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Abstract Xml documents conceptually are not trees,
but forests. Therefore, we extend the concept of macro
tree transducers (mtt’s) to a transformation formalism
of forests, macro forest transducers (mft’s). We show
that mft’s form a strict superset of mtt’s operating
on forests (represented as binary trees). On the other
hand, the transformation of every mft can be simulated
by the composition of two mtt’s. Although macro for-
est transducers are more powerful, the complexity of
inverse type inference, i.e., computing the pre-image of
a recognizable language, is almost the same as for tree
transducers.
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1 Introduction

Xml is a markup language for storing structured
data in a sequential format. It is originally de-
signed for the use in document processing [22] and
it is believed to become the de facto data exchange
standard for the Internet [15, 17]. Data in Xml

are grouped into elements delimited by tags and
elements can be nested [22, 17].

A key idea of Xml is that documents can be
type checked. The type is given by a document
type definition (DTD) [22] or, more generally, a
schema [23, 2] describing a recognizable language.
Usually, type checking is done dynamically during
parsing time. A validating parser checks if the cur-
rent document conforms to the specified schema,
i.e., the parser decides whether the document is
valid or not. In many cases, documents are auto-
matically generated, e.g., as the result of a transfor-
mation induced by stylesheet processors [1, 21, 8].
In order to guarantee type safety in such an envi-
ronment, we clearly could repeat the type checking
procedure after every transformation phase. The

obvious drawback of such dynamic type checking
is, however, that it is time consuming and detects
errors at transformation time only.

Therefore, we search for methods to statically
guarantee type safety. Here, we are given two types
Rin and Rout, the input and output type, respec-
tively. For a given transformer P we want to deter-
mine, if P produces for all inputs of Rin only docu-
ments that are valid with respect to Rout. A naive
solution to this type checking problem is to infer
the set R′ of outputs produced by P for inputs of
type Rin. Having inferred this set, the type check-
ing problem for P is reduced to the test, whether
R′ is included in Rout. The applicability of this ap-
proach, however, is quite limited. As observed by
several authors, even for simple transformations R′

is no longer recognizable [19, 12, 17, 18].

Sometimes it turns out, though, that the inverse
problem is easier tractable, that is: Given a pro-
gram P and an output type Rout, to determine the
exact set R′ of all inputs d, for which P (d) is con-
tained in Rout. Computing R′ is called the inverse
type inference problem [12, 19, 4]. Then the type
checking problem is answered by the inclusion test
Rin ⊆ R′.

Various abstract models have been proposed to
describe transformations of Xml. Tozawa uses fi-
nite tree automata as document types [19] and
infers the inverse type on the basis of the op-
erational semantics of Xslt0 expressions, which
describe a subset of Xslt (Extensible Stylesheet
Language Transformation). More or less, these
transformations correspond to top-down finite state
transductions. Milo, Suciu and Vianu use k-pebble
tree transducers to model the transformations [12].
These transducers are allowed to arbitrarily tra-
verse their input and use pebbles to mark already
visited nodes. At the leaves of the output new com-
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putations can be spawned.

Recently, also macro tree transducers [3, 5, 7]
have been considered as a model for Xml transduc-
tions [20, 9, 4]. Macro tree transducers (mtt’s) orig-
inate from macro grammars [6] and are top-down
finite state tree transducers which additionally are
equipped with parameters to accumulate auxiliary
results. At each computation step the values of
the parameters can be used to build up the out-
put. Similar to k-pebble transducers, they trans-
form forests by referring to their representations as
trees. The advantage of macro tree transducers is
that they are well-understood and have a rich the-
ory [7]. In particular, they are closed under regular
look-ahead [5]. The major deficiency, though, is
that, due to the encoding as trees, concatenation
of intermediate forests is not supported.

In this paper we therefore enhance macro tree
transducers by adding concatenation. Because the
resulting model works on forests rather than on
trees, we call it macro forest transducers (mft’s).
We formally prove that the computational power
is indeed increased. The resulting transformations
can, however, be realized by the composition of two
mtt’s. Thus, by the results of [9], the translations of
deterministic mft’s can be computed in time linear
in the sum of the sizes of the corresponding input
and output forests. For the new intermediate class
of transformations, we furthermore observe that in-
verse type inference (for a fixed recognizable output
specification and a bounded number of parameters)
is dexptime-complete – thus, meeting the corre-
sponding complexity bounds for mtt’s and even or-
dinary top-down transductions [11].

