireless system

Xu et al. [9] v (considered X X X Surveyed Our work present a novel

network edge concept, architecture ~ with  meta
for enabling enablers, space (i.e., twins and digital
metaverse) computing, and avatars based on virtual
communication machines) and physical
for edge-based space. We will discuss
metaverse. how to deploy them using
edge, cloud, and devices.
Moreover, we will present
novel challenges compared

to existing surveys

Our Tutorial v v v v v N/A

the highest contributor among all regions in the world. Among
regions, Asia Pacific will expect the highest growth among all
regions. On the other hand, META, NVIDIA Corporation, Epic
Games, Microsoft, Snap Inc., Nextech AR Solutions Inc., The
Sandbox, Decentraland, Roblox Corporation, and Qualcomm
Technologies, Inc. will be major players in the metaverse
market. Among applications (e.g., gaming, social media, and
virtual reality), the gaming sector seems to have the highest
share in 2021.

Other than metaverse, the IoE market share is expected to
reach USD 3,335.2 Billion, globally, by 2027 at 15.1% CAGR
[11]. The key drivers of this increase are the increased imple-
mentation of M2M systems and the emergence of numerous
disruptive technologies. On the other hand, the key players are
Cisco System Inc. (US), Nokia Corporation (Finland), Sam-
sung (South Korea), Huawei Technologies Co Ltd. (China),
Amazon Web Services (US), Qualcomm (US), AT& T Inc.
(US), Koninklijke Philips (Netherlands), Mesh systems LLC
(US), and Robert Bosch AG (Germany). Additionally, among
the regions, North America is the dominating region. From
the aforementioned discussion, it is clear that metaverse and
IoE will be key research technologies in the foreseeable future
due to their increasing demand and market shares.

B. Existing Surveys and Tutorials

Various works [4]—[9]] considered metaverse. The work in
[6] surveyed metaverse applications and their recent advances.
Moreover, they studied various initiatives for realizing the
metaverse in various countries. Another work [7]] discussed the
metaverse fundamentals and security aspects. Specifically, the
authors discussed the security threats and solutions to various
components (e.g., physical space and data management) of the
metaverse. The work in [[8] surveyed the role of blockchain
in the metaverse. The authors in [4] presented the vision of
metaverse for enabling wireless applications. Specifically, they
presented key requirements, general architecture, and open
challenges. Another work [5]] discussed the role of machine
learning in enabling metaverse-enabled wireless systems. The
work in [9] surveyed key enablers, computing, and commu-
nication technologies for the metaverse. Different from the
existing works [4]-[9], our work (as given in Table E]) presents
the fundamentals, key enablers, and recent advances. Addi-
tionally, we present the network management, security, and
reliability of meta space and physical space. Finally, present
standardization of the machine learning-enabled metaverse.
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Fig. 4: Overview of research questions and relevant sections.

C. Our Tutorial

Our tutorial is different from the existing works [4]-[9]
and will present an overview, design aspects (i.e., metaverse
for wireless and wireless for metaverse), and an architecture
consisting of meta space and physical space along with
interfaces. We also review the networking, reliability, and
security and present the novel aspects compared to existing
works. Furthermore, we discuss the standardization of ma-
chine learning-based metaverse and present recent advances
of enabling wireless applications by metaverse. Finally, we
present open challenges. Specifically, our tutorial will answer
the following questions:

« How do we use a metaverse to enable IoE applications
by performing efficient resource management?

« How do we use emerging wireless and computing tech-
nologies (e.g., 6G, edge, and cloud computing) to enable
metaverse?

« How do we standardize machine learning-based meta-
verse?

« How does one efficiently implement metaverse by using
edge/cloud?

« How do we efficiently enable metaverse by effectively
performing resource management and reliable operation?

More detailed discussions about research questions and their
relevant sections are shown in Fig. @ The summary of our tu-
torial is shown in Fig. [5]and our contributions are summarized
as follows.

« We present an overview, key design aspects, key enablers,
and architecture for the metaverse of wireless systems.

o We discuss networking management, reliability, and se-
curity for enabling meta space and physical space.

o« We present the recent of metaverse towards enabling
emerging IoE applications. Additionally, we discuss stan-
dardization of machine learning-based metaverse.

« Finally, we present novel open challenges and their pos-
sible solutions.

II. FOUNDATIONS OF METAVERSE-BASED WIRELESS
SYSTEMS

A. Design Aspects

A metaverse in the perspective of a wireless network can
be used to represent various network entities, as shown in
Fig. [6] There are two main design aspects associated with
the metaverse and wireless systems, as shown in Fig. [7] For
every aspect, the role is shown for meta space, interfaces,
and physical space. Note that a more detailed discussion
about the architecture will be given in Section The
design aspects are metaverse for the wireless and wireless for
the metaverse. A metaverse for wireless systems deals with
resource optimization of computing and communication re-
sources for effectively enabling various wireless applications.
On the other hand, wireless for metaverse deals with carrying
out signaling for metaverse-enabled wireless system operation.
Such a signaling will be used for the efficient placement
of meta space objects (i.e., twins and digital avatars). For
instance, consider the deployment of meta space using multiple
edge and cloud servers (a more detailed discussion about the
deployment will be given in Section [[lI-AT). To do so, there
is a need to efficiently deploy meta space in such a way as to
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Fig. 5: Road map of the tutorial.

minimize the cost. Such a cost can be possibly transmission
latency and energy consumption. To minimize this, one must
choose a set of edge servers that will result in low latency
and low transmission energy. Additionally, to enable proactive
analytics, we must perform training to obtain pre-trained
models. Such pre-trained models can be based on either cen-
tralized learning or distributed learning. Centralized learning
will require the migration of device data to the cloud for
training; however, it has an inherent issue of privacy leakage.
To address this, one can use distributed learning that is based
on iterative interaction between the devices and edge/cloud. To
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Fig. 6: Possible uses of metaverse in wireless systems.
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enable such interaction for getting pre-trained models, there is
a need for effective computing and communication resources
management. Other than wireless for metaverse, metaverse
for wireless will require efficient management of resources
for various applications. For instance, consider infotainment
in autonomous driving cars that require computing resources
at both cars and edge servers installed at the roadside units
(RSUs). Due to the presence of many computing tasks in
autonomous cars, there is a need for offloading these tasks
to the RSUs. How to perform such offloading and manage-
ment of computing as well as communication resources? A
metaverse will effectively enable such offloading by making
offloading decisions and management of computing as well as
communication resources.

B. Key Enablers

1) Digital Twins: A digital twin is a virtual model of the
physical wireless system (example scenario is shown in Fig.[I)



TABLE II: Focus of existing surveys and tutorials for metaverse key enablers

Existing surveys/tutorial  Mentioned enabler

Focus

Khan et al. [4] o ) This work introduced the key enablers along with
« Digital twins role of ML in modeling them without primarily
o Avatars focusing on mobility modeling of avatars in meta
« Interactive experience technologies space.

Khan et al. [5] o ) This work focused on role of ML for modeling twins
- Digital twins and avatars without discussing mobility as well as
o Avatars pose estimation for modeling avatars.
« Interactive experience technologies

Xu et al. [9] o ) The authors discussed in detail about interactive
« Digital twins experience technologies without providing in depth
o Avatars information about modeling of avatars/twins.
« Interactive experience technologies

Our work Our work discusses in detail about the twins/avatars

« Digital twins
o Avatars

« Interactive experience technologies

modeling as well as interactive experience tech-
nologies. Additionally, we discuss in detail about
mobility modeling and pose estimation for modeling
avatars in meta space.

[5l. Such a virtual model will be used for analysis and help
in controlling network components/devices. One can model a
digital twin using experimental modeling, data-driven model-
ing, and mathematical modeling. In mathematical modeling,
various assumptions are made during modeling of the real
world systems. For instance, non-linear functions of robotic
systems are generally modeled using linear assumptions, and
thus might not reflect more effective modeling. To handle this
issue, we can employ experimental modeling. In experimental
modeling, a series of experiments are carried out for mod-
eling a physical system. Similar to mathematical modeling,
experimental modeling also suffers from degradation due to
experimental errors (i.e., human errors and machine errors).
One can address the issues related to experimental and mathe-
matical modeling by using data-driven modeling. Data-driven
modeling will use machine learning. Machine learning can be
based either on centralized training or distributed training. A
centralized training-based machine learning trains a model at
a centralized location. It requires moving device data to the
centralized location and thus might have privacy loss due to the
presence of a malicious third-party server used for running the
machine learning model. To address this privacy leakage issue,
one can use a distributed training-based machine learning (i.e.,
federated learning (FL)) [12], [[13[]. FL for modeling twins
in the metaverse will involve frequent interaction between
end-devices and twins deployed at edge/cloud. In FL, end-
devices compute their local models and send them to the
edge/cloud for aggregation. After aggregation, the global twin
model is shared with devices for further improving their local
models. Such iterative interaction requires a significant amount
of communication resources. Although FL enables on-devices
machine learning, there are many scenarios where there are
significant limitations on the available computing at end-
devices, and thus they might not be able to compute their
local models within the deadline. To address this issue, a few
works [14]-[16] proposed split FL. (SFL) that is based on

computing partial local models by the end-devices and the
remaining at the edge/cloud servers. Different from traditional
FL, SFL needs to offload partial local model computing tasks
to the edge/cloud servers, therefore, there must be an effective
computing resource allocation scheme for SFL.

2) Digital Avatars: A digital avatar is a digital replica
of the humans/ mobile devices controlled by humans in the
physical interaction world. One can use the digital twin to rep-
resent the virtual model of humans in meta space. Additionally,
interactive experience technologies (e.g., AR, VR, MR, XR)
can also represent humans in a virtual world. However, both
interactive experience technologies and digital twins might
not effectively represent humans in a meta space. A human
body in physical wireless systems significantly impacts the
quality of service (QoS). Different from traditional metaverse
where avatars can be two-dimensional and three-dimensional
(3D) [[17], metaverse for a wireless system should consider 3D
avatars. Such a 3D avatar effectively represents the behavior
of humans in the metaverse, as shown in Fig. E} From
onward, we will use the digital twin avatars for 3D avatar. To
model 3D avatars for the metaverse, one can propose novel
tools. Existing software tools for 3D modeling of humans are
MakeHuman, Daz Studio, iClone, and Mixamo [|18]]. These
tools are used for illustration, animation, cinema, and video
games. Although these tools can effectively model human in a
computer simulation, animation, etc., there is a need to propose
a novel design for metaverse-based wireless system.

The nature of a 3D model of a human in a metaverse-
based wireless system will be different compared to other
applications (e.g., animations). The difference lies in the
incorporation of wireless system features in the avatar of
the metaverse-based wireless system. For instance, Terahertz
(THz) communication is significantly affected by the human
body. A LOS path might be affected by humans. Additionally,
THz communication is significantly affected by the concen-
tration of red blood cells (RBCs) in the human blood. Other
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applications (e.g., 3D printing, human-computer interaction)
also require an effective model of avatars. An overview of
avatars in a metaverse-based wireless system is shown in
Fig. [T} First, there is a need to effectively create a 3D model
of a human. Next, we should add the effect (e.g., loss in
LOS path for THz communication) of a wireless system in the
avatars. We should also effectively model an avatar’s mobility
that can effectively follow human mobility patterns. Such mo-
bility patterns can be modeled using various techniques (e.g.,
optimization theory and deep learning). Mobility management
is of significant importance in traditional wireless networks
and many works proposed various schemes. However, here,
a metaverse-enabled wireless system is different compared to
traditional wireless networks. A meta space deployed at the
network edge must be migrated to the new edge depending
on the device’s mobility. Such migration of meta space can be
either live or non-live. More detailed discussion about migra-
tion schemes will be provided in Sections [[V-A2] and [[IT-AT]
For mobility management, one can use prediction schemes
based on deep learning for predicting the device’s mobility.
Based on the predicted mobility, one can perform migration of
meta space. On the other hand, in a metaverse-enabled wireless
system, one must manage the mobility of devices during the
training of meta space models using distributed learning. It
is desirable for devices to remain a range of edge servers
performing aggregation for fast convergence. Therefore, one
should manage device mobility during the training process of
distributed learning models for meta space. Mostly, devices
are mobile, therefore, one must manage such mobility. We can
use dispersed federated learning (i.e., shown in Fig. [§) that is
based on the clustering of devices. Note that devices that will
remain within the vicinity of each other will be placed in a
cluster and a sub-global model is learned, as shown in Fig [8]
Next, to train sub-global models, one can share the sub-global
models among different clusters to yield a global model.

To enable interaction between avatars and the digital twin
objects in a meta space for accurate operation and analysis
prior to deployment, there is a need for efficient computer
vision techniques, such as human-pose tracking, emotion,

OT
.

(a) Kinematic model (b) Planar model (c) Volumetric model

Fig. 9: Categories of human modeling for pose detection.

and expression recognition, and gesture recognition, among
others [20]. Human pose tracking enables the estimation of
multi-person human geometric and motion information. Such
an estimation of human key points-trajectories is necessary
for the performance optimization of metaverse-based wireless
systems. For instance, the exact location and movement of
human body parts can be used for accurate channel estimation
of wireless signals. For instance, meta space having avatars
and twins can be used for the analysis of wireless systems.
As meta space is running a virtual world, therefore, accurate
pose estimation of avatar is necessary for better analysis.
Also, if the meta space interacts with physical space during
the run-time control of physical objects, there is a need to
accurately estimate human positions. Additionally, a human
pose estimation will have a significant impact on various other
applications (e.g., human-computer interaction, healthcare ap-
plications, AR, and VR). Therefore, human pose tracking in
a metaverse-based wireless system has significant importance
for wireless systems. To do pose estimation, the first step is to
model humans. There are three categories, such as kinematic,
planar, and volumetric, of human models shown in Fig [9]
A human body has limbs and joints as well as it has body
shape information and contains body kinematic structure. The
kinematic model is based on a representation of the human
body using limb orientation and joint positions. To represent
humans in more detail, one can use planar models that use
rectangle kind of representations to show different parts of
the human body. Although we can represent humans using a
kinematic model and planar model, there is a need for a more
detailed model of humans, such as a volumetric model (i.e.,
3D human reconstruction) for the metaverse.

In addition to human modeling, there is a need for effi-
cient human pose estimation. Human pose estimation can be of
two types: two-dimensional (2D) and three-dimensional (3D),
as shown in Figs. [I0]and [T1] In 2D pose estimation, poses are
estimated using images (in terms of pixel values), whereas
3D pose estimation involves estimation results in the three-
dimensional spatial arrangement of the human body. Recent
works considered deep learning for estimating human poses
and have shown promising results [21]-[23]. Mostly, these
works are focused on transforming low-resolution images into
high-resolution images for accurately estimating human poses.
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Sun et al. in [23]] proposed an architecture for 2D estimation,
namely, HighResolution Net for maintaining high resolution
during the whole process for estimating 2D human pose
using movements of joints, as shown in Fig. [Oc. Although
2D pose estimation of humans can offer benefits, it has a
few limitations. 2D pose estimation can estimate only joint
movements, not exact human models and thus, might not be
more desirable for metaverse-based systems. Therefore, there
is a need for 3D pose tracking of humans while modeling
digital avatars. In [24], the authors proposed a WiFi-based
IoT-enabled human pose estimation system, namely, MetaFi
for digital avatars. Specifically, the authors used Wi-Fi signals
to estimate the human pose for the metaverse as motivated
by the use of Wi-Fi for human activity recognition. The
MetaFi system comprises two COTS WiFi routers (i.e., TP-
Link N750) acting as a receiver and transmitter. Such data
is sent to the server for Al model inference. Although MetFi
Al model can be easily used for human pose estimation, it
might not perform well in all scenarios. To do so, there is a
need for considering large data sets from a wide variety of
users. A certain group of people in an institution might not
want to share such data outside their institution. To address
this issue, one can use cross-silo federated learning that can
train a human pose estimation model within one institution
and then share only the learning model updates with the other
institution. Such an approach will better preserve the end-user
privacy but at the cost of slowing the convergence rate. Also,
there will be many communication rounds between different
institutions that will require careful design for cost-efficient
communication.

3) Interactive Experience Technologies: A trend of a
virtuality-reality continuum is followed by interactive expe-
rience technologies. VR is based on synthetic views along
with additional information and is on the virtuality end. On
the other hand, AR is on the reality end. AR is based on
enhancing physical view by using additional information. In a
mixed reality (MR), the virtual world and physical words are
merged and they interact in real time. Extended reality (XR)
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Fig. 11: Example of 3D pose estimation [25].

merges all three interactive experience technologies, such as
AR, VR, and MR. XR will enable fine-grained human-specific
information perception. Therefore, one can say that XR head-
mounted display, sensors, and embedded systems are the main
source of entrance to metaverse-enabled wireless systems [7].
Although interactive experience technologies will effectively
enable metaverse, there is a need for efficient design based on
edge computing. In a metaverse-enabled wireless system, there
will be a massive number of running interactive experience
technologies. Such devices will require on-demand computing
resources with low latency. To do so, one must efficiently
manage edge computing resources for various metaverse de-
vices. Note that interactive experience technologies are well
studied in the literature, still, there is a need for more research.
The behavior of interactive experience in a metaverse will be
different and more complex compared to general applications
[4]. Therefore, there is a need for careful design consid-
erations regarding the integration of interactive experience
technologies in metaverse-enabled wireless systems. There
can be many cases where the need for interactive experience
technologies in the metaverse will be crucial [26]. Example
use cases are metaverse-assisted remote expert, metaverse-
based real-time collaboration, and metaverse-based industrial
maintenance, among others. Consider a remote expert system
for industrial maintenance based on metaverse. Cameras and
sensors installed near the industrial machine can take images
and add annotations using interactive experience technologies.
These images are sent to the remote expert using emerging
communication technologies. The remote expert after adding
annotations and suggestions will be shared with the industrial
machine operators for providing guidance to remove faults.
Meanwhile, the metaverse can use the data of the faults to
train/further train machine learning meta space models. Such
pre-trained models will be stored using a blockchain network.

