
ar
X

iv
:c

s/
03

08
01

4v
2 

 [
cs

.D
B

] 
 3

 M
ar

 2
00

4

On the expressive power of semijoin queries
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Abstract

The semijoin algebra is the variant of the relational algebra obtained by replac-
ing the join operator by the semijoin operator. We provide an Ehrenfeucht-Fraissé
game, characterizing the discerning power of the semijoin algebra. This game gives
a method for showing that queries are not expressible in the semijoin algebra.
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1 Introduction

Semijoins are very important in the field of database query processing. While
computing project-join queries in general is NP-complete in the size of the
query and the database, this can be done in polynomial time when the database
schema is acyclic [8], a property known to be equivalent to the existence of a
semijoin program [3]. Semijoins are often used as part of a query pre-processing
phase where dangling tuples are eliminated. Another interesting property is
that the size of a relation resulting from a semijoin is always linear in the size
of the input. Therefore, a query processor will try to use semijoins as often as
possible when generating a query plan for a given query (a technique known
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as “pushing projections” [7]). Also in distributed query processing, semijoins
have great importance, because when a database is distributed across several
sites, they can help avoid the shipment of many unneeded tuples.

Because of its practical importance, we would like to have a clear knowledge of
the capabilities and the limitations of semijoins. For example, Bernstein, Chiu
and Goodman [4,5] have characterized the conjunctive queries computable
by semijoin programs. In this paper, we consider the much larger class of
queries computable in the variant of the full relational algebra obtained by
replacing the join operator by the semijoin operator. We call this the semijoin
algebra (SA). We will define an Ehrenfeucht-Fraissé game, that characterizes
the discerning power of the semijoin algebra. Using this tool, we illustrate the
borderline of expressibility of SA.

2 Preliminaries

In this section, we give a formal definition of the semijoin algebra.

From the outset, we assume a universe U of basic data values, over which a
number of predicates or relations are defined. These predicates can be com-
bined into quantifier-free first-order formulas, which are used in selection and
semijoin conditions. The names of these predicates and their arities are col-
lected in the vocabulary Ω. The equality predicate (=) is always in Ω. A
database schema is a finite set S of relation names, each associated with its
arity. S is disjoint from Ω. A database D over S is an assignment of a finite
relation D(R) ⊆ U

n to each R ∈ S, where n is the arity of R.

Definition 1 (Semijoin algebra, SA) Let S be a database schema. Syntax
and semantics of the Semijoin Algebra is inductively defined as follows:

(1) Each relation R ∈ S belongs to SA.
(2) If E1, E2 ∈ SA have arity n, then also E1∪E2, E1−E2 belong to SA and

are of arity n.
(3) If E1 ∈ SA has arity n and X is a subset of {1, . . . , n}, then πX(E1)

belongs to SA and is of arity #X.
(4) If E1, E2 ∈ SA have arities n and m, respectively, and θ1(x1, . . . , xn) and

θ2(x1, . . . , xn, y1, . . . , ym) are quantifier-free formulas over Ω, then also
σθ1(E1) and E1 ⋉θ2 E2 belong to SA and are of arity n.

The semantics of the selection and the semijoin operator are as follows: σθ1(E) :=
{(a1, . . . , an) ∈ E | θ1(a1, . . . , an) holds}, E1 ⋉θ2 E2 := {(a1, . . . , an) ∈ E1 |
∃(b1, . . . , bm) ∈ E2, θ2(a1, . . . , an, b1, . . . , bm) holds}. The semantics of the
other operators are well known.
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3 An Ehrenfeucht-Fraissé game for the semijoin algebra

In this section, we describe an Ehrenfeucht-Fräıssé game that characterizes
the discerning power of the semijoin algebra.

Let A and B be two databases over the same schema S. The semijoin game on
these databases is played by two players, called the spoiler and the duplicator.
They, in turn, choose tuples from the tuple spaces TA and TB, which are
defined as follows: TA :=

⋃

R∈S

⋃

{

πX(A(R)) | X ⊆ {1, . . . , arity(R)}
}

, and TB

is defined analogously. So, the players can pick tuples from the databases and
projections of these.

At each stage in the game, there is a tuple a ∈ TA and a tuple b ∈ TB. We will
denote such a configuration by (A, a;B, b). The conditions for the duplicator
to win the game with 0 rounds are:

(1) ∀R ∈ S, ∀X ⊆ {1, . . . , arity(R)} : a ∈ πX(A(R)) ⇔ b ∈ πX(B(R))
(2) for every atomic formula (equivalently, for every quantifier-free formula)

θ over Ω, θ(a) holds iff θ(b) holds.

