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Abstract

Transmission protocols like TCP are usually divided into a time scheduling and a
data selection policy. We consider on-line algorithms of data selection policies for
any time scheduling policy and any routing behaviour in a network. For the model
introduced by Adler et al. (1997, Proc. of the 5th Isreal Symp. on the Theory of
Computing Systems, pp. 64–72), we improve both the lower and the upper bound on
the competitive ratio making them asymptotically tight. Furthermore, we present
a lower bound that depends on the size of the buffers that are available both to the
sender and to the receiver. We obtain a constant lower bound for the competitive
ratio for constant buffer size.
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1 Introduction

We consider protocols for transmitting data through a communication network
like the Internet. Data are transmitted in chunks called packets and we allow
that the network can lose transmitted packets. To construct such protocols
one uses a modular approach (see Clark et al. [5]). According to Mathis and
Mahdavi [6] one can decompose the protocols into a time scheduling policy
that decides when to send a packet and data selection policy that decides
which piece of data should be transmitted with a particular packet. For our
investigation, we use the model of transmission protocols proposed by Adler
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et al. [1] and Byers [4] which allows the analysis of data selection policies for
any time scheduling policy and any behaviour of a network.

1.1 The Model

We study the point-to-point communication, where a sender transmits typi-
cally huge data to a single receiver. The model that we use is based on devel-
opments of Adler et al. [1] and Byers [4]. It has further been applied by Bartal
et al. [2] to analyse performance of protocols for multicast connections, too.

The sender can send packets, where packet pi contains a piece of data that we
call a word. Furthermore, the sender receives positive and negative acknowl-
edgements that tell him whether some packet has successfully been transmit-
ted or has been lost. We say that a packet has been accepted if the sender
has received a positive acknowledgement for it. Similarly, we say that a packet
has been rejected in case of a negative acknowledgement. Analogously, a word
has been accepted if there is one packet containing this word that has been
accepted.

We use the following notation based on Adler et al. [1]:

• si is the time at which packet pi has been transmitted,
• ai is the time at which the sender gets an acknowledgement for packet pi,
• bi is 1, if packet pi has been transmitted successfully, and 0 otherwise,
• ai − si is the round-trip time of packet pi, and
• wi is the data of packet pi, i.e., the word transmitted using packet pi.

We call the collection of 4-tuples (si, ai, bi, wi)i∈N for all packets transcript θ.
The backlog B(t, θ) for a transcript θ at a time t is the number of packets
for which the sender has no acknowledgement yet. Bθ is the backlog of θ, i.e.,
Bθ = maxt∈N B(t, θ). The available bandwidth until time t with transcript θ is

P ?(t, θ) =
∑

i with ai≤t

bi ,

i.e., the number of positive acknowledgements received by the sender until
time t. Let A be a data selection policy, i.e., an on-line algorithm that decides
which word to put into which packet and let u1, u2, u3, . . . be a data stream
the sender wants to transmit. As quality measure we consider the length of
the longest prefix that is accepted. The maximum prefix length PA(t, θ) is
the largest integer j such that all words u1, . . . , uj have already been accepted
prior to time t.

An optimal data selection policy has successfully transmitted the first P ?(t, θ)
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words until time t. We define the competitive ratio of an algorithm A in a
slightly different manner than usual (see e.g. Borodin and El-Yaniv [3]):

RA(t, θ) =
P ?(t, θ)

PA(t, θ)
.

The aim is to find an algorithm that keeps the competitive ratio as small as
possible.

Another aim is to guarantee that the buffer protocol A needs does not become
too large. Let SA(t, θ) denote the size of the buffer A needs at time t with
transcript θ, i.e., SA(t, θ) is the maximum number of different words sent by A
prior to time t that do not belong to the longest contiguous prefix transmitted
successfully. Speaking more formally, if IA(t, θ) is the largest index of a word
from the input data stream u1, u2, u3, . . . that has been sent by A prior to t,
then we have

SA(t, θ) = max
0<t′≤t

{
IA(t′, θ)− PA(t′, θ)

}
.

1.2 Previous Results

Adler et al. [1] have presented the following lower and upper bounds on the
competitive ratio for deterministic data selection policies.