C. High-Level Architecture

First, we discuss the general architecture of a metaverse-
based wireless system, as shown in Fig. @ 4], [5]. The
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Fig. 12: An overview of general architecture for metaverse.

architecture mainly consists of three spaces: physical in-
teraction space, meta space, and services space. A physi-
cal interaction space has all the physical devices, humans,
edge/cloud servers, and other network switches necessary for
establishing a wireless system. A meta space is a logical space
that handles the interaction of a digital twin, digital avatars,
and interactive experience technologies to analyze/control the
physical wireless system. On the other hand, services space
enables users to request services from a metaverse-enabled
wireless system. An overview of the interaction between meta
space and physical space is given in Fig. [I3] To deploy
meta space, there is a need to first model digital twins and
avatars. One can use various ways to model them, such
as mathematical modeling, experimental modeling, and data-
driven modeling. In mathematical modeling, we made a series
of assumptions (e.g., a linear approximation to a non-linear
model). Coping with this limitation, one can use experimental
modeling. Experimental modeling consists of a series of
experiments that may suffer from experimental errors and
equipment malfunctioning. To address these limitations, one
can use data-driven modeling. Data-driven modeling uses data
generated by wireless applications to train machine learning
models. An example of a metaverse-based wireless system
is shown in Fig. [T] in Section [} Fig. [T] shows the role of
digital twins, avatars, and interactive experience technologies
in wireless systems. Digital twins in wireless systems can be

used to model the static entities in wireless systems. These
static entities are buildings, base stations, and mountains,
etc. Digital avatars refer to mobile devices and users. For
instance, a user sitting inside an autonomous car can be
modeled using an avatar for the autonomous car. Similarly,
humans with wearables can be modeled using avatars. Mod-
eling digital avatars in meta space might be more challenging
compared to digital twins. Digital twins of static entities have
no mobility, and thus easier to model compared to mobile
avatars. Modeling the exact mobility of avatars is difficult.
Additionally, mobile users significantly affect the performance
of the wireless system. We must effectively model various
effects (e.g., due to wireless signal attenuation, wireless signal
reflection/refraction, and wireless signal energy absorption)
of humans on wireless signals in meta space. For instance,
Terahertz (THz) communication is significantly affected by the
human body. LOS communication is significantly affected by
humans for the THz band. Additionally, THz communication
is affected by the concentration of red blood cells (RBCs). The
molecular noise and path-loss decrease with a rise in RBCs,
and vice versa. Therefore, there is a need to effectively model
avatars in meta space.

There are two main phases in a metaverse operation:
offline training and operation. Offline training is used for the
training of meta space models. Such training can be performed
either using centralized machine learning or distributed ma-
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Fig. 13: An overview of the interaction between

chine learning. Although centralized learning can result in
faster convergence, but at the cost of loss of users’ privacy due
to the transfer of data from devices/end-users to a centralized
location for training. To remedy this, distributed learning can
be used that is based on training local learning models at
devices without moving their data to a centralized location.
Then, local learning models will be shared with the meta space
for aggregation, as shown in Fig.[T2] On the other hand, during
the operation phase, the devices will request services from
the meta space. The meta space will in turn perform resource
optimization to instantly serve the end-users using pre-trained
models, optimization theory, and game theory. For both phases
(i.e., offline training and operation), there is a need for wireless
and computing resource optimization. Later, in a tutorial,
we will discuss how can we perform resource optimization
of computing and wireless resources. Additionally, we will
discuss interfaces for communication between meta space and
physical space, deployment of meta space, and meta space
design later on in detail in this tutorial.

On the other hand, it is necessary there must be synchro-
nization between the meta space and physical space, as shown
in Fig. [I3] Changes in the physical space will significantly
affect the meta space. Similarly, during the operation, changes
in the meta space will have significant impact on the physical
space. For instance, training of machine learning models in
the meta space will use data or function of the data in the

physical and virtual worlds.

physical space. Therefore, the physical space data or function
of data (i.e., in case of federated analytics) should be provided
timely to the meta space. Note the function of data in case of
federated learning is the locally trained model obtained by
running iterative algorithm on device. Other than this, in the
case of sensory measurements (e.g., images in autonomous
cars and temperature data) should be wisely shared with the
meta space. If we increase the frequency of sharing the sensory
data, more communication resources will be needed and vice
versa. Similarly, the sampling frequency (e.g., taking samples
of the temperature data) should be properly adjusted. A high
sampling frequency will utilize computing resources and more
communication resources will be need to share them with
the meta space. On the other hand, if we choose the low
sampling frequency, the data (e.g., measured temperature)
shared with the meta space will not well reflect the physical
space and thus may result in less accurate results. Note here,
for synchronization in metaverse, there is a need for special
care due to the presence of immersive 3D streaming, real-time
communication, and multi-sensory data . Such communi-
cation will require more bandwidth in addition to different
constraints compared to traditional wireless communication.
For instance, if we consider multi-sensory data, the communi-
cation must be reliable to get the accurate results. On the other
hand, there must be more bandwidth (e.g., similar to eMBB
communication) for immersive 3D communication to enable



immersive 3D experience to massive number of devices in the
physical world. Therefore, there must be efficient and novel
resource scheduling schemes for synchronization between the
physical and the virtual world.

D. Use Cases of Metaverse

Here, we discuss several existing metaverse projects as
summarized in Table

1) Decentraland (MANA): Decentraland developed by
Ari Meilich and Esteban Ordano, runs on the Ethereum
blockchain and is a 3D virtual world, browser based platform
developed for the user to experience a virtual world [27].
In this platform, users can buy various entities (e.g., plots)
using non-fungible tokens. The first token of Decentraland
was launched in 2017 at ICO boom that managed to reach
$26 million. Recently in the 2021 bull run, major brands
are witnessed in Decentraland metaverse crypto projects [28].
These brands include Sotheby’s, Miller Lite, Pricewaterhouse-
Coopers, Atari, Adidas, and Samsung. Decentraland uses RC-
20 token standard to deal with its cryptocurrency, namely,
MANA. Moreover, decentraland has two tokens: LAND (i.e.,
ERC-721 token) and estate (i.e., ERC-721 token). Both of
these tokens are used to depict parcels of land in decentraland.
Using tokens, different players in a decentraland can buy
virtual lands as a gamble at casino.

2) The Sandbox: The sandbox is a 2D game developed
by game studio Pixowl for mobile and windows users [29].
Players in a sandbox can build, own, and monetize the gaming
experience in the Ethereum blockchain [30]. The two most
important and known versions of the sandbox are The Sandbox
Evolution (2016) and The Sandbox (2011). Both of them
combine hits download of more than 40 million on iOS
and Android. In 2018, developer/Publisher Pixowl brought
the sandbox to the blockchain ecosystem with the goal of
providing game manufacturers with true ownership using non-
fungible tokens. Additionally, this will provide them with
incentives in participating in a metaverse ecosystem.

3) Axie Infinity: Axie infinity was developed by Sky
Mavis which is actually a non-fungible token-based online
video game [31]]. In Axie infinity, there are kingdoms of Axies
and all players battle for the kingdoms. Moreover, within a
game, all players can earn and sell their components. This
game has been marketed by Sky Mavis using “’play-to-earn”
model that is based on the concept that every player should
pay a starting cost. Sky Mavis estimation of the new player
costs were $400 and $307 in 2020 and 2022, respectively.
Although Axie infinity can enable a good gaming experience,
there is a need for significant modifications in order to apply it
for real world wireless applications that will require proactive
analytics and online control.

4) Sorare: It is a non-fungible tokens-enabled football
game [32]]. To secure the ownership, sorare uses the Ethereum
blockchain network for operation. It is located in Paris, Ile-
de-France, France, and has approximately 39 investors that
include Antoine Griezmann and aldeA Ventures. Sorare was
founded in 2018 and its cards sold until 2020 were worth of
$1.8 million. In this virtual game, various players can own

cards that are denoted by non-fungible tokens (i.e., ERC-721
tokens standard on Ethereum).

E. Summary: Insights and Lessons Learned

In this section, we discussed the fundamentals of the
metaverse, key enablers, and general architecture of the
metaverse-based wireless systems. Several lessons learned are
as follows:

o There is a need for effectively taking into account both
design aspects, wireless for metaverse and metaverse
for wireless. To account for the wireless for metaverse,
there is a need for studying emerging wireless technolo-
gies (e.g., 6G) and computing technologies to enable
metaverse signaling (e.g., metaverse management signals
between meta space and physical space). On the other
hand, to enable wireless applications using metaverse,
there is a need for efficient design of metaverse using
emerging technologies, such as ML, edge computing,
blockchain, and optimization, among others.

« There are two main phases in a metaverse-based wireless
system design, such as learning phase and the operation
phase. In the learning phase, learning of meta space
models takes place using distributed learning that involves
iterative communication between the end-devices and the
meta space. On the other hand, a user may request a
service from the meta space. Therefore, there is a need
for novel resource scheduling algorithms for a metaverse-
based wireless system.

« There is a need for efficient modeling of digital avatars
and twins while designing a metaverse-based wireless
system. Although one can use mathematical modeling
and experimental modeling, they might not produce good
results due to assumptions in mathematical modeling and
experimental errors. To overcome this, there is a need for
privacy preserving, distributed ML-based twin and avatar
models. However, such modeling has many challenges,
such as statistical and system heterogeneity, wireless
channel impairments, and fairness. System heterogeneity
refers to variations in the available computing power
for learning tasks among all devices, whereas statistical
heterogeneity refers to the non-independent and non-
identical distribution of local datasets. On the other hand,
fairness refers to the dominance of some of the devices
on the global model more than the other devices and
thus, the learned global model will be biased. Therefore,
to efficiently design twins and avatars using distributed
learning, we must propose novel schemes that take into
account fairness, statistical and system heterogeneity, and
wireless impairments.

o We learned that most of the existing platforms of the
metaverse focused on smart gaming and creating virtual
worlds for the users without effectively focusing on real-
time applications (e.g., smart homes, intelligent trans-
portation systems, and Industry 4.0). Therefore, there is
a need for novel metaverse engines that can effectively
enable wireless applications by taking into account var-
ious tasks. These tasks are effective resource allocation



TABLE III: Overview of existing projects of metaverse

Objectives

Remarks

Ari Meilich and Esteban

Project Description Developers
Decentraland It is a 3D virtual world,
(MANA) browser based platform  Ordano

developed for user to ex-
perience a virtual world.
Users can buy various en-
tities (e.g., plots) using
non-fungible tokens.

To realize virtual worlds
of the various real world
components.

This platform is partic-
ularly developed for ex-
perience various virtual
worlds without primarily
focus on the emerging
wireless applications.

The Sandbox

Game studio Pixowl

The sandbox is a 2D game
developed for mobile and
windows users.

To realize gaming expe-
rience based on virtual
world of the real word.

The focus of sandbox
is gaming without effec-
tively considering wireless
applications.

Axie Infinity

Sky Mavis

Axie infinity is actually
non-fungible token-based
online video game. It en-
ables smart gaming with
the freedom of enabling
players to buy and sell
items.

Focus is on smart gaming

Axie infinity focuses on
developing smart gaming
experience for users with-
out taking into account
the actual wireless appli-
cations factors (e.g., fad-
ing and error rate).

Sorare

it is a football game that
allows players to manage,

Nicolas Julia and Adrien
Montfort

To enable a fantasy foot-
ball game

Sorare is based on en-
abling a virtual fantasy

buy, and sell virtual teams
using cards.

football with the purpose
of promoting smart gam-
ing.
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Fig. 14: Meta space deployment schemes.

of computing and wireless resources, proactive analysis
of the wireless system prior to deployment, and online
control of wireless devices.

III. MANAGEMENT OF META SPACE
A. Network Management

1) Efficient Deployment of Twins and Avatars: There can
be two main deployment trends, such as single device-based
deployment (e.g., edge server) and multiple devices-based
deployments (e.g., multiple edge servers), as shown in Fig.[T4]

We first discuss the deployment using a single device. To
deploy meta space, one can use edge servers located in close
vicinity to the end-devices [33[]. Such deployment of meta
space will result in low latency, however, with low storage
and computing power. Generally, we have less storage capacity
and less computing power at the network edge compared to the
remote cloud [34]], [35]. Therefore, one can deploy the meta
space at a remote cloud when the latency requirements are
not strict and high storage as well computing power is needed.
Meta space based on edge servers has more context awareness
compared to cloud-based meta space [36]. The reason for
this context-awareness (e.g., devices location and mobility
pattern) is due to the fact that edge servers are located close
to the devices, and thus likely have more information about
the network devices. Also, mobility management of devices
for edge-based meta space is easier compared to cloud-based
meta space because of the fact that edge servers are closer the
devices, and thus more readily available knowledge about the
devices’ position and mobility patterns.

Although the aforementioned discussion for implement-
ing meta space on a single device can offer many benefits, it
has a few limitations. The prominent one is scalability which
is typically low for a single device-based implementation. A
meta space located at a centralized location will suffer from
high control signaling overhead, and thus suffer from high
latency. Such a high latency might not be desirable for many
strict latency applications (e.g., digital healthcare). To address
this limitation, one can use meta space implementation in
a hierarchical fashion using multiple devices [37]-[39]. One
can have a root meta space and secondary meta spaces. The
secondary meta spaces can be deployed to serve a part of
whole devices. The primary meta space will coordinate among
all the secondary meta spaces. The secondary meta space



will handle all the signaling required for serving the devices
within its vicinity. Such an approach of deploying meta spaces
in a hierarchical fashion will enable scalable operation by
serving a large number of users without significantly adding
latency to the system. Other than scalability, robustness is
also important. A meta space implemented on an edge server
might stop working due to a malfunction or a security attack.
Implementing meta space on distributed devices can offer
more robustness compared to a single device implementation.
However, this will be at the cost of management complexity.
Therefore, one must make a tradeoff between robustness,
latency, and management complexity during the deployment
of meta space for a metaverse based wireless system.

2) Computing and Communication Resource Manage-
ment: An overview of computing and communication manage-
ment tasks for meta spaces is shown in Fig. [T5] The computing
tasks in meta space can be high-dimensional processing of
data, computing for digital twins modeling, computing for
avatars modeling, 3D virtual world rendering, and blockchain
mining. To perform computation for modeling of digital twins
and avatars in a meta space, one can use various schemes
requiring different computing power (i.e., CPU-cycles/sec).
For instance, running simulations based on mathematical opti-
mization to yield models of digital twins and avatars will have
different requirements compared to data-driven (i.e., machine
learning-based schemes) for twins and avatars modeling [4],
[19]. Generally, mathematical optimization will use fewer
computing resources, but at the cost of assumptions that might
lead to less accurate modeling [3]]. On the other hand, data-
driven modeling has high computing complexity, but it will
produce more accurate models. Other than modeling avatars
and twins, one can encounter processing of high-dimensional
data in a metaverse. Such high-dimensional data can be
spatiotemporal data of autonomous driving based on metaverse
[40]-[42]. In addition, 3D virtual world rendering will require
significant computing resources [43[]-[48]. The first step in 3D
virtual world rendering is 3D modeling that can be performed
using mathematical modeling for representation. However,
mathematical modeling might not be able to truly reflect
the actual wireless scenario components (e.g., mobile cars).
To address this challenge, one can use novel and emerging
machine learning schemes. Note that 3D rendering in case
of metaverse for wireless might be different. For instance,
in the 3D rendering for AR/VR, one can focus on lighting
effect. However, in the perspective of wireless systems, there
is not a significant need to focus on the lighting effects. Such
a lighting effect can enhance the 3D model illusion only
without taking into the effect of twins and avatars on the
wireless signals [4]. Instead, one should focus on the effect
of 3D objects on the propagation of wireless signals (e.g.,
effect of users mobility on THz communication). Additionally,
one must require computing resources for running blockchain
consensus algorithm. Here, blockchain will be used to store
meta space data in a transparent and immutable fashion.
Blockchain consensus algorithms require significantly high
computing power [49]. Therefore, one must propose efficient
schemes that will require less computing power while fulfilling
the latency and energy constraints.

3) Twins and Avatars Migration: Twins and avatars are
deployed in the meta space upon the end-user request to
serve them. To deploy, there is a need for using resources
on-demand and then release these resources after use. To
implement meta space (i.e., twins and avatars) at edge/cloud,
one can use the concept of virtual machines and containers.
We can use virtual machines/containers to create on-demand
meta space and then release the computing resources after
using it. Virtual machines are implemented using the vir-
tualization of layers including hardware, whereas containers
are implemented using software layers, as shown in Fig. [I6
Implementation of containers makes them easy because they
only involve high software layers. This is the main reason
why containers are lightweight and easy to modify for reuse in
future metaverse applications. On the other hand, containers-
based meta space will have low robustness due to having
less isolation compared to virtual machines-based meta space
that is implemented using virtualization of both hardware and
software. On the other hand, virtual machines-based meta
space will offer more isolation and robustness, but at the
cost of high weight compared to containers-based meta space
implementation. Therefore, one must make a tradeoff between
robustness, reusability, and security.