The paper is organized as follows: In the next
section we introduce basic notations concerning
trees and forests. Then we define the new notion
of macro forest transducers. Then we illustrate the
computational power of our transducers by com-
paring them with macro tree transducers and re-
late both to the corresponding transducer classes
without parameters. The last section is concerned
with inverse type inference.

2 Preliminaries

Because Xml transformation languages are defined
on forests, rather than on trees, we are interested
in forests f over an alphabet Σ. The children of a

node are a sequence of arbitrarily many trees, that
is, a forest.

Definition 1 Let Σ be a finite alphabet. Then the
set FΣ of forests f over Σ is recursively defined as:

t ::= a〈f〉, a ∈ Σ

f ::= ǫ | t f,

where ǫ denotes the empty forest. For simplicity,
we also write a for a〈〉. ⊳

Sometimes forests are also called Σ-hedges, e.g., by
M. Murata [14] and A. Tozawa [19].

On the other hand, macro tree transducers work
on ranked trees. This means that the number of
the children of a node is determined by the rank of
the symbol at that node. We assume here that ǫ is
a unique symbol of rank 0 while every symbol in Σ
has rank 2.

Definition 2 The set BΣ of binary trees over the
alphabet Σ is defined as:

t ::= ǫ | a(t1, t2), a ∈ Σ and t1, t2 ∈ BΣ,

where the symbol ǫ identifies the leaves. ⊳

In fact, binary trees are in one-to-one correspon-
dence to forests: For a tree a(t1, t2) we understand
the root label a together with the left successor t1
as the representation of an (unranked) tree with a
root named a while the right successor t2 represents
the right context of this tree. Figure 1 shows this
correspondence for the tree:

a(a(d(ǫ, e(ǫ, ǫ)), b(ǫ, c(b(ǫ, c(ǫ, ǫ)), ǫ))), ǫ)

In order to keep the binary tree readable, we omit-
ted all occurrences of the leaf symbol ǫ. The encod-
ing of forests by binary trees, however, is too inflex-
ible: in the Xml view of documents, the content
of an element is a sequence of elements. Accord-
ingly, any reasonable document transformer sup-
ports concatenation of arbitrary forests. Therefore,
we prefer to work with forests directly and general-
ize the notion of macro tree transducers appropri-
ately.
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Figure 1: Example for a binary tree and the corre-
sponding forest

3 Macro Forest Transducers

Let x1 and x2 be two input variables and Y be the
set of formal parameters yi, i ≥ 1.

Definition 3 A macro forest transducer is a tuple
M = (Q, Σ, ∆, q0, R), where

• Q is the set of states (or procedures);

• Σ and ∆ are finite alphabets with Q∩(Σ∪∆) =
∅, called the input and the output alphabet, re-
spectively;

• q0 ∈ Q is the initial state;

• R is a finite set of rules of the form:

p(ǫ, y1, . . . , yn) → f, or

p(a〈x1〉x2, y1, . . . , yn) → f,

with a ∈ Σ and p ∈ Q. The right-hand sides are
of the following form f :

t ::= b〈f〉

f ::= q(xi, f1, . . . , fm)

| ǫ | yj | t f | f1 f2

where q ∈ Q, b ∈ ∆ and i ∈ {1, 2}, j = 1, . . . , n,
n, m ∈ N, n, m ≥ 0. Moreover, the right-hand
sides for empty input forests ǫ must not contain
occurrences of the variables x1 or x2.

In case of several rules for the same p and the same
symbol a (or ǫ) we also write: f1 | . . . | fk to
enumerate all occurring right-hand sides. ⊳

Note that states/procedures q may differ in their
ranks, i.e., the number of their accumulating pa-
rameters. We write Q(k) for the procedures with k

such parameters.

The transducer works as follows: Each state can
be considered as a procedure which recurses over
the first argument while the additional arguments
serve as accumulating parameters. Instead of defin-
ing the translation by means of a derivation rela-
tion, we here prefer to take a denotational point
of view and interpret each procedure by a function
mapping input forests (together with tuples of ac-
tual parameters) to sets of output forests. These
functions are mutually recursive and defined by
structural induction on input forests.