Theorem 1 (Upper Bound [1, Thm. 1]) There exists a deterministic al-
gorithm A, such that for all transcripts θ and for all times t,

RA(t, θ) = 1 + O

(Bθ log Bθ)
3
2√

P ?(t, θ)

 .

Theorem 2 (Lower Bound [1, Thm. 2]) For any deterministic algorithm
A, there exist a transcript θ and a time t, for which

RA(t, θ) = 1 + Ω

((√
P ?(t, θ)

)−1
)

.

Adler et al. use the following adversarial strategy S to prove Theorem 2: Re-
peatedly allow the algorithm to transmit two packets. If they contain identical
words, then accept both, otherwise accept only the packet containing the word
with the larger index. Then they claim [1, Claim 6]: For any deterministic data
selection policy A, and any transcript θ resulting from the adversarial strategy
S, there exists a time t in which RA(t, θ) ≥ 1 + 1

2
√

P ?(t,θ)
.
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We find that this claim does not hold if we allow to send words that have been
accepted before. Consider the following algorithm. First send word u1 twice
using packets p1 and p2. Then send ui and again u1 using the packets p2i−1

and p2i. Thus for t ≥ 5, we have RA(t, θ) = P ?(t,θ)+1
P ?(t,θ)

< 1 + 1

2
√

P ?(t,θ)
.

We can avoid this problem by slightly modifying the adversary: If one of the
two words transmitted has been accepted previously, then accept this packet
and reject the other. We call the modified adversary S ′.

1.3 Our Results

We improve both the lower and upper bound for the competitive ratio of de-
terministic data selection policies. Our bounds are asymptotically tight. Fur-
thermore, we extend the analysis by taking the available buffer into account.
We show a lower bound for the competitive ratio of any deterministic data
selection policy that depends on the buffer size available. In particular, we
obtain a constant lower bound for constant buffer size.

2 New Lower and Upper Bounds

In this section we show improvements of the Theorems 1 and 2. Our first
result directly improves Theorem 2: We show that for any algorithm there
exists a transcript θ and a time t in which the competitive ratio exceeds the
lower bound. This lower bound is asymptotically tight to the upper bound
given by Adler et al. [1]. However, a much more interesting property is to
find a lower bound that is exceeded for infinitely many times. In fact, the
proof of Theorem 2 given by Adler et al. [1] holds also for infinitely many
times. Theorem 4 below, improves on their result. On the other hand, we
present a protocol (Theorem 6) that achieves after a certain time a competitive
ratio that is asymptotically tight to the lower bound given in Theorem 4.
This protocol needs to know the backlog in advance. We generalize this result
in Corollary 7. Note that this does not contradict Proposition 3, although
Proposition 3 holds even if we know the backlog in advance.

Proposition 3 For every deterministic algorithm A, there exists a transcript
θ and a time t for which

RA(t, θ) ≥ 1 +
B

3
2
θ

36
√

2 · P ?(t, θ)
.
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PROOF. Let A be a transmission protocol. We define a transcript θ with an
arbitrary backlog Bθ ≥ 3 as follows. Let si = i and ai = i + Bθ for all i ∈ N.
To determine the bi-values for 1 ≤ i ≤ Bθ, we consider two cases:

• If the first word u1 of the input data stream occurs at least Bθ/2 times in
the sequence w1, . . . , wBθ

, then accept all packets containing u1 and reject
all other packets.

• If the word u1 occurs less than Bθ/2 times in w1, . . . , wBθ
, then reject all

packets containing u1 and accept all other packets.

We do not specify the transcript for pBθ+1, . . . , p2Bθ
. In time t = 2Bθ we have

acknowledgements for the first Bθ packets. Thus, PA(t, θ) ≤ 1 and Bθ/2 ≤
P ?(t, θ) ≤ Bθ. Hence, we have RA(t, θ) ≥ Bθ/2 ≥ B

3
2
θ /
(
2
√

2P ?(t, θ)
)
≥ 1 +

B
3
2
θ /
(
36
√

2 · P ?(t, θ)
)
. 2

Theorem 4 For every deterministic algorithm A, there exists a transcript θ
and a sequence of times (tk)k∈N (with tk+1 > tk) such that for all k ∈ N

RA(tk, θ) ≥ 1 +

√√√√Bθ (ln Bθ − 1)

10 · P ?(tk, θ)
.