Although virtual machine and containers based twins and
avatars in a meta space can be used to serve end-users, the
mobility of devices will cause many challenges in deployment.
For instance, a meta space serving autonomous cars requires
seamless communication during the serving period. However,
autonomous cars have mobility, and thus they may go out
of the range of their meta space deployed to serve them. To
resolve this issue, there is a need for efficient migration of meta
space to account for mobility. Other than mobility, hardware
failure and imbalance loads can be tackled using meta space
migration. Mainly, we can have two main types of meta space
migration, such as live migration and non-live migration [50].
In live migration, the meta space will be migrated towards the
other supporting devices (i.e., edge or cloud server) without
shutting down, whereas non-live migration first shut down or
suspend before migrating the meta space to another facility.
In non-real-time applications (e.g., training metaverse-based
smart keyword suggestion in keyboard), one can use a non-
live migration, and the states of meta space (based on vir-
tual machines/containers) are transferred to the new running
facility after suspending. Additionally, there is no need for
transfer of the meta space states in case of shutting down. For
real-time applications (e.g., infotainment and remote patient
monitoring), there is a need for seamless service. Therefore,
for such services, one should preferably use live migration.
Although live migration can offer the benefit of the seamless
running of applications, it has challenges in memory data
migration and network connectivity. To tackle these issues,
there is a need for managing the mobility of the devices.
Based on the predicted mobility of devices, one can proactively
live migrate the meta space to the new facility. Such kind
of mobility can be predicted using various techniques. Most
prominent is ML-based mobility prediction [51f]. Although the
mobility management scheme of [51]] can be used for getting
a mobility prediction model, it has privacy leakage issues.
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Fig. 16: Overview of virtual machines, containers, and their migration schemes for metaverse.

Users from some of the areas might not want to share their
data with a centralized server. To address this one can use
federated learning that will enable sending of only learning
model updates instead of the whole data.

Both for live and non-live migration schemes, there is a
need for efficient resource allocation to carry out the migration
process [52]-[55]. Migration can be performed either using
a wired or wireless network. A wired network has sufficient
bandwidth, whereas a wireless network requires careful de-
sign due to communication resources (i.e., resource blocks)
constraints. For instance, a meta space running on an edge
server needs to migrate to the other edge server if the end-
user moves to coverage of the new base station running that
edge server. Such a migration can be performed wireless
which will require efficient resource allocation with a variety
of constraints. For instance, reusing wireless resource blocks
of existing devices needs a resource allocation scheme such
that interference caused due to reuse of wireless resources, to

the existing devices should not exceed the maximum allowed
limit. Other factors that should be taken are the efficient
allocation of transmit power. Additionally, the migration delay
should not exceed the maximum allowed latency. Therefore,
one must perform resource allocation in such a way as to
fulfill the latency constraints. Wireless resource allocation
can be performed using various schemes. These schemes
can be heuristic schemes, decomposition-relaxation schemes,
game theory, matching theory, and convex optimization-based
schemes , . Typically, heuristic schemes (i.e., exhaus-
tive search) check for all combinations and thus will give better
results. However, checking all possibilities is significantly
computationally expensive and may not be much desirable for
practical strict latency applications. To overcome this, one can
try a different scheme. A decomposition-relaxation scheme
first decomposes the problem into sub-problems. Then, the
decomposed sub-problems are solved separately by relaxing
the binary resource allocation variables into continuous vari-
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Fig. 17: Overview of role of blockchain in metaverse.

ables. Such approximation will lead to approximation error.
One can use other schemes based on either game theory or
matching theory to avoid approximation error and give faster
convergence with less computational complexity. Yang ef al. in
[54] proposed a heuristic scheme for migrating multiple virtual
machines while fulfilling the latency constraints. Another
work [55]] also considered virtual machines migration for
clouds. Although the works in [54] and [55]] showed good
performance, there is a need to propose novel schemes for
meta space migration. For strict latency applications, the meta
space will use edge servers that can be deployed either at
base stations, unmanned aerial vehicles, and moving cars,
among others. Migrating such a meta space will challenging
due to mobility and wireless channel impairments as well
communication resources constraints. Therefore, we should
propose novel algorithms based on game theory/matching
theory for meta space migration.

4) Low Latency Consensus Algorithms for Blockchain:
An overview of blockchain for use in a metaverse is given
in Fig. [T7] A blockchain in a metaverse can enable se-
cure identity management, distributed metaverse data storage,
metaverse entities ownership, scalability, and smart contracts
[58], [59]. Typical in a metaverse, there will a wide variety
of massive number of players. Therefore, there is a need
for efficient unique identity management in an immutable
manner. Additionally, a metaverse data can be stored using
the distributed storage in a blockchain using immutable and
transparent manner. Blockchain can be used to store metaverse
data (e.g., pre-trained meta space models and authentication
keys) in a distributed manner and thus more robust to failures.
As the blockchain is based on the distributed concept, there-
fore, metaverse based on blockchain can enable a scalable
operation. One of the possible ways to further increase the
scalability of blockchain for metaverse can be sharding that

uses the concept of dividing the whole network into many sub-
networks [60], [61]. In a metaverse-enabled wireless system,
there will be a variety of decentralized and distributed datasets.
These datasets will be used for various purposes, such as
training machine learning models and operations (e.g., cached
data and security-related information). To enable these datasets
in a transparent, efficient, and immutable manner, one can use
blockchain [[62]]. One of the main advantages of blockchain is
that no node can change the data without collusion. Note that
blockchain can update the distributed datasets after running the
consensus algorithm. A consensus algorithm is a fault-tolerant
mechanism that enables an agreement on a set of rules agreed
by decentralized nodes in contrast to a centralized authority.
Therefore, one can use blockchain for various purposes in a
metaverse-based wireless system. In a metaverse for a wireless
system, a set of wireless devices used to train distributed
learning leveraged blockchain to avoid a single point of failure
issue [63[]. Similarly, we can consider wireless miners that
communicate with each other. Every miner can have a block
with two parts: body and header. The block body can carry
information about metaverse applications (e.g., control data
and meta space pre-trained models). If some new update is
to be added to the blockchain network, a miner generates
a hash value after running the consensus algorithm. If the
hash value is less than the target value, then the miner is
allowed to update the distributed ledger by its generated block.
The generated block is transmitted to all the miners. Some
of the receiving nodes might be successful in solving the
problem and broadcast their own block in the network before
receiving the generated block of the other node. This event
is called forking. There must be a measure to avoid this
forking event by controlling the block generation rate. Another
factor is the efficient allocation of wireless resources that can
minimize the transmission latency, and thus forking. On the
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other hand, the consensus algorithm must be scalable with low
latency. Additionally, the consensus algorithms must consider
the privacy leakage issue as well because of their distributed
nature. In a metaverse-based wireless system, there will be a
massive number of nodes. To handle distributed datasets using
blockchain, we must propose consensus algorithms that can
work well without adding a significant delay to the system.
Other than scalability, latency is another issue with running
blockchain consensus algorithms. Therefore, we must propose
novel blockchain consensus algorithms that are scalable and
offer low latency along with better privacy preservation.

Non-fungible tokens (NFT) will plays a significant role in
a metaverse-empowered wireless system. In a metaverse, there
are two main players, such as avatars (i.e., for representing
mobile users and devices), digital twins (e.g., virtual model
of a piece of land and buildings), from the perspective of
digital ownership. To enable such ownership one can use NFTs
that are based on utilizing standards such as ERC-721 or
ERC-1155 on the Ethereum blockchain [[64]]. NFTs are unique
identities used to represent as well as trade metaverse entities.
An overview of creating NFTs for a metaverse is given in
Fig. [I8] First of all, assets are defined to be represented using
NFTs. The next step is to select a suitable platform. Currently,
many works are using Ethereum with its ERC-1155 and ERC-
721 tokens. After selecting a blockchain platform, there is a
need to propose smart contracts that defines rules and functions
of the NFT, such as royalty mechanism, metadata storage, and
ownership, etc. Additionally, there is a need to define meta
data (e.g., name, description, and image of the asset in meta
space). Then, the next process is to mint a unique instance of
the NFT on blockchain. The final step is verification and NFT
market management.

B. Reliability and Security

Overview of reliability and security for meta space is
given in Fig. [[9] The relationship between reliability require-
ments and key enablers of meta space is also given in Fig. [19
The key reliability and security tasks in meta space are reliable
3D video streaming, virtual machines/containers running meta
space reliability, meta space isolation, distributed deployment
of meta space, and avatars/twins authentication schemes. Sim-
ilar to network slicing, there are two ways to implement meta
space for various applications: (a) dedicated physical space
hardware and (b) shared physical space hardware [65]—[67].
In the case of dedicated physical space hardware, one can
deploy meta space to serve users. Such an approach will have
to advantage of easier management and better performance
but will cost high and is practically not feasible. To overcome
this high issue, one can use shared physical space hardware
that allows multiple meta spaces to operate. Although using
shared physical space hardware for multiple meta spaces will
be a good and feasible solution, it has a few implementation
challenges, such as resource allocation, reliability, security,
and isolation [68]. For instance, meta spaces deployed to
service intelligent transportation and healthcare at the same
network edge might suffer from security concerns if one of
them is being attacked by a malicious user due to sharing of
the same physical space hardware. Therefore, there is a need
for efficient isolation of meta spaces. Note that isolation for
meta spaces will be at various levels: access network isolation,
computing resource isolation, and core network isolation [69].
Effective isolation will result in a secure and reliable operation.
For a dedicated model, an access network slice for meta
space has a dedicated user and control plane traffic, spectrum,
and MAC scheduler [65]. This approach will ensure low
latency, the isolated, secure, and reliable operation but will
cost high and not allow elastic operation. Every meta space
slice will have access to its own medium access control, radio
link control, and radio resource control instances along with
resource blocks. On the other hand, using dedicated physical
space hardware, there is a need for sharing of spectrum,
MAC scheduler, and control plane. Specifically, the resource
blocks for serving different meta spaces will be managed
by a single scheduler and thus, will face many management
and isolation challenges. To resolve these challenges, one can
modify the medium access control scheduler that can use
resource blocks of different network operators and allocate
them to various meta spaces in an efficient way. To do so, one
can have an objective function that is based on maximizing
the utility (i.e., overall throughput) while fulfilling the meta
space user requirements (e.g., reliability and latency). On the
other hand, for such an interaction between meta space sched-
ulers, network operations, and end-users, there must be some
efficient incentive mechanism. Such an incentive mechanism
will enable buying of resources from network operators and
selling them to meta space users with the aim to maximize the
profit while improving users performance. Similar to access
network, one must propose novel scheduling schemes for
sharing of computing as well as core network resources. All of
the above schemes will use optimization theory, game theory,
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deep reinforcement learning, and graph theory, among others
[65], [70], [71]. On the other hand, there are various ways
of implementation of meta space. These possible ways can
be meta space implementation using an edge server, cloud,
edge-cloud, or devices [4]. Implementing meta space using
devices can have easier management but at the cost of low
reliability and security. An edge server running meta space
might suffer from malfunction either because of a security
attack or physical damage. To resolve this, one can deploy
meta space using multiple edge/cloud servers. This approach
will lead to more computing power and storage capacity as
well as security and reliability but at the cost of management
complexity. Based on the aforementioned facts, one can say
that careful attention must be given to the implementation of
meta spaces. Other than this, there must be secure interfaces
for communication between meta space and physical space.
For such security, one can use encryption/decryption schemes.

C. Summary: Lessons learned and Insights

This section described how can we design and deploy
meta space over the physical infrastructure. Specifically, ef-
ficient deployment of meta space, meta space migration,
reliability, and security are discussed. Several lessons learned
are as follows.

o We learned that is a need for efficient deployment of
meta space using edge and cloud. Deployment of the meta
space requires storage and computing resources. For edge,
there will be computing resource limitations, whereas, for
cloud, latency is the problem. Therefore, deployment of
meta space should be efficiently performed. Additionally,
running the meta spaces for different applications on the
same edge requires careful design for optimally allocating
computing and storage resources.

« Deployment of meta space (i.e., avatars and twins) on
edge/cloud server must be performed intelligently and
on-demand either using virtual machines or containers
depending on the specifications. For instance, virtual
machines are implemented using virtualization of layers

including hardware as well as software layers, and thus
gives better isolation and security. However, these features
are at the cost of non-light weight nature compared to
a container. Therefore, we must wisely choose contain-
ers and virtual machines for the implementation of on-
demand meta space at edge/cloud.

Mostly, the emerging wireless applications are real-time,
therefore, we should use live migration of meta space
from one edge to another depending on the mobility of
end-devices. To do so, there is a need for an effective
ML-based scheme for the prediction of device mobility.
Based on the predicted mobility of devices, one can
proactively start the migration of meta space to avoid
latency in the service. For such kinds of predictions,
one must propose effective algorithms based on emerging
schemes of ML. To do so, one can use distributed learning
with better convergence. Normally, distributed learning
has a low convergence rate due to devices and statistical
heterogeneity as well as fairness issues. Therefore, there
is a need for efficient novel distributed learning schemes
for predicting the mobility of devices.

To effectively isolate the meta space of one application
from others, there is a need for novel isolation schemes
that allow the operation of various twin spaces for dif-
ferent applications on the shared physical infrastructure.
For wireless resources, one can use the concept of vir-
tualization which can be achieved using a modification
of the existing resource schedulers at the medium access
control layer. To do so, there should be an efficient novel
algorithm based on either contract theory, Stackelberg
game, or matching theory that will enable buying of
wireless resources from various network operators and
selling them to the different meta spaces to increase an
overall utility (i.e., that accounts for network operators
profits and meta space users performance).
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IV. PHYSICAL SPACE

A. Network Management

1) Wireless and Computing Resource Management: The
physical space of the metaverse has a wide variety of players,
such as edge/cloud servers, base stations, autonomous cars,
moving devices, and unmanned aerial vehicles, among others
[4]]. For the successful enabling of metaverse-based wireless
systems, there is a need for seamless interaction among de-
vices. Additionally, the key element of the metaverse, namely,
meta space will be run by the wireless system hardware. To
do so, there is a need for efficient allocation of wireless
and computing resources. An overview of computing and
wireless resource optimization schemes is given in Fig. 20}
Typically, wireless resources of access networks need careful
design of resource allocation schemes. The design of the
wireless resource allocation scheme depends mainly on the
access scheme (e.g., orthogonal multiple access (OFDMA) and

non-orthogonal multiple access (NOMA) [[72]—[74]. Typically,
devices in wireless systems have computing tasks and they do
not have sufficient resources. Therefore, they compute a part
of their task and send the remaining to the nearby base stations
enabled by edge servers. Additionally, edge and cloud servers
should support virtual machines and containers running meta
space. For interaction among devices and edge servers, one
must efficiently allocate computing and wireless servers. Also,
for efficient implementation of meta space, the computing
resources must be efficiently managed. The works in [[75]-[79]
considered the association and allocation of wireless resources
in a cellular network. In [75]], the authors considered an
association-interference problem. They formulated a problem
to maximize the network utility. Due to the non-convex nature
of the formulated problem, a dual decomposition is used. In
another work, [76], Gao et al. proposed an energy-efficient
scheme for user association and on/off of the base stations. The
problem is formulated as a non-convex nonlinear programming
problem which is decomposed into two sub-problems for
an easier solution. The work in [77] proposed a joint user
association and resource allocation in heterogeneous cellular
networks. Similarly, the works in [78] and [79] discussed
resource allocation and association.

Other works [80]—[]83]] considered task offloading in edge
computing. In [80]], the authors surveyed different techniques
used for offloading in edge and cloud computing. specifically,
they studied various applications based on edge computing
and then challenges related to edge offloading. Another work
[81]] proposed a decentralized scheme for task offloading in an
edge computing system. The authors in [82]] proposed a game
theoretic scheme for enabling efficient task offloading between
multiple users and multiple base stations. The works in [80]—
[82]] mainly performed association of devices to base stations;
however, they did not consider the edge computing and of-
floading of resource-constrained end-devices. In a metaverse-
based wireless system, there will be a need for local compu-
tational task offloading as well optimization of edge servers
computing resources for performing various tasks, such as the
running of meta space, offloaded computing task, aggregation
of meta space models for distributed learning, computing



partial local learning models for split distributed learning, and
running blockchain miners, among others. On the other hand,
the work in [83]] considered both tasks offloading and resource
allocation for edge computing. Similarly, other works [84],
[85] considered joint computing and wireless resources (i.e.,
transmit power allocation and resource block allocation). In
[84]], the authors proposed a game theoretic scheme for joint
computational offloading and resource allocation in mobile
edge computing. They formulated an objective function that
accounts for energy consumption and monetary cost. Due to
the NP-hard nature of the formulated problem, a joint offload-
ing and resource allocation optimization game was proposed to
solve the formulated problem. Another work [85] considered
a system of multiple edge servers and users. They formulated
an objective for minimizing the cost that considers the time
and energy consumption of devices. To solve the formulated
problem, the authors proposed a two-stage algorithm using
alternating optimization and one-dimensional search. One-
dimensional search performs offloading decisions, whereas
the second stage, alternating optimization, performs resource
optimization. Although the works in [83]-[85]] can be used
for allocation for computing, offloading of tasks, and wireless
resources in a typical wireless system, they will not perform
well for a metaverse-based wireless system. In a metaverse-
based wireless system (shown in Fig. [2I)), the scenario is
different and there are a wide variety of players involved
in resource management, such as end-devices computing re-
source, wireless resource blocks, offloaded task computation
at the edge servers, edge computing resource for running meta
space, and storage resource for blockchain miners. Note that
for different services, one can deploy different meta spaces.
To meet the aforementioned challenges of a metaverse-based
wireless system, there is a need for novel frameworks that
will joint perform computing resources (i.e., local devices
computing resources for local model computing and local task
computing, whereas edge computing resources for meta space
running, computing offloaded tasks, computing partial local
meta models for split learning case) and communication re-
source (i.e., for transmission of learning updates, user requests,
offloaded task, and mining information).