Definition 4 Let M = (Q, Σ, ∆, q0, R) be an ar-
bitrary, but fixed, macro forest transducer. The
meaning of a state q ∈ Q having k ≥ 0 accumulat-
ing parameters is a function:

[[q]] : FΣ × (2F∆)k → 2F∆

These functions are inductively defined by:

[[q]] (a〈s1〉 s2, S1, . . . , Sk) = [[f1]] σ ρ ∪ . . . ∪ [[fm]] σ ρ

for a ∈ Σ where σ(xi) = si, i = 1, 2, ρ(yj) = Sj for
j = 1, . . . , k, and

q(a〈x1〉x2, y1, . . . , yk) → f1 | . . . | fm ∈ R

and

[[q]] (ǫ, S1, . . . , Sk) = [[f1]] ∅ ρ ∪ . . . ∪ [[fm]] ∅ ρ

where ∅ is the empty assignment, ρ(yj) = Sj for
j = 1, . . . , k, and

q(ǫ, y1, . . . , yk) → f1 | . . . | fm ∈ R

Here, [[.]] σ ρ denotes the evaluation of a right-hand
side expression w.r.t. the bindings σ, ρ of the formal
parameters xi and yj , respectively. Thus,

[[ǫ]] σ ρ = {ǫ}
[[yj ]] σ ρ = ρ(yj)
[[b〈f1〉 f2]] σ ρ = {b〈s1〉 s2 | si ∈ [[fi]] σ ρ}
[[f1 f2]] σ ρ = {s1 s2 | si ∈ [[fi]] σ ρ}
[[q(xi, f1, . . . , fk)]] σ ρ =

[[q]] (σ(xi), [[f1]] σ ρ, . . . , [[fk]] σ ρ)

⊳

The transformation induced by the transducer
M = (Q, Σ, ∆, q0, R) is the function τM : FΣ →
2F∆ induced by the start procedure q0 on input
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forests and empty forests in the accumulating pa-
rameters:

τM (f) = [[q0]] (f, {ǫ}, . . . , {ǫ})

Analogously to Theorem 3.17 of [5], our denota-
tional semantics here is equivalent to an operational
semantics based on rewriting with a call-by-name
mode for parameter passing. Note that, since pro-
cedure calls may be nested, the order in which they
are unfolded indeed matters. Call-by-name evalu-
ation is achieved by fixing the order of rule appli-
cation to be outside-in. This means that a rule is
only applied to a procedure call if it occurs outside,
i.e., it has no ancestor labeled by a procedure call.

The class of all macro forest transformations is
denoted by fmac.

The mtt’s as invented by Engelfriet and Vogler [3,
5] differ from our forest transducers only in that
they are defined on trees. Technically, this means
that right-hand sides of rules may not contain
subexpressions f1 f2 where f1 is not of the form
b〈f ′〉. Let mac denote the class of all transforma-
tions that can be performed by macro tree trans-
ducers.

Example 5 Let the macro forest transducer Mr =
(Q, Σ, ∆, q0, R) be defined by

• Q = {q0}

• Σ = ∆ finite alphabets

• R consists of the rules:

1. q0(ǫ, y1) → y1

2. q0(a〈x1〉x2, y1) → q0(x2, a〈q0(x1, ǫ)〉 y1),
for all a ∈ Σ.

This transducer takes a forest f = t1 t2 . . . tn over
Σ as input and produces as output a forest f ′ =
t′n . . . t′2 t′1 where each t′i is the mirror image of the
corresponding ti.

The rules from the third item take the first tree
of the input forest and concatenate its mirror im-
age to the front of the accumulating parameter y1.
Applying these rules recursively, reverses the order
on the current level. ⊳

4 Characterization

At first, let us define the notions of height and bi-
nary height of a forest. Intuitively, the height of

a forest measures the maximal degree of nesting of
elements, while the binary height equals the height
of the forest considered as a binary tree. Consider,
e.g., the forest f from fig. 1. Then the height is 3
while the binary height is 6.

Definition 6 The height ht(f) and binary height
bht(f) of a forest f ∈ FΣ are defined by

• ht(ǫ) = bht(ǫ) = 0;

• ht(a〈s1〉 s2) = max{1 + ht(s1), ht(s2)} and
bht(a〈s1〉 s2) = 1 + max{bht(s1), bht(s2)} .