PROOF. We define a transcript θ with an arbitrary backlog Bθ ≥ 2. First let
si = i and ai = i+Bθ. Now let A be an arbitrary deterministic algorithm. We
divide the work of A into phases. At the beginning of phase n let j1, j2, . . . , jBθ

be the Bθ smallest indices of words that have not been accepted when phase
n− 1 was finished. Let Un = {uj1 , uj2 , . . . , ujBθ

}.

In the first phase, let ji = i. Phase n is finished when all words in Un have
been accepted. Now let us consider blocks of Bθ consecutive packets sent by the
transcript θ. For each such block pi+1, pi+2, . . . , pi+Bθ

, the adversary considers
two cases to determine the values for bi+j:

• If wi+j /∈ Un for some 1 ≤ j ≤ Bθ, then accept every such packet and reject
all other packets, i.e., all packets containing a word in Un.

• If all wi+j ∈ Un (1 ≤ j ≤ Bθ), then choose the word w that occurs most fre-
quently in wj+1, wj+2, . . . , wj+Bθ

(breaking ties arbitrarily), accept all pack-
ets containing w, reject all other packets, and remove w from Un.

Claim 5 For every phase n, the total number of positive acknowledgements
for words in Un is at least Bθ ·HBθ

, where HBθ
is the Bθth harmonic number.

PROOF. If there is a packet in a block pi+1, pi+2, . . . , pi+Bθ
containing a word

wi+j 6∈ Un, then no word from Un will be accepted. On the other hand, if all
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words wi+j (1 ≤ j ≤ Bθ) belong to Un, then the adversarial strategy enforces
completing exactly one word of Un. Hence, in phase n there are exactly Bθ

blocks containing only words from Un. Moreover, by the pigeon hole principle
we can conclude that when such a block has been sent in a phase for the jth
time (1 ≤ j ≤ Bθ), then there are at least

⌈
Bθ

Bθ−j+1

⌉
packets in the block con-

taining the same word. Thus, the total number of positive acknowledgements
is at least

∑Bθ
j=1d Bθ

Bθ−j+1
e =

∑Bθ
j=1dBθ

j
e ≥ Bθ ·HBθ

. 2

Now we can complete the proof of the theorem. We choose an arbitrary but suf-
ficiently large k ∈ N and t such that P ?(t, θ) = b(Bθ ·HBθ

)2kc. We distinguish
two cases. First, assume that there exists a time subinterval [t′, t′′] (1 ≤ t′ <

t′′ ≤ t) during which at least
⌊
(Bθ ·HBθ

)k+ 1
2

⌋
packets have been accepted but

no phase has been finished. Then P ?(t′′, θ)−PA(t′′, θ) ≥ b(Bθ ·HBθ
)k+ 1

2 c−Bθ

and P ?(t′′, θ) ≤ (Bθ ·HBθ
)2k. Thus, we obtain

RA(t′′, θ)≥ PA(t′′, θ) + b(Bθ ·HBθ
)k+ 1

2 c −Bθ

PA(t′′, θ)

≥ 1 +
b(Bθ ·HBθ

)k+ 1
2 c −Bθ

P ?(t′′, θ)
≥ 1 +

√
Bθ ·HBθ

10 · P ?(t′′, θ)
.

Second, if for each subinterval [t′, t′′] during which
⌊
(Bθ ·HBθ

)k+ 1
2

⌋
packets

have been accepted at least one phase has been completed, then, since there
are at least

⌊
(Bθ ·HBθ

)k− 1
2

⌋
disjoint subintervals and by Claim 5, we have

P ?(t, θ)− PA(t, θ) ≥ b(Bθ ·HBθ
)k− 1

2 c · (Bθ ·HBθ
−Bθ) and

RA(t, θ) ≥ 1 +
((BθHBθ

)k− 1
2 − 1) · (BθHBθ

−Bθ)

P ?(t, θ)
≥ 1 +

√
BθHBθ

10 · P ?(t, θ)
.

Thus, there are infinitely many k for which we get different times that fulfil
the bound. Since HBθ

≥ ln Bθ − 1 for all B ∈ N, the theorem is proved. 2

Let us now focus on upper bounds.