2) Devices Mobility Management: The mobility of de-
vices poses different challenges in a metaverse compared to
traditional wireless networks. For instance, a mobile device
connected to one base station can easily be handed over to
the new base station if it enters its coverage area. However,
the case is different in the metaverse where simply handover
will not work. There must be different and novel schemes
to address the mobility of users. There are two main phases
in the metaverse: (a) offline training of meta space models
and (b) online operation [4], [5]. For training, one can use
various schemes, such as centralized ML or distributed learn-
ing [86]. Distributed learning can offer many benefits over
centralized ML. For distributed learning, frequent communi-
cation takes place between the meta space deployed at the
network edge/cloud and end-devices. For such interaction,
there must be seamless communication between devices and
the edge/cloud server. It is desirable that the devices should
remain in the coverage area of the edge-based base station.

such a fashion will generally result in a faster convergence
[19], [36]. Frequent changes in the devices for a typical edge
server in case of multiple edge servers will result in changes in
local datasets (i.e., of devices), and thus will suffer from a slow
convergence rate. To resolve this issue, one can use a clustering
approach that should be based on the clustering of devices
that have more probability to remain within the coverage
area of each other with one of the nodes as a central node
acting for aggregation [19]]. On the other hand, during serving
the end-devices by a meta space deployed at edge/cloud, we
should also tackle mobility. For serving the devices, the meta
space will enable them with efficient resource management
that will require seamless communication among devices and
meta space. Therefore, during the training phase and operation
phase, there is a need for efficient management of device
mobility.

Mobility management of devices in wireless systems
is considered by various works [87]-[91]. Broadly, one can
divide the management schemes into categories: (a) within a
network of one network operator and (b) between different
network operators. For instance, a device connected to meta
space deployed on edge supported by one network opera-
tor can go under the coverage area. In this case, mobility
management will be easy and will generally require less
signaling information compared to the case when the device
moves to the coverage of new network operators. Therefore,
there is a need for novel schemes that can efficiently handle
the mobility of devices served by meta space. To continue
seamless operation, the meta space should also be migrated
based on the mobility of devices. In [87], the authors proposed
a spectrum-aware mobility management scheme. Specifically,
they presented an architecture for mitigating heterogeneous
spectrum availability. Using this architecture, a unified mo-
bility management framework is presented to cope with the
issue of mobility events. Moreover, the authors proposed
inter-cell resource allocation. Other works [[88[|-[91]] surveyed
and presented schemes for mobility management of devices
in wireless networks. However, note that the nature of a
metaverse-based wireless system is different. Along with the
mobility of devices, there is a need to migrate corresponding
meta space (i.e., those serving the mobile devices) as well.
Therefore, traditional mobility management schemes will not
work well for a metaverse-based wireless system, and we
should propose novel schemes.

3) Edge and Cloud Deployment: To deploy edge and
cloud servers for serving wireless system users, there is a
need for efficient deployment of edge and cloud servers [92].
Every edge and cloud server requires sufficient backup power
for operation. They will require cooling especially for cloud
servers [93[|-[95]]. Additionally, edge servers have limited com-
puting power, and thus they should be deployed intelligently.
Therefore, there is a need for efficient deployment of edge and
cloud servers. Such efficient placement of edge/cloud servers
is necessary for efficient running meta space based on virtual
machines and containers. Various works [96]]-[98|] considered
efficient deployment of edge servers. In [96], Vitello et al.
proposed the efficient placement of edge data centers in urban
environments. They focused on using user mobility along with
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spatial deployments to assist in the efficient deployment of
data centers. Another work [97], studied three key issues,
such as capacity at edge locations, user association, and
edge location, related to edge servers deployment. Cong et
al. in 98] proposed a scheme for cost-efficient deployment
for cooperative edge computing. Specifically, the idea of the
authors was to share the edge servers (i.e., overlapped) during
the time of peak load in a cooperative manner. The advantage
of this approach is to avoid using a large number of edge
servers to fulfill the demands during peak hours.

On the other hand, there are computing limitations on
the edge server running meta space/s. To address this, one
can have a hybrid placement of meta space/s. Such a hybrid
placement will allow us to use both edge and cloud for
placing meta space. This approach will enable to use of edge
computing resources by the meta space first and then the
cloud computing resource if needed. Although this approach
of hybrid deployment can offer the benefits of high computing
power, performing a task by meta space deployed in the
cloud will suffer from a high latency that is undesirable. To
resolve this issue, one can use the concept of hierarchical edge
deployment of meta space/s, as shown in Fig. 22] Although
hierarchical fashion Fig. 22p can significantly improve the
performance of a metaverse, it has a few limitations. Its context
awareness (i.e., information about the surrounding network
nodes) is local. The reason for this is the low converge area
associated with the small cell base stations. On the other
hand, context-awareness is global for hybrid due to the fact
that the cloud is associated with a large coverage area, and
thus might have information about the nodes located over a
large geographical area. The hierarchical fashion of deploying
edge servers for enabling a meta space can offer scalability as
well. The reason for this is the number of devices associated
with a meta space deployed at the edge will be less. Only
the top tier will provide service if the computing power
available in the bottom tier is insufficient. Additionally, a
top-tier meta space will control the bottom-tier meta spaces.
This approach will enable more scalable operations. Note
that we can have multiple meta spaces for enabling a single
service/application (e.g., infotainment in autonomous cars).

For enabling infotainment, one should perform caching in
addition to other schemes. Such caching based on meta space
can be performed either at meta spaces deployed at the first
tier and also at the second tier. Such a fashion of hierarchical
caching has been considered by many works [99]]. Therefore,
we must efficiently deploy meta space/s for metaverse-based
wireless systems.

B. Reliability and Security

In the physical space of the metaverse-based wireless
system, there are a wide variety of players, such as edge/cloud
servers, end-devices, blockchain miners, software-defined net-
working switches, and unmanned aerial vehicles, among others
[4]. Devices’ physical access from a malicious user is very dif-
ficult because of their distributed nature. Therefore, one must
deploy effective authentication schemes to avoid attacks due
by malicious users. One must propose efficient and lightweight
authentication schemes. Such a scheme can be based on tokens
generated by a server (e.g., Auth2 protocol) or a non-tokens-
based scheme that uses the user name and password [100].
Authentication can be performed using various ways: one-
way authentication, two-way authentication, and three-way
authentication. One-way authentication involves authenticating
only one party (e.g., client) without considering the other (e.g.,
server). This approach might have low complexity but might
suffer from inefficiency in the case of the malicious second
user for which authentication is not required. To address
this limitation, one can have two-way authentication, both
parties agree to authenticate with each other. To make the
system more secure, one can use three-way authentication that
involves a third party authenticating the two parties. Other than
authentication schemes, there must be some mechanism for
secure wireless communication. A malicious user might access
the wireless signal and cause leakage/alteration of sensitive
information. Additionally, during training of the meta space
model using distributed learning model, a malicious user can
access the wireless local learning model and infer the device-
sensitive information [100]]. Therefore, there is a need for good
encryption schemes before transmitting wireless signals for a
metaverse. A data encryption scheme transforms plaintext data



into encoded data, namely, ciphertext to avoid the man-in-the-
middle attacks that can result in the leakage of devices’ sensi-
tive data. One can use various encryption/decryption schemes.
One of the popular ones is homomorphic encryption [101].
An advantage of using homomorphic encryption is that there
is no need of sharing a key between the two parties involved
in communication to avoid privacy concerns. In homomorphic
encryption, the receiving party can operate on the data without
the need for decryption. For instance, training a meta space
learning model using distributed learning, devices send their
locally trained models to the meta space where aggregation
has to take place. A malicious aggregation server can infer
the devices’ sensitive information using their learning model
updates. Therefore, here we can use homomorphic encryption
to encrypt the local model and at the aggregation server,
one can perform aggregation without the need for decryption
[102]-[104]. Homomorphic encryption can be divided into
three types: (a) partial homomorphic encryption, (b) some-
what homomorphic encryption, and (c) fully homomorphic
encryption. In partial homomorphic encryption, only one type
of operation can be performed an unlimited number of times,
whereas a somewhat homomorphic encryption scheme allows
some types of operations that will be performed a limited
number of times. However, fully homomorphic encryption
allows an unlimited number of times of operations. Note that
homomorphic encryption enables effective security, there is
a need for efficient wireless resource allocation as it results
in a significant overhead, especially fully homomorphic en-
cryption. Therefore, there must be a tradeoff while selecting
a homomorphic encryption scheme.

Other than security, there must be reliable communication
between the devices of physical space. For reliable communi-
cation, one can use effective channel coding that enables en-
coding the input bits into a coded sequence of bits to make the
system robust against channel errors. One can use linear block
codes, convolutional codes, and Turbo codes [105]-[107].
Although linear block codes have low computing complexity,
they might not perform well in all scenarios. To overcome
this, one can use convolution codes that may perform well but
will be generally at the cost of the increase in computing and
communication costs. On the other hand, one can use Turbo
codes that are based on either parallel or series concatenation
of linear block codes or convolutional codes. Generally, Turbo
codes can outperform all other schemes, but they have high
computing and communication cost. Therefore, one must make
a tradeoff between performance and cost. For Ultra-Reliable
Low Latency Communications, recent works proposed the use
of Short Block-Length Codes [108], [109]. Bose, Chaudhuri,
and Hocquenghem (BCH), Low-density parity-check (LDPC)
codes, convolutional codes, and Turbo codes can be used for
URLLC. Similarly, one can use these codes for requesting
devices in a metaverse-based wireless system. BCH codes
have shown good reliability under optimal decoding conditions
among various codes (e.g., polar codes and convolutional
codes) [108]]. From the aforementioned discussion, one can
say that we must properly select a code with low overhead for
metaverse-based wireless systems.
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C. Summary: Lessons Learned and Insights

In this section, we discussed various management func-
tions (e.g., resource management and deployment of edge and
cloud servers) of the physical space. Moreover, we discussed
the reliability and security of physical space. Several lessons
learned from this section are as follows.

o There must be efficient joint computing and wireless
resource allocation schemes for a metaverse-based wire-
less system. Such a resource allocation in a metaverse-
enabled wireless system is different compared to tradi-
tional resource allocation problems due to the presence
of a wide variety of players. Such a problem will be a
kind of mixed integer non-linear programming problem
(MINLP) along with numerous constraints. To solve such
kind of problem, there is a need for novel solutions
based on decomposition-relaxation, game theory, deep
reinforcement learning, and graph theory [36].

o It is evident that the deployment of edge servers for
running meta spaces must be performed intelligently. One
can deploy meta space at the network edge or cloud or
both edge and cloud. Deployment at the network edge
will result in more context awareness compared to cloud-
based meta space but at the cost of low computing and
storage resources. More context awareness (e.g., device
location) will result in better mobility management and
vice versa. On the other hand, one can use both cloud and
edge for the deployment of meta space to offer benefits of
both edges (i.e., low latency and more context awareness)
and cloud (i.e., more storage and computing power).

« Novel low overhead channel coding schemes should be
proposed for a metaverse-enabled wireless system. These
low overhead channel coding schemes can be comprised
of the existing schemes (e.g., Turbo codes and linear
block codes) or modified versions for further reducing the
overhead while fulfilling the bit error rate requirements
of the applications as well metaverse signaling.

« Mobility of the devices must be given proper attention as
it will significantly affect the performance of a metaverse-
enabled wireless system. Both during training of meta
space models and service request/operation, there is a
need for effective mobility management. For mobility
management, one can use novel schemes based on deep
reinforcement learning or federated learning.

V. STATE-OF-THE-ART AND STANDARDIZATION
A. Advances

In this section, we discuss various recent advances (i.e.,
summarized in Table [110]-[114], [114]-[118] towards
enabling wireless system by a metaverse. As the metaverse
is still in its infancy, only a few works presented architec-
tures/frameworks for enabling emerging applications using the
metaverse. In [[110], the authors proposed a metaverse-enabled
healthcare framework that diagnoses a patient. Meanwhile,
there is healthcare data that is used by a metaverse and stored
on edge servers. To ensure the privacy of such metaverse
data, they propose the use of attribute-based encryption. The
system consists of a data user, private server, public server,



TABLE IV: State-of-the-art: key contributions, primary focused area, design aspect, and architecture/experimental model.

Reference Key contributions Primary fo- Design Framework Remarks
cus aspect or Exper-
imental
testbed
Zhang et Healthcare Wireless for  Framework N.A
al. [110] Proposed a metaverse-enabled healthcare framework that metaverse
diagnoses a patient.
For ensuring the security and privacy of data owners (i.e.,
patients), an encryption framework is proposed.
He et al. 3D Wireless for  Framework N.A
Proposed a three-dimensional holographic communication  holographic metaverse and
system for metaverse communica- experimental
To capture images, light field and structured light cameras  tjon model
are used for objects for capturing dynamic 3D models and
objects that change slow, respectively.
The proposed framework can be easily implemented using
the existing networks and devices.
Plechata et Healthcare Metaverse Framework N.A
al. Proposed a theoretical framework for using metaverse in for wireless
healthcare
The proposed framework can be extended with modifica-
tions to many diseases
Wang et al. Healthcare Metaverse Framework N.A
Proposed a MeTAI ecosystem for healthcare applications for wireless
MeTAI has four applications: (a) virtual cooperative scan-
ning, (b) raw data sharing, (c) augmented regulatory science,
and (d) metaverse medical intervention.
MeTAI can be applied for many diseases with specific
modifications.
Lim et al. [114] Edge Wireless for  Framework N.A
The authors proposed an edge intelligence-based architec-  intelligence metaverse
ture for realizing metaverse. for
The authors also identified the key enablers. metaverse
They also presented a case study showing the role of edge
intelligence towards enabling metaverse
Zhou et al. Intelligent Wireless for  Framework N.A
Presented a vetaverse architecture transporta- metaverse
Identified artificial intelligence, speech understanding, hu-  tion system
mans motion detection, physiological parameters monitor-
ing, and emotion recognition, as key enablers of vetaverse.
Alpala et Smart Metaverse Framework N.A
al. Presented an experimental framework for enabling commu-  factory for wireless
nication between metaverse environments
Presented a case study of smart factory
Presented experimental results to show the validity of their
proposal
Allam et al. Smart cities Metaverse N.A This  work
Presented various key enablers of metaverse architecture for for wireless discussed
enabling smart cities the key
Identified use case of metaverse for metaverse in smart cities components
of metaverse
architecture
without
proposing
a novel
framework.
Du et al. Customized Wireless for  Architecture N.A
Proposed an attention-aware network resource allocation — meta metaverse and
scheme for a metaverse. services experimental
Their proposal allocates resources (i.e., edge devices ren- model

dering capacity) based on the predicted user object-attention
values and shown promising results.
Provided future research directions




Key generation E

center x
TK
RK
2

[

<&
2 Cg Data user -~
= O
i O
Public }6 é Private
server ¢, o o server
[ [9)
@ 2
Data owner

Fig. 23: Encryption of data for metaverse [110].

Transmission Display

- Projector
SLM

driver

Light field camera
(11.82 Gbps)

Server

Fig. 24: 3D holographic communication framework ||

data owner, and key generation center. The data user submits
the attribution set for registration to the key generation center
that issues reclaiming key and transformation key for the data
owner. The intermediate cipher texts are given to the owner of
data, as shown in Fig. Then, the cipher texts are fed to the
private and public servers. Finally, the transformation keys are
shared with servers when the data is required to be downloaded
by a user. The proposal of can be used for ensuring
the privacy and security of data in a metaverse architecture
presented in Section [[I-C] (i.e., Fig. [I2). He ef al. in
proposed a three-dimensional holographic communication sys-
tem for the metaverse. Their system has four components, such
as display, transmission, hologram generation, and capture, as
shown in Fig. 24] To support 3D communication, one must use
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reality [[112].

3D display and imaging technologies, such as light field (LF)
display, volume display, and binocular vision display [119]-
[123]. To capture images, light field and structured light cam-
eras are used for an object for capturing dynamic 3D models
and objects that change slow, respectively. Next to capturing
3D images, computer-generated holograms (CGHs) are used
to denote 3D intensity patterns in computer holography under
coherent illumination. The phase-only CGHs are computed by
the capturing and rendering part using the layer-based angular-
spectrum method (ASM). The layer-based ASM used shading
images and depth images. Next, the CGHs are transmitted
over a wireless channel using some communication technology
(e.g., 5G). At the receiver side, a 3D video is generated using
a holographic optical display system. Although the proposed
3D communication system offers many benefits, there are
many challenges that need to be addressed. The first one is
communication resource management. For a massive number
of applications based on 3D holographic communication, we
must propose efficient resource management schemes that
increase the throughput of the overall system. Other than this
issue, mobility management is necessary for such systems.
For instance, a user might move outside the coverage area
of one capturing device during the mid of capturing phase,
and thus the capturing device will not get complete infor-
mation. To resolve this, one can predict the mobility of the
devices and based on the predicted mobility, one can better
associate the user with a better image-capturing device. On the
other hand, there must be novel encryption schemes for 3D
holographic communication systems. A malicious user might
access the wireless signal and thus, causes privacy leakage
or alter important information. Therefore, there is a need for
efficient and effective encryption schemes for 3D holographic
communication systems.