In particular, ht(f) ≤ bht(f) for every forest f .
Moreover, the binary height of a forest s1 . . . sn is
at least n. ⊳

Because of their close relationship, we compare
macro forest transducers with macro tree transduc-
ers [3, 5]. By definition, every mtt is also a mft. On
the other hand, by allowing concatenation in right-
hand sides, the computational power is strictly in-
creased. In order to prove this, we present a lower
bound result for the connection between the binary
height of the input and the binary height of the
output for mft’s. A mft M is called total and de-
terministic iff for every state q of M there is exactly
one transition rule for the empty forest and exactly
one transition rule for every input symbol a ∈ Σ.
Note that in this case τM (f) contains exactly one
forest for every input forest f ∈ FΣ.

Lemma 7 There is a macro forest transducer M

such that, for infinitely many f ∈ FΣ, bht(s) ≥

22bht(f)

for every s ∈ τM (f).

Proof. Consider the total and deterministic mft
M = (Q, Σ, ∆, q, R) where Q = {q0, q}, Σ = {a},
∆ = {b}, and R consists of the rules:

q0(a〈x1〉x2) → q(x2, q(x2, b))

q0(ǫ) → b b

q(a〈x1〉x2, y1) → q(x2, q(x2, y1))

q(ǫ, y1) → y1 y1

The last rule concatenates the parameter y1 to it-
self, thus doubling the binary height of the accumu-
lated output forest. Let fk = ak, k ≥ 0. Assume
that for r, m ∈ N, [[q]] (ak, {br}) = {bm}. We claim:

m = 22k

· r
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Since bht(fn) = bht(an) = n and bht(bm) = m the
assertion of the lemma follows. In order to prove
our claim, we proceed by induction on k. For k = 0,

[[q]] (ǫ, {br}) = {br br} = {b2r}

and the assertion follows since 220

= 21 = 2.

For k > 1,

[[q]] (aak−1, {br}) = [[q]] (ak−1, [[q]] (ak−1, {br}))

which, by induction hypothesis applied to both pro-
cedure calls, results in a singleton set {bm} with

m = 22k−1

· 22k−1

· r

= 22k

· r

This proves the claim. ⋄

Theorem 8 mac ⊂ fmac

Proof. The height property for mac says that for
every mtt M ∈ mac there exists c > 0 such that for
all f ∈ FΣ and all s ∈ τM (f), bht(s) ≤ cbht(f) [7].
Hence, the translation of the mft M from the last
lemma cannot be expressed by any mtt. ⋄

Similarly, every non-empty set of images pro-
duced by a k-pebble transducer for an input f con-
tains some output of binary height polynomial in
the size of f [13]. Intuitively, the reason is that
these transducers build up their outputs node by
node and neither support parameters nor concate-
nation. We conclude that k-pebble transducers
cannot simulate the mft M either.

On the other hand, we show that every mft can
be simulated by the composition of two mtt’s. Let
M denote an mft. The first macro tree transducer
M1 essentially executes the transitions of M —
with the only difference that each concatenation
f1f2 in right-hand sides of M is replaced by an ap-
plication of a concatenation symbol “@”. Formally,
if f is a right-hand side of M , then the correspond-
ing right-hand side of M1 is obtained as A[f ] where:

A[ǫ] = ǫ

A[b〈f1〉 f2] = b〈A[f1]〉A[f2]

A[q(xi, f1, . . . , fm)] = q̂(xi,A[f1], . . . ,A[fm])

A[yj ] = yj

A[f1 f2] = @〈A[f1]〉A[f2]

where every state q of M is simulated by the cor-
responding state q̂ of M1.

Let eval (f) denote the transformation which
evaluates the concatenation symbols “@”. Thus,

eval (ǫ) = ǫ

eval (@〈f1〉 f2) = eval (f1) eval (f2)
eval (b〈f1〉 f2) = b〈eval (f1)〉 eval (f2)

Moreover, we extend the transformation eval (.) to
sets of forests by:

eval (S) = {eval (s) | s ∈ S}

By structural induction on input forests, one veri-
fies for all states q of M that:

[[q]] (f, S′
1, . . . , S

′
k) = eval ([[q̂]] (f, S1, . . . , Sk)),

where S′
i = eval (Si), i = 1, . . . , k. This assertion

follows from proving for every sub-forest s occur-
ring in a right-hand side of a rule of M that:

[[s]] σ ρ′ = eval ([[A[s]]] σ ρ)

where ρ′(yj) = eval (ρ(yj)) for j = 1, . . . , k. Hence,

[[q0]] (f, {ǫ}, . . . , {ǫ}) = eval ([[q̂0]] (f, {ǫ}, . . . , {ǫ}))

Therefore, τM (f) = eval (τM1 (f)) for every f ∈ FΣ.
In the second step, we show that the transforma-

tion eval (.) itself can be implemented by another
mtt M@. M@ ∈ mac has just one state q and the
following rules:

1. q(ǫ, y1) → y1;

2. q(b〈x1〉x2, y1) → b〈q(x1, ǫ)〉 q(x2, y1)
for all output symbols b of M ;

3. q(@〈x1〉 x2, y1) → q(x1, q(x2, y1)).

By definition, M@ is total and deterministic. By
induction on the structure of input forests f , we
verify that for all forests s:

[[q]] (f, {s}) = {eval (f) s}

We conclude that τM@
(f) = {eval (f)} which we

wanted to prove.
Let mac

2 denote the class of all transductions
that can be performed by the composition of two
macro tree transducers. Thus we have proved:
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Theorem 9 fmac ⊆ mac
2 ⋄

As a corollary we obtain a height property for
fmac: For every mft M there is a constant c > 0
such that for every f ∈ FΣ and s ∈ τM (f),

bht(s) ≤ 22c·bht(f)

The decomposition of an mft into two mtt’s is not
arbitrary — but (for a given ∆) always uses the
same mtt M@ to evaluate the auxiliary concatena-
tion symbols. For every such transducer M@, we
observe:

Lemma 10 For every forest f ∈ F∆∪{@} and
{s} = τM@

(f),

ht(s) ≤ ht(f)

Proof. Recall that the transducer M@ is total and
deterministic. Assume {s} = [[q]] (f, {s′}) where
f ∈ F∆∪{@}. We claim:

ht(s) ≤ max{ht(f), ht(s′)}

We proceed by structural induction on f . If
f = ǫ, then [[q]] (f, {s′}) = {s′}. Thus, s = s′

and the claim follows. If f = @〈f1〉 f2, then
[[q]] (f, {s′}) = [[q]] (f1, [[q]] (f2, {s′})). By induction
hypothesis for f2, ht(s2) ≤ max{ht(f2), ht(s′)} for
{s2} = [[q]] (f2, {s′}). By applying the induction
hypothesis now to f1 we obtain:

ht(s) ≤ max{ht(f1), s2}
= max{ht(f1), ht(f2), ht(s′)}
≤ max{ht(f), ht(s′)}

which we wanted to prove. Finally, assume that
f = a〈f1〉 f2 for some a ∈ ∆. Then

[[q]] (f, {s′}) = {a〈s1〉 s2} where
{s1} = [[q]] (f1, {ǫ}) and
{s2} = [[q]] (f2, {s

′})}

and the claim follows from the induction hypothesis
applied to f1 and f2. ⋄

Lemma 10 gives us a single-exponential upper
bound on the height of output forests of mft’s:

Theorem 11 For every mft M there is a constant
c > 0 such that for every f ∈ FΣ and s ∈ τM (f),

ht(s) ≤ 2c·bht(f)

⋄

In [7], an example mtt is provided which trans-
lates monadic trees of height n into monadic trees
of height 2n. Iterating this mtt, a translation in
mac

2 is obtained which, by Theorem 11 cannot be
realized through one mft. Thus, we conclude:

Corollary 12 fmac ⊂ mac
2.

In 2001, Tozawa has considered a transforma-
tion formalism [19] which essentially equals our
notion of macro forest transformations: without,
however, accumulating parameters. Let us call
such transformations top-down forest transforma-
tions or top-down tree transformations — depend-
ing on whether the right-hand sides make use of
concatenation or not. Let ftop and top denote
the respective classes. The transducers from ftop

are also closely related to the top-down transducers
of Maneth and Neven [10] (but slightly more gen-
eral). The next corollary summarizes the inclusions
among these classes.

Theorem 13 top ⊂ ftop ⊂ mac

Proof. (1) While the binary height of the output
of a transducer T1 ∈ top is linear bounded by the
binary height of the input [7], the binary height of
an output forest of T2 ∈ ftop can be exponentially
large in the binary height of the input [16].