In the game with m ≥ 1 rounds, the spoiler will be the first one to make a
move. Therefore, he first chooses a database (A or B). Then he picks a tuple
in TA or in TB respectively. The duplicator then has to make an “analogous”
move in the other tuple space. When the duplicator can hold this for m times,
no matter what moves the spoiler takes, we say that the duplicator wins the
m-round semijoin game on A and B. The “analogous” moves for the duplicator
are formally defined as legal answers in the next definition.

Definition 2 (legal answer) Suppose that at a certain moment in the semi-
join game, the configuration is (A, a;B, b). If the spoiler takes a tuple c ∈ TA

in his next move, then the tuples d ∈ TB, for which the following conditions
hold, are legal answers for the duplicator:

(1) ∀R ∈ S, ∀X ⊆ {1, . . . , arity(R)} : d ∈ πX(B(R)) ⇔ c ∈ πX(A(R))
(2) for every atomic formula θ over Ω, θ(a, c) holds iff θ(b, d) holds.

If the spoiler takes a tuple d ∈ TB, the legal answers c ∈ TA are defined
identically.

In the following, we denote the semijoin game with initial configuration (A, a;B, b)
and that consists of m rounds, by Gm(A, a;B, b).

We first state and prove

Proposition 3 If the duplicator wins Gm(A, a;B, b), then for each semijoin
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expression E with ≤ m nested semijoins and projections, we have a ∈ E(A) ⇔
b ∈ E(B).

PROOF. We prove this by induction on m. The base case m = 0 is clear.
Now consider the case m > 0. Suppose that a ∈ E1 ⋉θ E2 but b 6∈ E1 ⋉θ E2.
Then a ∈ E1(A) and ∃c ∈ E2(A) : θ(a, c), and either (*) b 6∈ E1(B) or
(**) ¬∃d ∈ E2(B) : θ(b, d). In situation (*), a and b are distinguished by an
expression with m − 1 semijoins or projections, so the spoiler has a winning
strategy; in situation (**), the spoiler has a winning strategy by choosing this
c ∈ E2(A) with θ(a, c), because each legal answer of the duplicator d has
θ(b, d) and therefore d 6∈ E2(B). So, the spoiler now has a winning strategy in
the game Gm−1(A, c;B, d). In case a projection distinguishes a and b, a sim-
ilar winning strategy for the spoiler exists. In case a and b are distinguished
by an expression that is neither a semijoin, nor a projection, there is a sim-
pler expression that distinguishes them, so the result follows by structural
induction.

We now come to the main theorem of the text. This theorem concerns the
game G∞(A, a;B, b), which we also abbreviate as G(A, a;B, b). We say that
the duplicator wins G(A, a;B, b) if the spoiler has no winning strategy. This
means that the duplicator can keep on playing forever, choosing legal answers
for every move of the spoiler.

Theorem 4 The duplicator wins G(A, a;B, b) if and only if for each semijoin
expression E, we have a ∈ E(A) ⇔ b ∈ E(B).

PROOF. The ‘only if’ direction of the proof follows directly from Proposi-
tion 3, because if the duplicator wins G(A, a;B, b), he wins Gm(A, a;B, b) for
every m ≥ 0. So, a and b are indistinguishable through all semijoin expres-
sions. For the ‘if’ direction, it is sufficient to prove that if the duplicator loses,
a and b are distinguishable. We therefore construct, by induction, a semijoin
expression Er

a such that (i) a ∈ Er
a(A), and (ii) b ∈ Er

a(B) iff the duplicator
wins Gr(A, a;B, b). We define E0

a as

σθa

(

⋂

R∈S

⋂

{X⊆Z|a∈πX(A(R))}

πX(R)
)

−
⋃

R∈S

⋃

{X⊆Z|a6∈πX(A(R))}

πX(R)

In this expression, Z is a shorthand for {1, . . . , arity(R)} and θa is the atomic
type of a over Ω, i.e., the conjunction of all atomic and negated atomic formulas
over Ω that are true of a.
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Table 1
Queries delineating the expressive power of the semijoin algebra.