Plechata et al. in [112] highlighted the role of extended
reality in enabling metaverse for healthcare applications. A
metaverse-enabled architecture for disease prevention and
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health promotion was considered that is based mainly on two
phases: threat appraisal and coping appraisal. Threat appraisal
refers to vulnerability and threat severity (i.e., level of damage
to health), whereas coping appraisal refers to self-efficacy and
response efficacy. In response to efficacy, an individual belief’s
whether the measures of coping will minimize the health threat
or not. On the other hand, self-efficacy refers to individual con-
fidence in the ability for performing behavior recommended
by the architecture. Similar to many existing applications,
extended reality can play a crucial role in healthcare communi-
cations. To do so, one can use metaverse using extended reality
to support patient support groups as well as expert-moderated
health communities. Specifically, the metaverse using extended
reality will provide presence, agency, and embodiment. Based
on these extended reality affordances, the architecture can bet-
ter enable the behavior change facilitators, as shown in Fig. 23]
The framework proposed by the authors can help in improv-
ing healthcare services using metaverse, but it needs further
efforts. To implement the theoretical framework, in reality,
there is a need t resolve many challenges. These challenges
are sensing, adding healthcare annotations using extended
reality, and communication of sensory data (e.g., human body
temperature and 3D images of body parts). Therefore, there is
a need for modifications in the framework of to enable
healthcare services. Wang et al. in proposed the use
of metaverse for healthcare. They presented an architecture,
namely, MeTAI ecosystem, for enabling intelligent healthcare
based on the metaverse. The MeTAI ecosystem shown in
Fig.26] has four applications: (a) virtual cooperative scanning,
(b) raw data sharing, (c) augmented regulatory science and
(d) metaverse medical intervention. The purpose of virtual
cooperative scanning is to find suitable scanning technology
for healthcare diseases. The digital twin scanners are installed

to take scans of digital avatars. The architecture also provides
ubiquitous and secure medical data access to various patients
for using it by healthcare personnel and experts. Although
the framework presented in can be applied to many
healthcare applications, it needs much effort to apply in reality.
For instance, to immerse interactive experience technologies
with medical imaging, there is a need to design various
schemes depending on the nature of the disease. Additionally,
there is a need for effective three-dimensional (3D) computed
tomography (CT) of human models for use in the analysis.
On the other hand, there are many challenges that need to
be resolved prior to using MeTAI system. These challenges
are privacy, security, management, and disparity reduction.
As MeTAI system can be deployed commercially on a large
scale, therefore, there must be some set of laws to ensure the
privacy of users (e.g., the Health Insurance Portability and
Accountability Act (HIPAA) in the United States). In addition
to laws, one must use modern security-related technologies,
such as blockchain and privacy-aware distributed learning.
Other than security and privacy, there must be an efficient
mechanism for the management of such a complex system.

Lim et al. in proposed an edge intelligence-based
architecture for realizing the metaverse. They focused on
infrastructure, the metaverse engine, the virtual world, and
the physical world. They identified the key requirements
for enabling metaverse. Additionally, they discussed various
interfaces for communication among various players of the
metaverse architecture. They also presented a case study of the
edge-based metaverse and finally, they presented open research
challenges. The authors in considered the aspect wireless
for the metaverse. On the other hand, one can use metaverse to
fulfill the diverse requirements of various applications (e.g., in-
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telligent transportation systems). For doing so, one can deploy for efficient and effective management of various resources. In
a metaverse that uses digital twins, avatars, and other schemes another work I]@], the authors presented vision, applications,



and technologies of enabling vehicular networks by metaverse
and they named it vetaverse. Their identified key technologies
are artificial intelligence, speech understanding, human motion
detection, physiological parameters monitoring, and emotion
recognition. They also gave an architecture for vetaverse.
Finally, they presented open challenges with suggestions. In
[116], Alpala et al. presented an experimental framework for
enabling collaboration between virtual environments using a
virtual reality-based metaverse. Their system consists of an
online multi-user system, interfaces, object-oriented configu-
rations, and other functional components. As a case study,
they presented a metaverse-based digital factory and presented
experimental results. Although the framework of [[116] can be
used for smart factories, the authors did not consider a few
important aspects, such as security, privacy, and resource man-
agement. Another work [117] proposed the use of metaverse to
enable smart cities. Specifically, the authors presented a high-
level architecture element of a metaverse to enable smart appli-
cations. Additionally, it helps in providing guidelines for using
emerging technologies in the metaverse. They also presented
the key projects for real-time implementation of the metaverse.
Although the authors discussed various key enablers and use
cases of the metaverse, they did not provide a more concrete
implementation of the use cases of the metaverse. In [118]], Du
et al. proposed an attention-aware network resource allocation
scheme for a metaverse. The key idea is to allocate more
resources to the virtual objects that are more important to
users. Specifically, they discussed the key requirements (i.e.,
remote rendering, eye-tracking, and QoE analysis) of enabling
of the metaverse. Then, using the existing user-object-attention
level, an attention-aware network resource allocation algorithm
that has two steps (i.e., QoE maximization and attention
prediction is proposed. Their proposal allocates resources (i.e.,
edge devices rendering capacity) based on the predicted user
object-attention values and shows promising results. Finally,
the authors provided future directions.

B. Standardization

In this section, we will discuss the standardization of a
metaverse-based wireless system. Prior to discussing the stan-
dardization of the metaverse, there is a need to highlight the
role of many emerging technologies in enabling the metaverse.
First of all, we will highlight the role of machine learning in
enabling metaverse for wireless systems. At the physical layer,
one can use machine learning to enable efficient authentication
schemes to avoid unauthorized users to access distributed
devices. As the devices are distributed in physical space,
therefore, enabling security to avoid unauthorized access can
be performed using effective authentication schemes. Such
authentication schemes can be based on machine learning
[124])—[|127]]. Other than authentication, one can use machine
learning for the mobility of the management of devices. Such
mobility management schemes can use prediction based on
various machine learning schemes (e.g., convolutional neural
networks). Based on the predicted outcomes, one can better
manage the mobility of devices [128]]—[[131]. Furthermore, one
can use machine learning for enabling intelligent transceivers.

26

These transceivers will use machine learning for intelligent
resource allocation, intelligent channel estimation, and in-
telligent transmit power control, among others [[132]]—[135].
Also, one can use machine learning to design efficient devices
using hardware-software co-design [3]], [36]]. Generally, train-
ing of local models for training a distributed learning meta
space model consumes a significant amount of computation
resources which in turn will consume significant power/energy.
Therefore, one must use neural architecture search (NAS)
that tries various architectures of machine learning models in
order to select optimal architecture for a particular dataset and
task [136[]-[138]]. NAS is a sub-field of automated machine
learning that enables one to find a suitable design for a given
design. Although NAS enables efficient software design, there
is a need for software-hardware co-design that consider both
hardware and software during the design of end-devices. Such
designs can be based on machine learning [36]]. Therefore,
there is a need to propose standardization schemes for machine
learning-enabled metaverse, as shown in Fig.

In 2019, IEEE 2888 project was launched to standardize
interfaces between the cyber and physical worlds, as shown
in Fig. 28 One can use these interfaces along with other
interfaces in the metaverse. IEEE 2888.1 and IEEE 2888.2
interfaces can be used for moving sensory information from
physical space to meta space and actuator controls from meta
space to physical space, respectively. On the other hand,
IEEE 2888.3 standard can be used for the definition of
digital things [7]. Additionally, for efficient communication
between meta space entities (e.g., avatars and twins), there
is a need for novel interfaces based on novel standards.
Due to the important role of machine learning in enabling
metaverse systems, there is a need for a standardized ML
manager that can control various interfaces, such as interface
A, interface B, interface C, and interface D. Interface A
will deal with the efficient deployment and resources (i.e.,
computing and communication) management of the physical
space using machine learning. Interface B will control commu-
nication between the meta space and physical space by mod-
ifying/assisting the existing IEEE 2888.1, IEEE 2888.2, and
IEEE 2888.3 standardized interfaces using machine learning
schemes. Interface C will use machine learning to deploy meta
space using the physical space infrastructure (e.g., edge/cloud
servers and unmanned aerial vehicles). Such a deployment
will include virtual machines/containers-based design. Addi-
tionally, the deployment of these containers/virtual machines
on single/multiple hardware devices. Such kind of opera-
tions/functions will be performed by interface C. To handle the
meta space data, one can use blockchain. ERC-20 helps in the
implementation of standard APIs tokens. Additionally, ERC-
20 supports basic functionality for transferring tokens [139].
On the other hand, ERC-721 helps in the implementation of a
standard programming interface for non-fungible tokens within
a smart contract [140[]. Other than ERC-20 and ERC-721,
there is a need for other standards using machine learning to
enable consensus among blockchain nodes with less latency
and energy consumption. Finally, interface D will perform
secure authentication using existing/modified schemes. IEEE
802.1AR-2018 (IEEE 802.1AR-2009 suspended) can provide



unique per-device identifiers (DevID) as well as cryptographic
binding of identifiers with devices [[141]].

C. Summary: Lessons Learned and Insights

In this section, we discussed recent advances in the
metaverse. Moreover, we identified their design aspect along
with their primary focus. Several lessons learned from this
section are as follows:

o There is a need for wireless channel models for holo-
graphic communications. One can use 3D holographic
communication for the transmission of 3D human images.
To efficiently perform this communication, there is a
need for wireless channel models similar to existing
channel models (e.g., Stanford University interim (SUI)
Channel models, such as SUI-1, SUI-2, SUI-3, SUI-
4, SUI-5, and SUI-6) [[142], [143]. Such a specialized
channel model will be used for the analysis of holographic
communication systems [144]. Additionally, to cope with
fading effects of a wireless channel, one should design
an efficient and effective channel estimator. To do so, the
channel model can help to analyze the performance of the
various channel estimators prior to actual implementation
for a metaverse-based wireless system.

« To enable various emerging applications using metaverse,
there is a need to resolve the issue of interoperability due
to the presence of many players (e.g., edge/cloud servers,
devices, blockchain miners, and unmanned aerial vehi-
cles). Therefore, enabling a seamless interaction among
these players is challenging due to their different under-
lying technologies. To do so, one can propose a general
interface that will allow us to efficiently and seamlessly
communicate.

« Most of the existing works presented theoretical frame-
works for metaverse-based wireless system applications.
These theoretical frameworks (e.g., autonomous driving
cars) can be extended to many specific applications (e.g.,
lane change assistance) by medications. Although theo-
retical frameworks offer many benefits, there is a need
for mathematical models related to specific applications.

o Due to the important role of machine learning in en-
abling a metaverse-based wireless system, there is a need
for effective standardization of machine learning for a
metaverse-enabled wireless system. To do so, one can
propose a machine learning manager that can control
various, diverse players of the metaverse using differ-
ent interfaces. Meanwhile, the machine learning-based
metaverse system can use existing standards in addition
to novel standards for effectively enabling a metaverse-
enabled wireless system.

VI. OPEN CHALLENGES

In this section, we present open research challenges.
Existing tutorials and surveys on metaverse considered in-
teraction problem, computation issues, ethical issues, privacy
issues, compatibility, endogenous security, empowered meta-
verse, cloud-edge-end orchestrated secure metaverse, cross-
chain interoperable and regulatory metaverse, energy-efficient
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TABLE V: Summary of challenges listed in existing surveys
and tutorials

Reference Challenges
Ning et al. [6]
« Interaction problem
« Computation issues
« Ethical issues
o Privacy issues
o Compatibility
Wang et al. |7]

« Endogenous security empowered metaverse

¢ Cloud-edge-end orchestrated secure meta-
verse

e Cross-chain interoperable and regulatory
metaverse

« Energy-efficient and green metaverse

« Content-centric and human-centric meta-
verse

Gadekallu et al. 8] The authors summarized and discussed about

blockchain to enable metaverse.

Khan et al. [4]
« Resource optimization
¢ Blockchain-based data management
o Incentive mechanism
« Prototyping
Khan et al. |5]
e Training fashion
o Standardization of ML-based metaverse
e Blockchain for secure  ML-enabled
metaverse-based wireless systems
Xu et al. [9]

e Advanced multiple access for immersive
streaming

Multi-sensory multimedia networks
Multimodal semantic/goal-aware Commu-
nication

Integrated sensing and communication
Digital edge twin networks

Edge intelligence and intelligent edge
Sustainable resource allocation

Avatars (Digital Humans)

The industrial/vehicular metaverse

Quality of experience

Market and mechanism design for meta-
verse services

Our Tutorial Interoperable meta spaces, Non-fungible tokens
for metaverse trading, Personalized distributed
learning-based avatars modeling, Isolation of meta
spaces, Mobility management, Intelligent inter-
faces, Zero-touch networking for metaverse, Ma-
chine Learning-enabled semantic communication
for metaverse

and green metaverse, content-centric and human-centric meta-
verse, resource optimization, blockchain-based data manage-
ment, incentive mechanism, prototyping, training fashion,
standardization of ML-based metaverse, blockchain for se-
cure ML-enabled metaverse-based wireless systems, advanced
multiple access for immersive streaming, multi-sensory multi-
media networks, multimodal semantic/goal-aware communi-
cation, integrated sensing and communication, digital edge
twin networks, edge intelligence and intelligent edge, sus-
tainable resource allocation, avatars (Digital Humans), the
industrial/vehicular metaverse, quality of experience, market
and mechanism design for metaverse services, as challenges as
given in Table In contrast, we consider interoperable meta
spaces, non-fungible tokens for metaverse trading, personal-
ized distributed learning-based avatars modeling, isolation of
meta spaces, mobility management, and intelligent interfaces.

A. Interoperable Meta Spaces

How do we enable seamless interaction between the
avatars and twins modeled for different meta spaces? In a



TABLE VI: Summary of the research challenges and their guidelines.

Challenges Design aspect Causes Guidelines
Interoperable meta  Wireless for metaverse
spaces Wide variety of players in a e Virtual machine and containers-

metaverse-enabled wireless sys-
tem

Different computing hardware
(e.g., edge servers)

based meta space implementation
General wireless interfaces for
devices

Non-fungible tokens for
metaverse trading

Wireless for metaverse (This
challenge focused mainly on
business model)

How to trade multgﬂe players in
a metaverse-enabled wireless sys-
tem
How to represent metaverse as-
sets

Non-fungible tokens for the trad-
ing of metaverse assets

Novel unique numbering for non-
fungible tokens

Personalized distributed
learning-based avatars
modeling

Wireless for metaverse

Personalized local datasets asso-
ciated with mobile devices/users
in a physical space

Privacy leakage in centralized
learning

Noise-less local datasets
Clustering-based personalized
distributed meta space models

Isolation of meta spaces

Wireless for metaverse

Wireless and
resources constraints
Efficient use of physical space
resources

computing

Matching-theory enabled access
network 1solation

Optimization theory-based isola-
tion schemes

Mobility Management

Metaverse for wireless and
wireless for metaverse

Effect of users mobility on meta
space modeling

Devices/users mobility in physi-
cal space during service provided
by meta space

Meta space migration
Deep learning-enabled prediction
for mobility management

Intelligent Interfaces

Wireless for metaverse and
metaverse for wireless

Communication resources con-
straints L
Wireless channel uncertainties

Centralized learning-enabled in-
telligent interfaces

Distributed learning-enabled in-
terfaces

Zero-touch networking
for metaverse

Wireless for metaverse and
metaverse for wireless

Resource constraints

Robustness issues

High network complexity in serv-
ing massive number of users

Machine learning-enabled
resource oFtimization

Network slicing

Machine learning-enabled fault
tolerance and security schemes

Machine Learning-
Enabled semantic
communication for
metaverse

Wireless for metaverse

Context-awareness requirement
High communication resources
requirements due to a massive
number of devices

Strict latency re({uirements of var-
ious (e.g., healthcare) applica-
tions based on metaverse

Auto-encoder based semantic en-
coders and decoders

Deep learning-enabled semantic
communication
Distributed
privacy-aware
communication systems

learning-enabled
semantic

Hybrid Modeling of
Twins and Avatars

Metaverse for wireless

Diverse players in meta space
Limitations of mathematical, ex-
perimental, and machine learning
models

Mathematical
enabled modeling
Joint mathematical, machine
learning, and  experimental
modeling.

optimization-

metaverse, the concept of interoperability is different com-
pared to existing wireless systems. In a traditional wireless
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for a metaverse-based wireless system. On the other hand,
meta space mainly constituted by digital avatars and twins

system, the goal of interoperability is to enable seamless
interaction between a wide variety of players (e.g., devices
and edge/cloud servers). In contrast, here, the metaverse has
two main aspects: (a) wireless devices and (b) meta spaces. To
enable interoperability between various wireless devices, there
is a need for the design of general interfaces that can enable
seamless communication. However, different devices have
different structures. Therefore, we must define novel interfaces

must be interoperable (i.e., one virtual machine-based meta
space (as explained already in Section must work on the
new edge/cloud servers as well due to meta space migration).
For instance, meta space based on a virtual machine might not
work on containers deployed at the network edge. Addition-
ally, within a single design (i.e., container-based or virtual
machine-based), the meta space might not be compatible.
Therefore, for efficient deployment of wireless systems, one



must propose interoperable meta spaces. For virtual machines-
based meta space, one can have three levels of interoperability
[145]. The first one (i.e., level 1) involves running of virtual
machine-based meta space on a virtual hardware selection/
CPU architecture, and or particular virtualization product.
Level-1 migration is equivalent to suspending at the source
and resuming at the destination. Additionally, one can live to
migrate meta space based on level-1, it faces some limitations.
The prominent one is the preservation of IP addresses. In
other level-2, virtual machine-based meta space will run on
a specific family of hardware and works by shutting down in
the current edge and rebooting at the destination edge. On the
other hand, level-3 has more freedom of running meta space
on multiple hardware and thus gives more flexible operation
with better interoperability.