(2) Let T ∈ ftop. We define an mtt M ∈ mac

that simulates the transducer T :

• a rule q(a〈x1〉x2) → f of T is simulated by
q̂(a〈x1〉x2, y1) → C[f ] y1

• and a rule q(ǫ) → f is simulated by q̂(ǫ, y1) →
C[f ] y1

where C[.] c is defined by:

C[ǫ] c = c

C[a〈f1〉 f2] c = a〈C[f1] ǫ〉 (C[f2] c)

C[q(xi)] c = q̂(xi, c)

C[f1 f2] c = C[f1] (C[f2] c)

By structural induction on input forests f ∈ F∆,
one proves that for all states q of T ,

([[q]] (f)) · S = [[q̂]] (f, S)

for all S ⊆ F∆. Here, we use the operator “·” to de-
note element-wise concatenation of sets of forests.
Then in particular,

[[q]] (f) = [[q̂]] (f, {ǫ})

6



The claim follows by verifying that for every sub-
forest s occurring in a right-hand side of T that

([[s]] σ ∅) · S = [[C[s] y1]] σ ρ

where ρ(y1) = S.
In order to prove the inclusion of ftop in mac

strict, we recall from Theorem 9 that every transla-
tion in ftop can be decomposed into an ordinary
top-down transduction from top followed by the
mtt M@. Thus, we deduce from lemma 10 that
for every transducer M ∈ ftop there is a con-
stant c > 0 such that for every input forest f and
s ∈ τM (f),

ht(s) ≤ c · ht(f)

Using the already mentioned lower-bound example
from [7], we conclude that not every macro tree
transducer can be simulated by a top-down forest
transducer from ftop. ⋄

5 Inverse Type Inference

Often Xml documents are transformed by
stylesheet processors. Xml transformers may,
e.g., create a database view or convert an Xml

document into Html. Well-formed views or valid
Html output are given by recognizable types
Rout. An important question is whether the
computation of the view or the converter program
work correctly. Given that the input documents
are of type Rin, we want to know whether for
a (possibly non-deterministic) transformer M ,
M(s) ⊆ Rout for all s ∈ Rin. In the introduction,
this has been called the type checking problem for
the transformer M .

Here, we are interested in the inverse type infer-
ence problem. Given a transformer M , we want to
determine the set P of all input forests which can
be processed and always result in legal output, i.e.,

P = {f ∈ FΣ | τM (f) ∩ R̄out = ∅},

where R̄out denotes the complement of the set of
legal outputs Rout. This set P is the complement
of the pre-image τ−1

M (R̄out) of R̄out w.r.t. M .
The main result of [12] is that the inverse type

inference problem is solvable for pebble tree trans-
ducers. It is also well known in tree transducer the-
ory that the pre-image of a recognizable tree lan-
guage w.r.t. a macro tree transducer is again recog-
nizable and can be effectively computed [5]. Thus,

the inverse type inference problem is solvable for all
transformations from mac. Because mft’s can be
simulated by the two-fold composition of mtt’s, we
conclude that the pre-image τ−1

M (R̄out) of a mft M

is recognizable as well and can be effectively con-
structed. The proof for the next Theorem proceeds
along the lines of the one given at the end of [4].
We give the explicit construction to illustrate how
the extra feature of concatenation can be treated
directly, and to exhibit that the complexity meets
the complexity of the corresponding construction
for mtt’s.

Theorem 14 Let M ∈ fmac be a mft of bounded
rank and R′ be a recognizable set. Then,

1. The pre-image τ−1
M (R′) is recognizable.

2. The computation of the pre-image for a fixed
R′ can be performed in deterministic exponen-
tial time.

3. Deciding emptiness of the pre-image of rec-
ognizable languages w.r.t. mft’s is dexptime-
hard.

Proof. Let M = (Q, Σ, ∆, q0, R) be a mft. Let
A′ = (B, ∆, β, b0, FB) be an ordinary deterministic
right-to-left bottom-up forest automaton on the bi-
nary encodings with the set FB of final states and
β : ∆ × B × B → B, such that L(A′) = R′. A
right-to-left automaton works as follows: the result
states are computed from right to left. Computa-
tion always starts with an initial state b0 for the
empty forest. The state for the forest a〈f1〉 f2 is
obtained from the states bi for the forests fi by
evaluating β(a, b1, b2).