Expressible Inexpressible

R× S ∩ T R× S ⊆ T

T ⊆ R× S T = R× S

R ◦ S ∩ T

T ⊆ R ◦ S

R ◦ S ⊆ T

∃ path of length k

∃ simple path of length k (k ≤ 2) ∃ simple path of length k (k ≥ 3)

∃ cycle of length k (k ≤ 2) ∃ cycle of length k (k ≥ 3)

∃ ≥ k elements (k ≥ 3)

We now construct Er
a in terms of Er−1

a :

⋂

c∈TA

(

E0
a ⋉θa,c E

r−1
c

)

∩
(

E0
a −

s
⋃

j=1

⋃

θ

(

E0
a ⋉θ

⋂

c∈TA

θ(a,c)

(Er−1
c )compl

))

In this expression, θa,c is the atomic type of a and c over Ω; s is the maximal
arity of a relation in S; θ ranges over all atomic Ω-types of two tuples, one with
the arity of a, and one with arity j. The notation Ecompl, for an expression of
arity k, is a shorthand for

E −
⋃

R∈S

⋃

X⊆{1,...,arity(R)}
#X=k

πX(R)

4 The expressive power of the semijoin algebra

In this section, we present some queries that delineate the expressive power of
the semijoin algebra. They are summarized in Table 1. The operation R ◦ S

for binary relations R and S is a shorthand for π1,4

(

σ2=3(R× S)
)

.

We now discuss the results presented in the table. The semijoin algebra lacks
the cartesian product operator, but nevertheless one can check if T ⊆ R× S.
Indeed, T ⊆ R×S iff T − (T ∩ R×S) = ∅, and T ∩ R×S = (T ⋉x1=y1∧x2=y2

R)⋉x3=y1∧x4=y2S. Conversely, it is impossible to check if T ⊇ R×S. In Figure 1,
two databases A and B are shown that are indistinguishable through semijoin
expressions because the duplicator has an obvious winning strategy. But A
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A(R)

a

b

A(S)

1

2

A(T )

a 1

a 2

b 1

b 2

B(R)

a

b

c

B(S)

1

2

3

B(T )

a 1

a 2

b 2

b 3

c 1

c 3

Fig. 1. In A, T = R× S, but not in B.

A(R)

1 a

3 b

A(S)

a 2

b 4

A(T )

1 2

3 4

B(R)

1 a

3 b

B(S)

b 2

a 4

B(T )

1 2

3 4

Fig. 2. In A, T = R ◦ S, but in B neither T ⊆ R ◦ S nor T ⊇ R ◦ S.

satisfies T ⊇ R × S and B does not. The same databases actually show that
it is impossible to check if T = R × S.

Although one can check in SA if a relation is contained in a cartesian product,
it is impossible to check if a relation is contained in or subsumed by a join.
Using our semijoin game, one can show that databases A and B in Figure 2
satisfy the same semijoin expressions. But A satisfies T = R ◦ S, while B

satisfies neither T ⊆ R ◦ S nor T ⊇ R ◦ S. Note that a binary relation R is
transitive if and only if R ◦R ⊆ R. This is a special case of R ◦ S ⊆ T ; yet, a
similar argument shows that transitivity is also inexpressible in the semijoin
algebra.

The existence of a path of length k can be checked with the following induc-
tively defined semijoin expression:











path(1) := R

path(k) := R⋉x2=y1

(

path(k − 1)
)

Problems arise when we require the path to be simple. Let D(k) be the struc-
ture {(1, 2), (2, 3), . . . , (k− 1, k), (k, 1)} over the schema S containing a single
edge relation R. Then, the duplicator has a winning strategy in the infinite
game played on D(k) and D(k+1) where k ≥ 4. To see this, note that only three
types of moves are possible here: next tuple (change only first component of
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pebbled tuple), previous tuple (change only second component) and other tu-
ple (change both components). The duplicator can answer every type of move
of the spoiler. But D(k+1) contains a simple path of length k and D(k) does not.
For k = 3, note that D(3) and D(4) are distinguishable. Nevertheless, existence
of a simple path of length 3 is still inexpressible because D(4) is indistinguish-
able from the structure consisting of two disjoint copies of D(3). For k = 2,
the existence of a path of length 2 is expressible as R⋉x2=y1∧x2 6=x1∧y2 6=x2

R.

Another property that is inexpressible in SA is the existence of a cycle of
length k. For k ≥ 4, the inexpressibility result follows because D(k) contains a
cycle of length k and D(k+1) does not. For k = 3, that the structure consisting
of two disjoint copies of D(3) contains a cycle of length 3, but D(4) does not.

A last example of a query that is inexpressible in SA is the query that asks if
there are at least k elements in a unary relation S, where k ≥ 3. This property
is inexpressible because the duplicator has a winning strategy in the infinite
game played on two relations, one with 2 and one with k distinct elements.