B. Non-Fungible Tokens for Metaverse Trading

How does one use non-fungible tokens for the trading
of metaverse entities (e.g., digital avatars and twins) among
various players? Enabling ownership of digital items (e.g., in-
game items, collectibles, videos, art, and music) in a metaverse
is challenging and needs careful design. In a metaverse, to
uniquely represent the digital assets, non-fungible tokens are
used that are a unit of data stored on a blockchain. Alternately,
non-fungible tokens serve as a certificate of authenticity in
a metaverse-enabled wireless system. One can also say that
non-fungible tokens form a link between physical world items
and metaverse virtual items. A unique value is associated
with a non-fungible token in the metaverse that is used for
permanently storing them in a blockchain network. One of
the recent events of non-fungible tokens was the selling of
digital work created by Beeple [9]. Although non-fungible
tokens can be effectively used for representing digital as-
sets in the metaverse, their many challenges that must be
resolved. The first one is how to use non-fungible tokens
for the representation of digital assets in a wireless system.
For instance, in a metaverse, how do we use a non-fungible
token to define an entity? The entity can be an end-device,
a system made of many devices, or a complete application
(e.g., autonomous cars) made of many systems. There should
be a proper and worldwide acceptable framework for assigning
non-fungible tokens to wireless systems. Also, the unique
numbering of non-fungible tokens must be done in an efficient
way to effectively cover all massive numbers of entities in a
metaverse.

C. Personalized Distributed Learning-based Avatars Model-
ing

How do we enable efficient modeling of avatars using
personalized, privacy-aware distributed learning schemes? To
model avatars, one can use distributed learning. However, get-
ting a generalized global model using distributed for modeling
avatars might not effectively model them. Therefore, there
is a need for modified distributed learning modeling. One
can use personalized distributed learning to model avatars.
For instance, consider a metaverse-based vehicular network,
there is a wide variety of vehicles, such as cars, trucks,
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and bikes, among others. If we want to model mobility and
driving assistance using distributed learning in a metaverse-
based intelligent transportation system, there is a need for
more personalized models. Such modeling will be based
on the training of a general global model and then further
training of local data to make it more personalized. Although
such an approach will enable efficient modeling, it may face
challenges. The local data might not be sufficient to well train
the personalized model. Additionally, the local data may have
noise. Therefore, we must effectively take into account all the
factors while using personalized distributed learning for the
modeling of avatars in a metaverse. On the other hand, there
might be very less local data associated with some of the
devices. To address this challenge, one can use a clustering
approach that will be based on the clustering of devices with
similar data distribution. In each cluster, after getting a global
model, a local model will be trained that will be used by the
associated devices.

D. Isolation of Meta Spaces

How does one enable isolated operation of meta spaces
using shared hardware without affecting the performance of
each other? To deploy meta spaces (i.e., twins and avatars
along with computing storage), there are two main ways: ded-
icated hardware and shared hardware. Dedicated hardware will
result in good performance, but it comes with a high cost that
is not practically feasible. There is a need for shared hardware
usage for various meta spaces associated with various applica-
tions/functions. To do so, there is a need for isolation at various
levels (e.g., access network and core network). For an access
network, one can use the concept of virtualization which will
consist of buying network resources from the operators and
selling them to metaverse users. For such a design, one can
define a utility that will jointly maximize the profit of network
operators and metaverse users. For such maximization, one
can use mathematical optimization, matching theory, and game
theory, among others. On the other hand, computing resources
must be efficiently managed in such a way as to run multiple
meta spaces on computing hardware (i.e., edge/cloud server)
without affecting the performance of other metaverse users.

E. Mobility Management

How does one efficiently model and manage the mobility
of avatars and mobile users, respectively? Regarding mobility
in a metaverse-enabled wireless system, there are two aspects,
such as mobility modeling for avatars in meta space and mo-
bility of users during run time. To analyze the wireless system
prior to deployment for emerging applications, there is a need
to effectively model the mobility of devices. For instance,
wireless systems require accurate modeling of devices/users’
mobility. Such mobility modeling will enable efficient and
accurate analysis of wireless systems (e.g., channel estimation
design and deployment of equipment/devices for existing/new
applications). On the other hand, the mobility of devices served
by meta space must also be handled effectively. To do so,
there is a need to propose novel migration of meta space.
Such migration schemes can be either live or non-live. Live



migration schemes are preferable for real-time applications,
whereas non-live migration schemes can be used for non-real-
time applications. For both migration schemes, one can use
deep learning-based mobility prediction.

FE. Intelligent Interfaces

How do we enable efficient management of wireless
resources using metaverse for various applications? In a
metaverse-enabled wireless system, the meta space will per-
form efficient management of resources for running the phys-
ical space devices to serve the end-users. There is a need
for efficient intelligent interfaces. Such intelligent interfaces
will enable efficient resource management as well as effective
channel estimation. For such intelligent interfaces, one can
use centralized and distributed learning schemes [146], [[147],
[147]. For estimation and resource allocation schemes, in
the case of centralized learning, learning takes place at a
centralized location. This centralized learning will take place
in a meta space and thus might suffer from privacy issues
in case of malicious security attacks. In contrast, distributed
learning takes place in a distributed manner at devices and
aggregation takes place at a meta space, and thus better
preserves privacy compared to centralized learning. However,
distributed learning models for intelligent interfaces will have
a large convergence time due to heterogeneity in data and
systems. Therefore, there is a need to propose novel distributed
learning algorithms for intelligent interfaces in a metaverse-
enabled wireless system.

G. Zero-Touch Networking for Metaverse

How does one use zero-touch networking to enable effec-
tive self-sustaining metaverse-enabled wireless applications?
Deploying metaverse for emerging applications to service a
massive number of users requires seamless metaverse sig-
naling. Such signaling must be done in a way that requires
less intervention from end users and operators. To do so, one
can use zero-touch networking (i.e., autonomous networking)
for metaverse signaling. For the efficient realization of zero-
touch networking for the metaverse, one can use various
schemes/technologies, such as network slicing, machine learn-
ing, and optimization theory. Note that there are two aspects:
zero-touch networking for metaverse and metaverse for zero-
touch networking. Metaverse for zero-touch networking re-
quires training of meta space models using emerging machine
learning schemes and mathematical tools that can assist the
network operation with the lowest possible intervention of net-
work operators. On the other hand, zero-touch networking for
the metaverse deals with the efficient signaling of a metaverse
using emerging schemes to enable various metaverse-based ap-
plications. One can use machine learning schemes (specifically
distributed learning) to train various models for performing
metaverse signaling. Such models will perform optimization
of computing and communication resources for performing
signaling. Additionally, the interruption in metaverse services
due to faults or security attacks must be addressed using zero-
touch networking models.
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H. Machine Learning-enabled Semantic Communication for
Metaverse

How do we enable applications using metaverse and ma-
chine learning while performing service-level optimization and
service diversity? Enabling the metaverse for a massive num-
ber of devices requires service-level optimization and service
diversity for cost-efficient operation. In contrast to traditional
data-oriented wireless systems that require a channel with an
infinite capacity for real-time applications, there is a need
to combine reasoning tools and knowledge representation in
training machine learning tools for the metaverse. Traditional
data-oriented wireless systems represent information simply as
bits that are not sufficient. Therefore, semantic communication
combines reasoning tools and knowledge representation along
with machine learning tools for communication in a metaverse.
Semantic communication only sends important information in
contrast to traditional data-oriented communication systems
and thus improves the system’s efficiency. The key com-
ponents of semantic communication in a metaverse will be
a semantic encoder, semantic decoder, and semantic noise
interference. The purpose of a semantic encoder is to detect
semantic information out of all available information. On
the receiving end, the semantic decoder decodes the rele-
vant information from the received information. In [148]], a
semantic communication scheme based on auto-encoder over
a Rayleigh channel was proposed. The purpose of the auto-
encoder is to encode and decode the information in semantic
communication. Another work [[149]] proposed a deep learning-
enabled semantic communication. Specifically, a DeepSC,
using a transformer encoder and decoder for text transmission
was proposed. Based on the aforementioned facts, there is
a need to propose a novel distributed learning scheme for a
privacy-aware semantic communication system.

1. Hybrid Modeling for Meta Space

How do we effectively model meta space that truly reflects
the actual entities in the physical space? Modeling of twins
and avatars can be performed using various techniques, such
as machine learning, experimental, and mathematical. Every
technique has pros and cons, therefore, it might not be more
suitable to model twins and avatars using a single technique.
For instance, machine learning-enabled might not converge
well, and thus fail to effectively model twins and avatars.
Similarly, mathematical modeling also has limitations due to
the various assumptions required for modeling. Moreover, ex-
perimental modeling also has experimental errors. Keeping in
view the aforementioned facts, one can conclude that there is
a need for hybrid modeling based simultaneously on different
techniques. For instance, consider a wireless system that has
a variety of players. For mobility modeling, one can use deep
learning (i.e., machine learning-enabled modeling). For some
entities (e.g., resource block allocation), one can use mathe-
matical modeling (e.g., optimization theory, game theory, and
graph theory). For 3D modeling of mobile devices/humans,
one can use experimental modeling to effectively model the
effect on wireless communication (e.g., the effect on THz



communication). Therefore, there is a need to propose hybrid
models for the effective modeling of meta space.

VII. CONCLUSIONS

In this tutorial, we have presented a detailed overview

of the fundamentals of the metaverse for wireless systems.
Specifically, we presented design aspects, key enablers, gen-
eral architecture, and practical use cases. As a part of the
general architecture, we studied the network management,
reliability, and security of both meta space and physical
space. We also outlined the recent advances and evaluated
them. Furthermore, we presented the standardization of the
machine learning-enabled metaverse. Finally, open challenges
are presented with possible guidelines.

(1]

[2]

(3]

[4]

(3]

[6]

[71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

L. U. Khan et al, “6G wireless systems: A vision, architectural
elements, and future directions,” IEEE Access, vol. 8, pp. 147 029—
147044, August 2020.

L. U. Khan, Z. Han, D. Niyato, and C. S. Hong, “Socially-aware-
clustering-enabled federated learning for edge networks,” IEEE Trans-
actions on Network and Service Management, vol. 18, no. 3, pp. 2641-
2658, 2021.

L. U. Khan, Z. Han, W. Saad, E. Hossain, M. Guizani, and C. S. Hong,
“Digital twin of wireless systems: Overview, taxonomy, challenges, and
opportunities,” arXiv preprint arXiv:2202.02559, 2022.

L. U. Khan, Z. Han, D. Niyato, E. Hossain, and C. S. Hong, “Meta-
verse for wireless systems: Vision, enablers, architecture, and future
directions,” arXiv preprint arXiv:2207.00413, 2022.

L. U. Khan, I. Yaqoob, K. Salah, C. S. Hong, D. Niyato, Z. Han,
and M. Guizani, “Machine learning for metaverse-enabled wire-
less systems: Vision, requirements, and challenges,” arXiv preprint
arXiv:2211.03703, 2022.

H. Ning, H. Wang, Y. Lin, W. Wang, S. Dhelim, F. Farha, J. Ding, and
M. Daneshmand, “A survey on metaverse: the state-of-the-art, technolo-
gies, applications, and challenges,” arXiv preprint arXiv:2111.09673,
2021.

Y. Wang, Z. Su, N. Zhang, R. Xing, D. Liu, T. H. Luan, and X. Shen,
“A survey on metaverse: Fundamentals, security, and privacy,” IEEE
Communications Surveys & Tutorials, 2022.

T. R. Gadekallu, T. Huynh-The, W. Wang, G. Yenduri, P. Ranaweera,
Q.-V. Pham, D. B. da Costa, and M. Liyanage, “Blockchain for the
metaverse: A review,” arXiv preprint arXiv:2203.09738, 2022.

M. Xu, W. C. Ng, W. Y. B. Lim, J. Kang, Z. Xiong, D. Niyato,
Q. Yang, X. S. Shen, and C. Miao, “A full dive into realizing the edge-
enabled metaverse: Visions, enabling technologies, and challenges,”
IEEE Communications Surveys & Tutorials, 2022.

“Precedence research,” https://www.precedenceresearch.com/metaverse-
market, [Online; accessed Oct. 16, 2022].

“Internet of everything (ioe) market,”
https://www.marketresearchfuture.com/reports/internet-of-everything-
market-6841, [Online; accessed Oct. 16, 2022].

L. U. Khan, M. Guizani, and C. S. Hong, “Resource optimized hierar-
chical split federated learning for wireless networks,” in Proceedings
of Cyber-Physical Systems and Internet of Things Week 2023, 2023,
pp. 254-259.

L. U. Khan, E. Mustafa, J. Shuja, F. Rehman, K. Bilal, Z. Han, and C. S.
Hong, “Federated learning for digital twin-based vehicular networks:
Architecture and challenges,” IEEE Wireless Communications, 2023.
C. Thapa, P. C. M. Arachchige, S. Camtepe, and L. Sun, “Splitfed:
When federated learning meets split learning,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 36, no. 8, 2022, pp.
8485-8493.

A. Singh, P. Vepakomma, O. Gupta, and R. Raskar, “Detailed com-
parison of communication efficiency of split learning and federated
learning,” arXiv preprint arXiv:1909.09145, 2019.

Y. Gao, M. Kim, S. Abuadbba, Y. Kim, C. Thapa, K. Kim, S. A.
Camtepe, H. Kim, and S. Nepal, “End-to-end evaluation of federated
learning and split learning for internet of things,” arXiv preprint
arXiv:2003.13376, 2020.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]
[29]
[30]

[31]
[32]
[33]

[34]

[37]

[40]

[41]

[42]

31

“Metaverse avatar guide; embody yourself in the metaverse,”
https://metamandrill.com/metaverse-avatar/, [Online; accessed June.
16, 2022].

“Chara design in 2022: Top software to design your own 3d
character,” https://www.sculpteo.com/en/3d-learning-hub/3d-printing-
software/chara-design-2/, [Online; accessed June. 16, 2022].

L. U. Khan et al, “Dispersed federated learning: Vision, taxonomy, and
future directions,” arXiv preprint arXiv:2008.05189, 2020.

“The expanding frontiers of computer vision in the meta-
verse,” https://www.telusinternational.com/articles/computer-vision-in-
the-metaverse, [Online; accessed Oct. 16, 2022].

A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for
human pose estimation,” in European conference on computer vision.
Springer, 2016, pp. 483-499.

B. Xiao, H. Wu, and Y. Wei, “Simple baselines for human pose
estimation and tracking,” in Proceedings of the European conference
on computer vision (ECCV), 2018, pp. 466—481.

K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution rep-
resentation learning for human pose estimation,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
2019, pp. 5693-5703.

J. Yang, Y. Zhou, H. Huang, H. Zou, and L. Xie, “Metafi: Device-free
pose estimation via commodity wifi for metaverse avatar simulation,”
arXiv preprint arXiv:2208.10414, 2022.

Q. Dang, J. Yin, B. Wang, and W. Zheng, “Deep learning based 2d
human pose estimation: A survey,” Tsinghua Science and Technology,
vol. 24, no. 6, pp. 663-676, 2019.

“Why does ar/vr need 5g?” https:https://stlpartners.com/articles/edge-
computing/how-5g-and-edge-computing-will-transform-ar-vr-use-
cases/, [Online; accessed Oct. 18, 2022].

“Decentraland,” https://decentraland.org/, [Online; accessed October.
16, 2022].
https://coindcx.com/blog/cryptocurrency/10-best-metaverse-crypto-
projects/1-APECOIN-APE, [Online; accessed Oct. 18, 2022].

“The sandbox,” https://www.sandbox.game/en/about/sand/, [Online; ac-
cessed Dec. 16, 2022].
https://medium.com/sandbox-game/what-is-the-sandbox-
850de68d893e, [Online; accessed Dec. 16, 2022].
https://axieinfinity.com/, [Online; accessed Dec. 16, 2022].
“Sorareguide,” https://sorareguide.com/, [Online; accessed Dec. 18,
2022].

T. Taleb, S. Dutta, A. Ksentini, M. Igbal, and H. Flinck, “Mobile edge
computing potential in making cities smarter,” IEEE Communications
Magazine, vol. 55, no. 3, pp. 38-43, 2017.

H. Zahmatkesh and F. Al-Turjman, “Fog computing for sustain-
able smart cities in the iot era: Caching techniques and enabling
technologies-an overview,” Sustainable Cities and Society, vol. 59, p.
102139, 2020.

Z. Ning, J. Huang, and X. Wang, “Vehicular fog computing: Enabling
real-time traffic management for smart cities,” IEEE Wireless Commu-
nications, vol. 26, no. 1, pp. 87-93, 2019.

L. U. Khan, S. R. Pandey, N. H. Tran, W. Saad, Z. Han, M. N. Nguyen,
and C. S. Hong, “Federated learning for edge networks: Resource opti-
mization and incentive mechanism,” IEEE Communications Magazine,
vol. 58, no. 10, pp. 88-93, 2020.

Y. Peng, A. Tan, J. Wu, and Y. Bi, “Hierarchical edge computing: A
novel multi-source multi-dimensional data anomaly detection scheme
for industrial internet of things,” IEEE Access, vol. 7, pp. 111257—
111270, 2019.

R. Smeliansky, “Hierarchical edge computing,” in 2018 International
Scientific and Technical Conference Modern Computer Network Tech-
nologies (MoNeTeC). 1EEE, 2018, pp. 1-11.

L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for
mobile computing,” in IEEE INFOCOM 2016-The 35th Annual IEEE
International Conference on Computer Communications. 1EEE, 2016,
pp. 1-9.

1. Yaqoob et al, “Blockchain for digital twins: Recent advances and
future research challenges,” IEEE Network, vol. 34, no. 5, pp. 290-
298, April 2020.