From the automaton A′ and the mft M ,
we construct a deterministic automaton A =
(D, Σ, δ, d0, FD) recognizing τ−1

M (R′). The key is-
sue of A is to simulate the accepting computations
of A′ on the right-hand sides of the transformation
rules of M .

Let Dom denote the set of all states q ∈ Q of
the mft M combined with all suitable tuples of re-
lations:

Dom = {(q, S1, . . . , Sn) | q ∈ Q(n), Si ⊆ B × B},

where n is the maximal rank of states. Then, the
set D of states of A is given by:

D = Dom → 2B×B

7



Intuitively, a relation S ⊆ B × B describes the set
of all possible state transitions of the automaton
for R′ on the forests from a given set of outputs. A
state d ∈ D assigned to an input forest f records
for every procedure q of the mft and every possible
sequence S1, . . . , Sn of such effect descriptions for
the accumulating parameters the set of all state
transitions which can be obtained by calling q on f

and actual parameters satisfying the Si.
Given this set of states D, we define:

• d0(q, S1, . . . , Sn) =
⋃k

i=1 [[ fi ]]♯ ρ

if q(ǫ, y1, . . . , yn) → f1 | . . . | fk in M

and ρ(yi) = Si, 1 ≤ i ≤ n;

• δ(a, d1, d2) = d where

d (q, S1, . . . , Sn) =

k⋃

i=1

[[ fi ]]♯ σ ρ

if q(a〈x1〉x2, y1, . . . , yn) → f1| . . . |fk in M ,
σ(xi) = di, i = 1, 2, and ρ(yi) = Si, 1 ≤ i ≤ n;

• FD consists of all mappings d such that the re-
lation d(q0, 1, . . . , 1) contains a pair (b, b0) with
b ∈ FB . Here, 1 denotes the relation

{(b, b) | b ∈ B}

The mapping [[ ]]♯ which we have used to define d0

and δ simulates the computation of A′ on the right-
hand sides of the transformation rules:

[[ ǫ ]]♯ = 1 ⊆ B × B

[[ yi ]]♯ ρ = ρ(yi)
[[ f1 f2 ]]♯ σ ρ = ([[ f1 ]]♯ σ ρ) ◦ ([[ f2 ]]♯ σ ρ)
[[ a〈f1〉 f2 ]]♯ σ ρ = {(b1, b2) | ∃s1, s2 ∈ B :
(s1, b0) ∈ S1, (s2, b2) ∈ S2, b1 = β(a, s1, s2)},

where S1 = [[ f1 ]]♯ σ ρ and S2 = [[ f2 ]]♯ σ ρ and ‘◦’
denotes the composition of relations.

[[ p(xj , f1, . . . , fm) ]]♯ σ ρ =

(σ xj) (p, [[ f1 ]]♯ σ ρ, . . . , [[ fm ]]♯ σ ρ)

The number of states of A is at most:

2|B|2·|Dom| ≤ 2|B|2·|Q|·2|B|2·n

.

Therefore, the pre-image is double exponential in
the size of the automaton A′ representing the out-
put type — but only single-exponential in the size
of the transducer M . Since the construction can

be performed in time polynomial in the size of
the computed automaton A, the upper complexity
bound follows (given that n is bounded by some
constant). For the lower bound, we recall that the
lower bound holds already for top [11] and thus
also for fmac. ⋄

6 Conclusion

We extended the concept of macro tree transducers
to a transformation formalism for forests. These
macro forest transducers form a strict superclass
of mtt’s. Although macro forest transducers are
in some sense more powerful, the decidability and
complexity results for inverse type checking, i.e.,
computing the pre-image of a recognizable lan-
guage, are almost the same as for mtt’s.

Macro forest transducers support concatenation
of forests as basic operation and thus are closely
related to Xml’s data model. Future work may ex-
tend macro forest transducers to a formal model
for style sheet processors such as Xslt or fxt [1].
A drawback of the algorithm for the inverse type
inference is it’s complexity. In [16], we proposed a
typed macro language for Xml which is interpreted
during parsing time of a document. At the expense
of rejecting harmless inputs, a document type for
safe input documents is inferred. The type-safeness
of macro expansion can thus be guaranteed by val-
idating input documents with unexpanded macro
calls. It is an interesting question whether such ap-
proximative type inference can also be designed for
more powerful Xml-transducers.
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