Theorem 6 There exists an algorithm A such that if we know Bθ in advance,
then A achieves for sufficiently large t

RA(t, θ) ≤ 1 + 4

√
Bθ log Bθ

P ?(t, θ)
.
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PROOF. The algorithm A is similar to the deterministic algorithm presented
by Adler et al. [1, Sec. 3.1]. It works in phases. In phase n we transmit the next
kn = nBθ log Bθ words (block n) until all of them have been accepted. Then
we proceed with phase n + 1. When we are allowed to transmit a packet, we
choose a word of block n for which the number of acknowledgements that we
are waiting for is minimum (breaking ties arbitrarily). Adler et al. have shown
that during phase n, an optimal protocol transmits at most kn + Bθ log Bθ

words.

Let t be a time within some phase n + 1. Then we have P ?(t, θ) ≤ ∑n+1
i=1 (ki +

Bθ log Bθ) and PA(t, θ) ≥ ∑n
i=1 ki. Thus,

RA(t, θ) ≤
∑n+1

i=1 (ki + Bθ log Bθ)∑n
i=1 ki

≤ 1 +
2(n + 1)Bθ log Bθ

Bθ(log Bθ)n(n + 1)/2
= 1 +

4

n
.

Furthermore, we have P ?(t, θ) ≤ (n+1)(n+2)
2

Bθ log Bθ + (n + 1)Bθ log Bθ and

thus for n ≥ 6, n2 ≥ P ?(t,θ)
Bθ log Bθ

. Thus for every t in phase n (n ≥ 6), we have

RA(t, θ) ≤ 1 + 4
√

Bθ log Bθ

P ?(t,θ)
. 2

If we do not know the backlog in advance, we still can achieve the upper bound
of the previous theorem asymptotically after a certain time. This will be done
by estimating the backlog. We set kn = nBn log Bn, where Bn is the largest
backlog observed during the previous phases.

Corollary 7 There exists a deterministic algorithm A with the following prop-
erty: For all transcripts θ for which Bθ is bounded, there exists a time tθ ∈ N
such that for all t ≥ tθ we have

RA(t, θ) ≤ 1 + O

(√
Bθ log Bθ

P ?(t, θ)

)
.

3 Buffer Size and Competitive Ratio

In this section, we revisit the modified adversary considered in Section 1.2 to
prove a lower bound for the competitive ratio that depends on the buffer size
available.

Theorem 8 Let A be any deterministic data selection policy and θ be the
transcript resulting from the adversary S ′ against protocol A. Then there exists
a sequence (tk)k∈N of times (with tk < ti+k) such that RA(tk, θ) ≥ 1+ 1

SA(tk,θ)+1

for all k ∈ N.
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PROOF. Consider a sequence t0 = 0, t1, t2, . . . with SA(t, θ) ≤ ∑tk
j=tk−1+1 bj ≤

SA(t, θ) + 1 for every k = 1, 2, . . .. Let τ = tn. During an arbitrary interval
[tk−1, tk] at least SA(τ, θ) packets will be accepted. We claim that among all
pairs of packets sent during the interval there exists at least one accepted
packet containing a word that has been accepted while sent using another
packet until tk. If this would not be the case, then each pair of packets sent
during the interval got exactly one positive and one negative acknowledgement.
Hence, all words contained in packets that have been accepted are pairwise
different. Let jmin be the minimum over all indices of words that have been
rejected during the phase and jmax be the maximum over all indices of words
that have been accepted during the phase. Then we have jmax−jmin > SA(t, θ),
a contradiction.

Hence, in all intervals considered, there is a packet containing a word that has
been accepted while sent previously in some other packet. From the definition

of RA we have RA(t, θ) = 1+ P ?(t,θ)−P A(t,θ)
P A(t,θ)

≥ 1+ P ?(t,θ)−P A(t,θ)
P ?(t,θ)

. Since there are

n time intervals until τ , we have RA(τ, θ) ≥ 1+ n
n(SA(τ,θ)+1)

≥ 1+ 1
SA(τ,θ)+1

. 2

In particular, we obtain a constant lower bound for the competitive ratio, if
the buffer has constant size.
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