X. Zhang, Z. Fan, X. Tan, Q. Liu, and Y. Shi, “Spatiotemporal adaptive
attention 3d multiobject tracking for autonomous driving,” Knowledge-
Based Systems, vol. 267, p. 110442, 2023.

S. Akhauri, L. Zheng, T. Goldstein, and M. Lin, “Improving generaliza-
tion of transfer learning across domains using spatio-temporal features
in autonomous driving,” arXiv preprint arXiv:2103.08116, 2021.



[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

J. Ferrdo, P. Dias, B. S. Santos, and M. Oliveira, “Environment-aware
rendering and interaction in web-based augmented reality,” Journal of
Imaging, vol. 9, no. 3, p. 63, 2023.

B. Heinemann, S. Gorzen, U. Schroeder, J. Bourdin, and E. Paquette,
“Repix vr-learning environment for the rendering pipeline in virtual
reality,” Euro-graphics 2022-Education Papers, 2022.

J.-M. Jot, “Interactive 3d audio rendering in flexible playback con-
figurations,” in Proceedings of The 2012 Asia Pacific Signal and
Information Processing Association Annual Summit and Conference.
IEEE, 2012, pp. 1-9.

S. Cacciaguerra, M. Roccetti, M. Roffilli, and A. Lomi, “A wireless
software architecture for fast 3d rendering of agent-based multimedia
simulations on portable devices,” in First IEEE Consumer Communi-
cations and Networking Conference, 2004. CCNC 2004. IEEE, 2004,
pp. 589-594.

W.-S. Gan, S. Peksi, J. He, R. Ranjan, N. D. Hai, and N. K. Chaudhary,
“Personalized hrtf measurement and 3d audio rendering for ar/vr
headsets,” in Audio Engineering Society Convention 142.  Audio
Engineering Society, 2017.

M. Papaefthymiou, S. Kateros, S. Georgiou, N. Lydatakis, P. Zikas,
V. Bachlitzanakis, and G. Papagiannakis, “Gamified ar/vr character
rendering and animation-enabling technologies,” Mixed Reality and
Gamification for Cultural Heritage, pp. 333-357, 2017.

P. Tasatanattakool and C. Techapanupreeda, “Blockchain: Challenges
and applications,” in 2018 International Conference on Information
Networking (ICOIN). 1EEE, 2018, pp. 473-475.

F. Zhang, G. Liu, X. Fu, and R. Yahyapour, “A survey on virtual
machine migration: Challenges, techniques, and open issues,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 2, pp. 1206-1243,
2018.

Y. Tang, N. Cheng, W. Wu, M. Wang, Y. Dai, and X. Shen, “Delay-
minimization routing for heterogeneous vanets with machine learning
based mobility prediction,” IEEE Transactions on Vehicular Technol-
0gy, vol. 68, no. 4, pp. 3967-3979, 2019.

T. Sharma, M. Singh, S. Selvan, D. Krah er al., “Energy-efficient
resource allocation and migration in private cloud data centre,” Wireless
Communications and Mobile Computing, vol. 2022, 2022.

Z. Xiao, W. Song, and Q. Chen, “Dynamic resource allocation using
virtual machines for cloud computing environment,” /EEE transactions
on parallel and distributed systems, vol. 24, no. 6, pp. 1107-1117,
2012.

L. Yang, D. Yang, J. Cao, Y. Sahni, and X. Xu, “Qos guaranteed
resource allocation for live virtual machine migration in edge clouds,”
IEEE Access, vol. 8, pp. 78441-78451, 2020.

X. Ruan, H. Chen, Y. Tian, and S. Yin, “Virtual machine allocation
and migration based on performance-to-power ratio in energy-efficient
clouds,” Future Generation Computer Systems, vol. 100, pp. 380-394,
2019.

L. U. Khan, Y. K. Tun, M. Alsenwi, M. Imran, Z. Han, and C. S. Hong,
“A dispersed federated learning framework for 6g-enabled autonomous
driving cars,” IEEE Transactions on Network Science and Engineering,
2022.

L. U. Khan, U. Majeed, and C. S. Hong, “Federated learning for cellular
networks: Joint user association and resource allocation.” in APNOMS,
2020, pp. 405-408.

M. Belotti, N. BozZi¢, G. Pujolle, and S. Secci, “A vademecum on
blockchain technologies: When, which, and how,” IEEE Communica-
tions Surveys & Tutorials, vol. 21, no. 4, pp. 3796-3838, 2019.

D. Berdik, S. Otoum, N. Schmidt, D. Porter, and Y. Jararweh, “A survey
on blockchain for information systems management and security,”
Information Processing & Management, vol. 58, no. 1, p. 102397,
2021.

G. Yu, X. Wang, K. Yu, W. Ni, J. A. Zhang, and R. P. Liu, “Survey:
Sharding in blockchains,” IEEE Access, vol. 8, pp. 14155-14 181,
2020.

A. Hafid, A. S. Hafid, and M. Samih, “Scaling blockchains: A com-
prehensive survey,” IEEE Access, vol. 8, pp. 125244-125 262, 2020.
J. Wang, X. Ling, Y. Le, Y. Huang, and X. You, “Blockchain-enabled
wireless communications: A new paradigm towards 6g,” National
Science Review, vol. 8, no. 9, p. nwab069, 2021.

H. Kim, J. Park, M. Bennis, and S.-L. Kim, “Blockchained on-device
federated learning,” IEEE Communications Letters, vol. 24, no. 6, pp.
1279-1283, 2019.

F. Valeonti, A. Bikakis, M. Terras, C. Speed, A. Hudson-Smith, and
K. Chalkias, “Crypto collectibles, museum funding and openglam:
challenges, opportunities and the potential of non-fungible tokens
(nfts),” Applied Sciences, vol. 11, no. 21, p. 9931, 2021.

[65]
[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

32

S. A. Kazmi, L. U. Khan, N. H. Tran, and C. S. Hong, Network slicing
for 5G and beyond networks. Springer, 2019, vol. 1.

S. Zhang, “An overview of network slicing for 5g,” IEEE Wireless
Communications, vol. 26, no. 3, pp. 111-117, 2019.

X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, ‘“Network
slicing in 5g: Survey and challenges,” IEEE communications magazine,
vol. 55, no. 5, pp. 94-100, 2017.

H. Zhang, N. Liu, X. Chu, K. Long, A.-H. Aghvami, and V. C. Leung,
“Network slicing based S5g and future mobile networks: mobility, re-
source management, and challenges,” IEEE communications magazine,
vol. 55, no. 8, pp. 138-145, 2017.

J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz,
J. Lorca, and J. Folgueira, “Network slicing for 5g with sdn/nfv: Con-
cepts, architectures, and challenges,” IEEE Communications Magazine,
vol. 55, no. 5, pp. 80-87, 2017.

M. Leconte, G. S. Paschos, P. Mertikopoulos, and U. C. Kozat, “A re-
source allocation framework for network slicing,” in IEEE INFOCOM
2018-1EEE Conference on Computer Communications. IEEE, 2018,
pp. 2177-2185.

L. U. Khan, I. Yaqoob, N. H. Tran, Z. Han, and C. S. Hong, “Network
slicing: Recent advances, taxonomy, requirements, and open research
challenges,” IEEE Access, vol. 8, pp. 36 009-36 028, 2020.

L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-Lin, and Z. Wang, “Non-
orthogonal multiple access for 5g: solutions, challenges, opportunities,
and future research trends,” IEEE Communications Magazine, vol. 53,
no. 9, pp. 74-81, 2015.

Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and
V. K. Bhargava, “A survey on non-orthogonal multiple access for 5g
networks: Research challenges and future trends,” IEEE Journal on
Selected Areas in Communications, vol. 35, no. 10, pp. 2181-2195,
2017.

Z. Ding, F. Adachi, and H. V. Poor, “The application of mimo
to non-orthogonal multiple access,” IEEE Transactions on Wireless
Communications, vol. 15, no. 1, pp. 537-552, 2015.

C. Kim, R. Ford, and S. Rangan, “Joint interference and user associa-
tion optimization in cellular wireless networks,” in 2014 48th Asilomar
Conference on Signals, Systems and Computers. 1EEE, 2014, pp. 511—
515.

J. Gao, Q. Ren, P. S. Gu, and X. Song, “User association and small-
cell base station on/off strategies for energy efficiency of ultradense
networks,” Mobile Information Systems, vol. 2019, 2019.

D. Fooladivanda and C. Rosenberg, “Joint user association and resource
allocation in heterogeneous cellular networks: Comparison of two
modeling approaches,” in 2019 31st International Teletraffic Congress
(ITC 31). 1EEE, 2019, pp. 66-74.

N. Trabelsi, C. S. Chen, R. El Azouzi, L. Roullet, and E. Altman,
“User association and resource allocation optimization in Ite cellular
networks,” IEEE Transactions on Network and Service Management,
vol. 14, no. 2, pp. 429-440, 2017.

M. Yemini and A. J. Goldsmith, “Optimal resource allocation for
cellular networks with virtual cell joint decoding,” in 2019 IEEE
International Symposium on Information Theory (ISIT). 1EEE, 2019,
pp. 2519-2523.

F. Saeik, M. Avgeris, D. Spatharakis, N. Santi, D. Dechouniotis,
J. Violos, A. Leivadeas, N. Athanasopoulos, N. Mitton, and S. Pa-
pavassiliou, “Task offloading in edge and cloud computing: A survey
on mathematical, artificial intelligence and control theory solutions,”
Computer Networks, vol. 195, p. 108177, 2021.

X. Wang, J. Ye, and J. C. Lui, “Decentralized task offloading in
edge computing: a multi-user multi-armed bandit approach,” in IEEE
INFOCOM 2022-IEEE Conference on Computer Communications.
IEEE, 2022, pp. 1199-1208.

J. Luo, Q. Qian, L. Yin, and Y. Qiao, “A game-theoretical approach
for task offloading in edge computing,” in 2020 16th International
Conference on Mobility, Sensing and Networking (MSN). 1EEE, 2020,
pp. 756-761.

T.-Y. Kan, Y. Chiang, and H.-Y. Wei, “Task offloading and resource
allocation in mobile-edge computing system,” in 2018 27th wireless
and optical communication conference (WOCC). 1EEE, 2018, pp.
1-4.

J. Zhang, W. Xia, Y. Zhang, Q. Zou, B. Huang, F. Yan, and L. Shen,
“Joint offloading and resource allocation optimization for mobile edge
computing,” in GLOBECOM 2017-2017 IEEE Global Communications
Conference. 1EEE, 2017, pp. 1-6.

K. Zhang, X. Gui, and D. Ren, “Joint optimization on computation
offloading and resource allocation in mobile edge computing,” in 2019



[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

IEEE Wireless Communications and Networking Conference (WCNC).
IEEE, 2019, pp. 1-6.

L. U. Khan, E. Mustafa, J. Shuja, F. Rehman, K. Bilal, Z. Han, and C. S.
Hong, “Federated learning for digital twin-based vehicular networks:
Architecture and challenges,” arXiv preprint arXiv:2208.05558, 2022.
W.-Y. Lee and I. F. Akyildiz, “Spectrum-aware mobility management
in cognitive radio cellular networks,” IEEE Transactions on Mobile
Computing, vol. 11, no. 4, pp. 529-542, 2011.

S. Smys and J. S. Raj, “A self-organized structure for mobility man-
agement in wireless networks,” Computers & Electrical Engineering,
vol. 48, pp. 153-163, 2015.

S. Fernandes and A. Karmouch, “Vertical mobility management ar-
chitectures in wireless networks: A comprehensive survey and future
directions,” IEEE Communications Surveys & Tutorials, vol. 14, no. 1,
pp. 45-63, 2010.

F. Siddiqui and S. Zeadally, “Mobility management across hybrid
wireless networks: Trends and challenges,” Computer Communications,
vol. 29, no. 9, pp. 1363-1385, 2006.

A. Achour, L. Deru, and J. C. Deprez, “Mobility management for wire-
less sensor networks a state-of-the-art,” Procedia Computer Science,
vol. 52, pp. 1101-1107, 2015.

L. U. Khan et al, “Edge-computing-enabled smart cities: A compre-
hensive survey,” IEEE Internet of Things Journal, vol. 7, no. 10, pp.
10200-10232, October 2020.

C. D. Patel, C. E. Bash, R. Sharma, M. Beitelmal, and R. Friedrich,
“Smart cooling of data centers,” in International Electronic Packaging
Technical Conference and Exhibition, vol. 36908, 2003, pp. 129-137.
Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang,
M. Marwah, and C. Hyser, “Renewable and cooling aware workload
management for sustainable data centers,” in Proceedings of the 12th
ACM SIGMETRICS/PERFORMANCE joint international conference
on Measurement and Modeling of Computer Systems, 2012, pp. 175—
186.

T. Evans, “The different technologies for cooling data centers,” APC
white paper, vol. 59, 2012.

P. Vitello, A. Capponi, C. Fiandrino, G. Cantelmo, and D. Kliazovich,
“Mobility-driven and energy-efficient deployment of edge data centers
in urban environments,” IEEE Transactions on Sustainable Computing,
2021.

Y. Shao, Z. Shen, S. Gong, and H. Huang, “Cost-aware placement
optimization of edge servers for iot services in wireless metropolitan
area networks,” Wireless Communications and Mobile Computing, vol.
2022, 2022.

R. Cong, Z. Zhao, L. Zhang, and G. Min, “Coopedge: Cost-effective
server deployment for cooperative multi-access edge computing,” in
2022 19th Annual IEEE International Conference on Sensing, Com-
munication, and Networking (SECON). 1EEE, 2022, pp. 208-216.
S. Ghosh and D. P. Agrawal, “A high performance hierarchical caching
framework for mobile edge computing environments,” in 2021 IEEE
Wireless Communications and Networking Conference (WCNC), 2021,
pp. 1-6.

M. El-Hajj, A. Fadlallah, M. Chamoun, and A. Serhrouchni, “A survey
of internet of things (iot) authentication schemes,” Sensors, vol. 19,
no. 5, p. 1141, 2019.

A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on
homomorphic encryption schemes: Theory and implementation,” ACM
Computing Surveys (Csur), vol. 51, no. 4, pp. 1-35, 2018.

L. U. Khan, W. Saad, Z. Han, E. Hossain, and C. S. Hong, “Federated
learning for internet of things: Recent advances, taxonomy, and open
challenges,” IEEE Communications Surveys & Tutorials, 2021.

H. Fang and Q. Qian, “Privacy preserving machine learning with
homomorphic encryption and federated learning,” Future Internet,
vol. 13, no. 4, p. 94, 2021.

J. Ma, S.-A. Naas, S. Sigg, and X. Lyu, “Privacy-preserving federated
learning based on multi-key homomorphic encryption,” International
Journal of Intelligent Systems, 2022.

M. Zhan, Z. Pang, D. Dzung, and M. Xiao, “Channel coding for
high performance wireless control in critical applications: Survey and
analysis,” IEEE Access, vol. 6, pp. 29 648-29 664, 2018.

K. Arora, J. Singh, and Y. S. Randhawa, “A survey on channel coding
techniques for S5g wireless networks,” Telecommunication Systems,
vol. 73, no. 4, pp. 637-663, 2020.

E. Biglieri, G. Caire, and G. Taricco, “Coding for the fading channel:
a survey,” Signal processing, vol. 80, no. 7, pp. 1135-1148, 2000.

M. Shirvanimoghaddam, M. S. Mohammadi, R. Abbas, A. Minja,
C. Yue, B. Matuz, G. Han, Z. Lin, W. Liu, Y. Li et al., “Short block-

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

33

length codes for ultra-reliable low latency communications,” IEEE
Communications Magazine, vol. 57, no. 2, pp. 130-137, 2018.

M. Sybis, K. Wesolowski, K. Jayasinghe, V. Venkatasubramanian, and
V. Vukadinovic, “Channel coding for ultra-reliable low-latency com-
munication in 5g systems,” in 2016 IEEE 84th vehicular technology
conference (VIC-Fall). IEEE, 2016, pp. 1-5.

T. Zhang, J. Shen, C.-F. Lai, S. Ji, and Y. Ren, “Multi-server assisted
data sharing supporting secure deduplication for metaverse healthcare
systems,” Future Generation Computer Systems, 2022.

L. He, K. Liu, Z. He, and L. Cao, “Three-dimensional holographic
communication system for the metaverse,” Optics Communications,
vol. 526, p. 128894, 2023.

A. Plechatd, G. Makransky, and R. Bohm, “Can extended reality in the
metaverse revolutionise health communication?” NPJ digital medicine,
vol. 5, no. 1, pp. 1-4, 2022.

G. Wang, A. Badal, X. Jia, J. S. Maltz, K. Mueller, K. J. Myers,
C. Niu, M. Vannier, P. Yan, Z. Yu et al., “Development of metaverse
for intelligent healthcare,” Nature Machine Intelligence, pp. 1-8, 2022.
W. Y. B. Lim, Z. Xiong, D. Niyato, X. Cao, C. Miao, S. Sun, and
Q. Yang, “Realizing the metaverse with edge intelligence: A match
made in heaven,” arXiv preprint arXiv:2201.01634, 2022.

P. Zhou, J. Zhu, Y. Wang, Y. Lu, Z. Wei, H. Shi, Y. Ding, Y. Gao,
Q. Huang, Y. Shi er al., “Vetaverse: Technologies, applications, and
visions toward the intersection of metaverse, vehicles, and transporta-
tion systems,” arXiv preprint arXiv:2210.15109, 2022.