5 Impact of order

In this section, we investigate the impact of order. On ordered databases
(where Ω now also contains a total order on the domain), the query that
asks if there are at least k elements in a unary relation S becomes expressible
as at least(k), which is inductively defined as follows:











at least(1) := S

at least(k) := S ⋉x1<y1

(

at least(k − 1)
)

Note that this query is independent of the order. This is very interesting
because in first-order logic, there also exists an order-invariant query that is
expressible with but inexpressible without order ([1, Exercise 17.27] and [6,
Proposition 2.5.6]).

Some inexpressible queries presented in Section 4 remain inexpressible on or-
dered databases. An example is the query R × S ⊆ T . Indeed, consider the
following databases A and B: A(R) = B(R) = {1, 2, . . . , m}, A(S) = B(S) =
{m+1, m+2, . . . , 2m}, A(T ) = A(R)×A(S) and B(T ) = A(T )−{(m+1

2
, m+

m+1
2

)}. We will show that when m = 2n + 1, the duplicator has a winning
strategy in the n-round semijoin game Gn(A, 〈〉;B, 〈〉) with Ω = {=, <}. From
Lemma 3, it then follows that the query R × S ⊆ T is inexpressible in SA.
The duplicator’s winning strategy consists of playing exact match until the
spoiler chooses c to be the special tuple (m+1

2
, m+ m+1

2
) in A. In that case we

must distinguish five possibilities for the previous tuple a: (1) a1 = m+3
2

, (2)
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a1 =
m−1
2

, (3) a1 =
m+1
2

and a2 = m + m+3
2

, (4) a1 =
m+1
2

and a2 = m + m−1
2

and (5) all other cases. The duplicator chooses d equal to (m−1
2

, m+ m+1
2

) in
case 1, (m+3

2
, m+ m+1

2
) in case 2, (m+1

2
, m+ m−1

2
) in case 3, (m+1

2
, m+ m+3

2
) in

case 4, and (m−1
2

, m+ m+1
2

) in case 5. Let us assume case 1 applies; cases 2 to
5 are analogous. Then, there are two possibilities. First, if the spoiler chooses
a value c1 6= a1 − 1 or if he chooses a value d1 6= b1 + 1 in some next round,
the duplicator can play exact match and the game starts over. Second, if the
spoiler chooses in each next round c1 = a1 − 1 or d1 = b1 + 1, the duplicator
answers d1 = b1−1 or c1 = a1+1, respectively. The duplicator can follow this
strategy for at least m−3

2
= n− 1 rounds. Counting from the round where the

spoiler chose the special tuple, we thus see that the duplicator wins the game
Gn(A, 〈〉;B, 〈〉).

Exactly the same argument shows that also the query R×S = T is inexpress-
ible in SA with order.

Another query from Table 1 that remains inexpressible in SA with order is
R ◦ S ⊆ T . Therefore, consider the following databases A and B: A(R) =
B(R) = {1, . . . , m}×{2m+1}, A(S) = B(S) = {2m+1}×{m+1, . . . , 2m},
A(T ) = A(R) ◦ A(S) = {1, . . . , m} × {m + 1, . . . , 2m} and B(T ) = B(R) ◦
B(S) − {(m+1

2
, m+ m+1

2
)}. A similar argument as in the previous paragraph

shows that when m = 2n+1, the duplicator wins Gn(A, 〈〉;B, 〈〉). Again, this
also shows that R ◦ S = T is inexpressible in SA with order.

For the remaining SA-inexpressible queries in Table 1, the question whether
they become expressible in SA with order remains open.

6 Concluding remarks

Interestingly, there is a fragment of first-order logic very similar to the semijoin
algebra: it is the so called “guarded fragment”(GF) [2], which has been studied
in the field of modal logic. This is interesting because the motivations to study
this fragment came purely from the field of logic and had nothing to do with
database query processing. Indeed, the purpose was to extend propositional
modal logic to the predicate level, retaining the good properties of modal
logic, such as the finite model property. An important tool in the study of
the expressive power of the GF is the notion of “guarded bisimulation”, which
provides a characterization of the discerning power of the GF.

When we only allow conjunctions of equalities to be used in the semijoin condi-
tions, SA is subsumed by GF, and conversely, every GF sentence is expressible
in SA.
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When negations of equalities are allowed in semijoin conditions, however, SA is
no longer subsumed by GF. A counterexample is the query that asks whether
there are at least two distinct elements in a single unary relation S. This is
expressible in SA as S ⋉x1 6=y1 S, but it is not expressible in GF. Proofs of the
claims presented in this section will be presented in a separate paper.
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