L. O. Alpala, D. J. Quiroga-Parra, J. C. Torres, and D. H. Peluffo-
Ordéiiez, “Smart factory using virtual reality and online multi-user:
Towards a metaverse for experimental frameworks,” Applied Sciences,
vol. 12, no. 12, p. 6258, 2022.

Z. Allam, A. Sharifi, S. E. Bibri, D. S. Jones, and J. Krogstie,
“The metaverse as a virtual form of smart cities: Opportunities and
challenges for environmental, economic, and social sustainability in
urban futures,” Smart Cities, vol. 5, no. 3, pp. 771-801, 2022.

H. Du, J. Wang, D. Niyato, J. Kang, Z. Xiong, D. I. Kim et al.,
“Exploring attention-aware network resource allocation for customized
metaverse services,” arXiv preprint arXiv:2208.00369, 2022.

B. Xu, Q. Wu, Y. Bao, G. Chen, Y. Wang, and S. Ren, “Time-
multiplexed stereoscopic display with a quantum dot-polymer scanning
backlight,” Applied Optics, vol. 58, no. 16, pp. 4526-4532, 2019.

H. Hiura, K. Komine, J. Arai, and T. Mishina, ‘“Measurement of
static convergence and accommodation responses to images of integral
photography and binocular stereoscopy,” Optics Express, vol. 25, no. 4,
pp. 3454-3468, 2017.

T. North, M. Wagner, S. Bourquin, and L. Kilcher, “Compact and high-
brightness helmet-mounted head-up display system by retinal laser
projection,” Journal of Display Technology, vol. 12, no. 9, pp. 982-985,
2016.

Y. Su, X. Tang, Z. Zhou, Z. Cai, Y. Chen, J. Wu, and W. Wan,
“Binocular dynamic holographic three-dimensional display for optical
see-through augmented reality using two spatial light modulators,”
Optik, vol. 217, p. 164918, 2020.

H. Huang and H. Hua, “Systematic characterization and optimization
of 3d light field displays,” Optics express, vol. 25, no. 16, pp. 18 508—
18525, 2017.

S. Y. Kung, M.-W. Mak, S.-H. Lin, M. Mak, and S. Lin, Biometric au-
thentication: a machine learning approach. Prentice Hall Professional
Technical Reference New York, 2005.

P. Punithavathi, S. Geetha, M. Karuppiah, S. H. Islam, M. M. Hassan,
and K.-K. R. Choo, “A lightweight machine learning-based authentica-
tion framework for smart iot devices,” Information Sciences, vol. 484,
pp. 255-268, 2019.

Y. Xun, J. Liu, N. Kato, Y. Fang, and Y. Zhang, “Automobile driver
fingerprinting: A new machine learning based authentication scheme,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 2, pp. 1417-
1426, 2019.

M. Hazratifard, F. Gebali, and M. Mamun, “Using machine learning
for dynamic authentication in telehealth: A tutorial,” Sensors, vol. 22,
no. 19, p. 7655, 2022.

M. Simsek, M. Bennis, and I. Giiveng, “Context-aware mobility man-
agement in hetnets: A reinforcement learning approach,” in 2015 ieee
wireless communications and networking conference (wecnc). 1EEE,
2015, pp. 1536-1541.

H. Zhang, R. Wang, W. Sun, and H. Zhao, “Mobility management for
blockchain-based ultra-dense edge computing: a deep reinforcement
learning approach,” IEEE Transactions on Wireless Communications,
vol. 20, no. 11, pp. 7346-7359, 2021.



[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

M. M. U. Chowdhury, W. Saad, and I. Giiveng, “Mobility management
for cellular-connected uavs: A learning-based approach,” in 2020
IEEE international conference on communications workshops (ICC
Workshops). 1EEE, 2020, pp. 1-6.

W. Liu, P. Si, E. Sun, M. Li, C. Fang, and Y. Zhang, “Green
mobility management in uav-assisted iot based on dueling dqn,” in /CC
2019-2019 IEEE International Conference on Communications (ICC).
IEEE, 2019, pp. 1-6.

B. Zheng, C. You, W. Mei, and R. Zhang, “A survey on channel
estimation and practical passive beamforming design for intelligent
reflecting surface aided wireless communications,” IEEE Communica-
tions Surveys & Tutorials, vol. 24, no. 2, pp. 1035-1071, 2022.

B. Zheng and R. Zhang, “Intelligent reflecting surface-enhanced ofdm:
Channel estimation and reflection optimization,” IEEE Wireless Com-
munications Letters, vol. 9, no. 4, pp. 518-522, 2019.

Z. Wang, L. Liu, and S. Cui, “Channel estimation for intelligent reflect-
ing surface assisted multiuser communications: Framework, algorithms,
and analysis,” IEEE Transactions on Wireless Communications, vol. 19,
no. 10, pp. 6607-6620, 2020.

Q.-U.-A. Nadeem, A. Kammoun, A. Chaaban, M. Debbah, and
M.-S. Alouini, “Intelligent reflecting surface assisted wireless com-
munication: Modeling and channel estimation,” arXiv preprint
arXiv:1906.02360, 2019.

B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” arXiv preprint arXiv:1611.01578, 2016.

T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” The Journal of Machine Learning Research, vol. 20, no. 1,
pp. 1997-2017, 2019.

Y. Jaafra, J. L. Laurent, A. Deruyver, and M. S. Naceur, “Reinforcement
learning for neural architecture search: A review,” Image and Vision
Computing, vol. 89, pp. 57-66, 2019.

S. Casale-Brunet, P. Ribeca, P. Doyle, and M. Mattavelli, “Networks
of ethereum non-fungible tokens: a graph-based analysis of the erc-
721 ecosystem,” in 2021 IEEE International Conference on Blockchain
(Blockchain). 1EEE, 2021, pp. 188-195.

P. Christodoulou and K. Christodoulou, “A decentralized voting mech-
anism: engaging erc-20 token holders in decision-making,” in 2020
Seventh International Conference on Software Defined Systems (SDS).
IEEE, 2020, pp. 160-164.

“Ieee standard for local and metropolitan area networks - secure device
identity,” IEEE Std 802.1AR-2018 (Revision of IEEE Std 802.1AR-
2009), pp. 1-73, 2018.

L. U. Khan, Z. Sabir, S. A. Mahmud, and G. M. Khan, “Comparison
of three interpolation techniques in comb-type pilot-assisted channel
coded ofdm system,” in 2013 27th International Conference on Ad-
vanced Information Networking and Applications Workshops. 1EEE,
2013, pp. 977-981.

L. U. Khan, M. H. Zafar, M. 1. Khattak, and N. Khan, “A novel
channel estimation error minimizing interpolation technique for ofdm
systems,” in 2014 9th International Symposium on Communication
Systems, Networks & Digital Sign (CSNDSP). 1EEE, 2014, pp. 716—
720.

L. Wei, C. Huang, G. C. Alexandropoulos, E. Wei, Z. Zhang,
M. Debbah, and C. Yuen, “Multi-user wireless communications with
holographic mimo surfaces: A convenient channel model and spectral
efficiency analysis,” in 2022 Joint European Conference on Networks
and Communications & 6G Summit (EuCNC/6G Summit). 1EEE, 2022,
pp. 488-493.

A. Lenk, G. Katsaros, M. Menzel, J. R. Revelant, R. Skipp, E. C.
Leon, and V. Gopan, “Tiosa: Testing vm interoperability at an os
and application level-a hypervisor testing method and interoperability
survey,” in 2014 IEEE International Conference on Cloud Engineering.
IEEE, 2014, pp. 245-252.

Z. Ullah, F. Al-Turjman, L. Mostarda, and R. Gagliardi, “Applications
of artificial intelligence and machine learning in smart cities,” Com-
puter Communications, vol. 154, pp. 313-323, 2020.

H. Yang, X. Xie, and M. Kadoch, “Machine learning techniques and a
case study for intelligent wireless networks,” IEEE Network, vol. 34,
no. 3, pp. 208-215, 2020.

X. Luo, B. Yin, Z. Chen, B. Xia, and J. Wang, “Autoencoder-
based semantic communication systems with relay channels,” in 2022
IEEE International Conference on Communications Workshops (ICC
Workshops). 1EEE, 2022, pp. 711-716.

H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled
semantic communication systems,” IEEE Transactions on Signal Pro-
cessing, vol. 69, pp. 2663-2675, 2021.

34

Latif U. Khan received his Ph.D. degree in Com-
puter Engineering and M.S. degree in Electrical
Engineering with distinction from Kyung Hee Uni-
versity (KHU), South Korea in 2021 and UET Pe-
shawar in 2017, respectively. He worked as a leading
researcher in the intelligent Networking Laboratory
under a project jointly funded by the prestigious
Brain Korea 21st Century Plus and Ministry of
Science and ICT, South Korea. Prior to joining
the KHU, he has served as a faculty member and
research associate in the UET, Peshawar, Pakistan.
He has published his works in highly reputable conferences and journals. He
is the recipient of KHU best thesis award. He is the author/co-author of two
conference best paper awards. He is also author of two books titled ”Network
Slicing for 5G and Beyond Networks” and “Federated Learning for Wireless
Networks”. His research interests include analytical techniques of optimization
and game theory to edge computing, end-to-end network slicing, digital twins,
and federated learning for wireless networks.

Mohsen Guizani (S’85, M’89, SM’99, F’09) re-
ceived his B.S. (with distinction) and M.S. degrees
in electrical engineering, and M.S. and Ph.D. degrees
in computer engineering from Syracuse University,
New York, in 1984, 1986, 1987, and 1990, respec-
tively. He is currently a Professor with the Ma-
chine Learning Department, Mohamed Bin Zayed
University of Artificial Intelligence (MBZUAI), Abu
Dhabi, UAE. Previously, he served in different aca-
demic and administrative positions at the University
of Idaho, Western Michigan University, the Univer-
sity of West Florida, the University of Missouri-Kansas City, the University
of Colorado-Boulder, and Syracuse University. His research interests include
wireless communications and mobile computing, computer networks, mobile
cloud computing, security, and smart grid. He was the Editor-in-Chief of
IEEE Network. He serves on the Editorial Boards of several international
technical journals, and is the Founder and Editor-in-Chief of the Wireless
Communications and Mobile Computing journal (Wiley). He is the author
of nine books and more than 500 publications in refereed journals and
conferences. He has guest edited a number of Special Issues in IEEE journals
and magazines. He has also served as a TPC member, Chair, and General
Chair of a number of international conferences. Throughout his career, he
received three teaching awards and four research awards. He also received the
2017 IEEE Communications Society WTC Recognition Award as well as the
2018 AdHoc Technical Committee Recognition Award for his contribution to
outstanding research in wireless communications and ad hoc sensor networks.
He was the Chair of the IEEE Communications Society Wireless Technical
Committee and the Chair of the TAOS Technical Committee. He served as
a IEEE Computer Society Distinguished Speaker and is currently an IEEE
ComSoc Distinguished Lecturer. He is a Senior Member of ACM.

Dusit Niyato (M’09-SM’15-F’17) received the
Ph.D. degree in electrical and computer engineering
from the University of Manitoba, Winnipeg, MB,
Canada, in 2008. He is currently a Professor with
the School of Computer Science and Engineering,
Nanyang Technological University, Singapore. He
has published more than 400 technical articles in
the area of wireless and mobile computing. He
received the Best Young Researcher Award of the
IEEE Communications Society Asia Pacifica and
the 2011 IEEE Communications Society Fred W.
Ellersick Prize Paper Award. He is also serving as a Senior Editor of the IEEE
Wireless Communication Letters, an Area Editor of the IEEE Transactions
on wireless Communications and the IEEE Communications Surveys and
Tutorials, an Editor of the IEEE Transactions on Communications, and
an Associate Editor of the IEEE Transactions on Mobile Computing, the
IEEE Transactions on Vehicular Technology, and the IEEE Transactions on
Cognitive Communications and Networking. He was a Distinguished Lecturer
of the IEEE Communications Society from 2016 to 2017. He was named a
highly cited researcher in computer science.




Ala Al-Fuqaha (Senior Member, IEEE) received
the Ph.D. degree in computer engineering and net-
working from the University of Missouri-Kansas
City, Kansas City, MO, USA, in 2004. He is cur-
rently a Professor at the Information and Computing
Technology Division, College of Science and En-
gineering, Hamad Bin Khalifa University (HBKU),
Doha, Qatar. His research interests include the use
of machine learning in general and deep learning
in particular in support of the data-driven and self-
driven management of large-scale deployments of
the Internet of Things (IoT) and smart city infrastructure and services, wireless
vehicular networks (VANETS), cooperation and spectrum access etiquette in
cognitive radio networks, and management and planning of software-defined
networks (SDNs).

Merouane Debbah is Chief Researcher at the Tech-
nology Innovation Institute in Abu Dhabi. He is a
Professor at Centralesupelec and an Adjunct Pro-
fessor with the Department of Machine Learning
at the Mohamed Bin Zayed University of Artifi-
cial Intelligence. He received the M.Sc. and Ph.D.
degrees from the Ecole Normale Supérieure Paris-
Saclay, France. He was with Motorola Labs, Saclay,
France, from 1999 to 2002, and also with the Vienna
Research Center for Telecommunications, Vienna,
Austria, until 2003. From 2003 to 2007, he was
an Assistant Professor with the Mobile Communications Department, Institut
Eurecom, Sophia Antipolis, France. In 2007, he was appointed Full Professor
at CentraleSupelec, Gif-sur-Yvette, France. From 2007 to 2014, he was the
Director of the Alcatel-Lucent Chair on Flexible Radio. From 2014 to 2021,
he was Vice-President of the Huawei France Research Center. He was jointly
the director of the Mathematical and Algorithmic Sciences Lab as well as
the director of the Lagrange Mathematical and Computing Research Center.
Since 2021, he is leading the AI & Digital Science Research centers at the
Technology Innovation Institute. He has managed 8 EU projects and more than
24 national and international projects. His research interests lie in fundamental
mathematics, algorithms, statistics, information, and communication sciences
research. He is an IEEE Fellow, a WWRF Fellow, a Eurasip Fellow, an
AAIA Fellow, an Institut Louis Bachelier Fellow and a Membre emerite
SEE. He was a recipient of the ERC Grant MORE (Advanced Mathematical
Tools for Complex Network Engineering) from 2012 to 2017. He was a
recipient of the Mario Boella Award in 2005, the IEEE Glavieux Prize
Award in 2011, the Qualcomm Innovation Prize Award in 2012, the 2019
IEEE Radio Communications Committee Technical Recognition Award and
the 2020 SEE Blondel Medal. He received more than 20 best paper awards,
among which the 2007 IEEE GLOBECOM Best Paper Award, the Wi-Opt
2009 Best Paper Award, the 2010 Newcom++ Best Paper Award, the WUN
CogCom Best Paper 2012 and 2013 Award, the 2014 WCNC Best Paper
Award, the 2015 ICC Best Paper Award, the 2015 IEEE Communications
Society Leonard G. Abraham Prize, the 2015 IEEE Communications Society
Fred W. Ellersick Prize, the 2016 IEEE Communications Society Best Tutorial
Paper Award, the 2016 European Wireless Best Paper Award, the 2017 Eurasip
Best Paper Award, the 2018 IEEE Marconi Prize Paper Award, the 2019 IEEE
Communications Society Young Author Best Paper Award, the 2021 Eurasip
Best Paper Award, the 2021 IEEE Marconi Prize Paper Award, the 2022
IEEE Communications Society Outstanding Paper Award, the 2022 ICC Best
paper Award as well as the Valuetools 2007, Valuetools 2008, CrownCom
2009, Valuetools 2012, SAM 2014, and 2017 IEEE Sweden VI-COM-IT Joint
Chapter best student paper awards. He is an Associate Editor-in-Chief of the
journal Random Matrix: Theory and Applications. He was an Associate Area
Editor and Senior Area Editor of the IEEE TRANSACTIONS ON SIGNAL
PROCESSING from 2011 to 2013 and from 2013 to 2014, respectively. From
2021 to 2022, he serves as an IEEE Signal Processing Society Distinguished
Industry Speaker.

35



	Introduction
	Research Trends and Statistics
	Existing Surveys and Tutorials
	Our Tutorial

	Foundations of Metaverse-Based Wireless Systems
	Design Aspects
	Key Enablers
	Digital Twins
	Digital Avatars
	Interactive Experience Technologies

	High-Level Architecture
	Use Cases of Metaverse
	Decentraland (MANA)
	The Sandbox
	Axie Infinity
	Sorare

	Summary: Insights and Lessons Learned

	Management of Meta Space
	Network Management
	Efficient Deployment of Twins and Avatars
	Computing and Communication Resource Management
	Twins and Avatars Migration
	Low Latency Consensus Algorithms for Blockchain

	Reliability and Security
	Summary: Lessons learned and Insights

	Physical Space
	Network Management
	Wireless and Computing Resource Management
	Devices Mobility Management
	Edge and Cloud Deployment

	Reliability and Security
	Summary: Lessons Learned and Insights

	State-of-the-Art and Standardization
	Advances
	Standardization
	Summary: Lessons Learned and Insights

	Open Challenges
	Interoperable Meta Spaces
	Non-Fungible Tokens for Metaverse Trading
	Personalized Distributed Learning-based Avatars Modeling
	Isolation of Meta Spaces
	Mobility Management
	Intelligent Interfaces
	Zero-Touch Networking for Metaverse
	Machine Learning-enabled Semantic Communication for Metaverse
	Hybrid Modeling for Meta Space

	Conclusions
	References
	Biographies
	Latif U. Khan
	Mohsen Guizani
	Dusit Niyato
	Ala Al-Fuqaha
	Merouane Debbah


