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Abstract

Let A = 〈a1, a2, . . . , am〉 and B = 〈b1, b2, . . . , bn〉 be two sequences, where each pair of elements in the sequen
comparable. A common increasing subsequence ofA and B is a subsequence〈ai1 = bj1, ai2 = bj2, . . . , ail = bjl

〉, where
i1 < i2 < · · · < il and j1 < j2 < · · · < jl , such that for all 1� k < l, we haveaik < aik+1. A longest common increasin
subsequence ofA andB is a common increasing subsequence of the maximum length. This paper presents an algor
delivering a longest common increasing subsequence in O(mn) time and O(mn) space.
 2004 Elsevier B.V. All rights reserved.
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The longest common subsequence (LCS) prob
and the longest increasing subsequence (LIS) prob
are both very classical problems in computer scien
By using the dynamic programming technique,
LCS problem can be solved in O(mn) time. Knuth [3]
posed the question of whether a sub-quadratic a
rithm for the LCS problem exists. Masek and Pater
[10] gave an algorithm that runs in O(mn/ logn) time,
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O((n + m) log(n + m)) algorithm for the special cas
in which no element appears more than once in an
put sequence. Interested readers can refer to a re
survey by Bergroth et al. [1].

On the other hand, there is a rich history for t
longest increasing subsequence problem as well,
see [6,11]. Schensted [12] and Knuth [8] gave
O(n logn) time algorithm for this problem where th
input is an arbitrary sequence ofn numbers. For a
special case in which the input sequence is a per
tation of {1,2, . . . , n}, Hunt and Szymanski [7], an

.
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Bespamyatnikh and Segal [2] gave algorithms that run
in O(n log logn) time.
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between the sequences〈a1, a2, . . . , ai〉 and〈b1, b2, . . . ,

bj 〉, where 1� i � m and 1� j, k � n. In order
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f
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In this paper, we consider the longest common
creasing subsequence (LCIS) problem, whose go
to find a maximum-length common subsequence
the two sequences such that the subsequence i
creasing. This problem might arise in the situat
where we wish to find the longest set of MUMs who
sequences occur in ascending order in three or m
genomic sequences [4,5]. Formally speaking, leA

and B be two sequencesA = 〈a1, a2, . . . , am〉 and
B = 〈b1, b2, . . . , bn〉, wherem � n and each pair o
elements in the sequencesis comparable. A commo
increasing subsequence ofA andB is a subsequenc
〈ai1 = bj1, ai2 = bj2, . . . , ail = bjl 〉, wherei1 < i2 <

· · · < il andj1 < j2 < · · · < jl , such that for all 1�
k < l, we haveaik < aik+1. A longest common increas
ing subsequence ofA andB is a common increasin
subsequence of the maximum length. A straight
ward O(mn2)-time algorithm for this problem is to
sort the shorter sequence, and then find a longest c
mon subsequence among the two sequences an
sorted sequence. Here we give an algorithm that so
the longest common increasing subsequence prob
in O(mn) time and O(mn) space.

2. The algorithm

This algorithm utilizes a folklore algorithm (see [
for more details) which runs in O(n logn) time and
O(n) space for the LIS problem. Define an arrayL[k]
to be the smallest ending number of an increasing s
sequence of lengthk, where 1� k � n. Assume that
each entry inL is initially an infinite value. For each
position, perform a binary search to updateL and
make a backtracking link to the former number. T
largestk such thatL[k] contains non-infinite value i
the length of a longest increasing subsequence. T
ing back fromL[k] along with the link we establishe
before will deliver a longest increasing subsequen
Its running time and space is O(n logn) and O(n),
respectively. In this paper, the arrayL will be ex-
plored between every pair of the prefix substrings
the two sequences. Instead of using binary search
use linear search by a given starting point to upd
the arrayL.

Let Li
j [k] be the smallest ending number of

longest common increasing subsequence of lengk
-

-
e

to keep the backtracking information, we need two
more variables. Specifically, letL_indexi

j [k] (1 � i �
m,1 � j, k � n) record the index pair(x, y) such that
Li

j [k] is the elementax and by , and let Prev[i, j ]
(1 � i � m,1 � j � n) record the index pair(x, y)

such that there is a link from(i, j) to (x, y). A link
will be made in the functionLIS_insert and used in
the backtracking process.

It can be shown that the difference between arr
Li

j and Li−1
j as well as betweenLi

j and Li
j−1 is at

most one entry, which will be proved later in Lemma
We therefore use a variableχi

j for keeping the index

of the difference betweenLi
j andLi−1

j as follows.

χi
j =

{
l if Li

j [l] �= Li−1
j [l] for somel,

−1 if Li
j = Li−1

j .

Variable χi
j is used whileLi−1

j and Li
j−1 are

merged in themismatch case.
For i � 2 andj � 2, Li

j can be derived fromLi−1
j

andLi
j−1. There are two cases for computingLi

j : the
match case ifai = bj , and themismatch case ifai �=
bj . In thematch case, we do the following:

Li
j = Insertai into Li−1

j ,

and in themismatch case, we do the following:

Li
j = merge

(
Li

j−1,L
i−1
j

)
.

Here,inserting a number intoL refers to the process o
calling the functionLIS_insert(L,L_index,Prev, a,p,

i, j), which inserts an elementa into L, makes a link
Prev[i, j ] to the former number inL, and returns the
insertion index. Variablep stores the index of the las

LIS_insert(arrayL, arrayL_index, arrayPrev, elementa,
integerp, integeri, integerj )

1. x := p

2. while (L[x] < a) do
3. x := x + 1
4. L[x] := a

5. L_index[x] := (i, j)

6. if (x �= 1) then
7. Prev[i, j ] := L_index[x − 1]
8. return x

Fig. 1. The functionLIS_insert.
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inserted point, and is used as the starting index for the
next linear search (see Fig. 1).

on
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thus

L_indexi
j are denoted byLj , χ , andL_indexj , respec-

tively. Once this algorithm reaches line 17 of Fig. 2,

ing
long

-

s

2, . .
In the merging process,Li
j = merge(Li

j−1,L
i−1
j )

is defined to be for anyk � 1, Li
j [k] = min(Li

j−1[k],
Li−1

j [k]). Our algorithm first assignsLi−1
j to Li

j , and

then comparesLi
j [χi

j−1] with Li
j−1[χi

j−1]:

Li
j := Li−1

j ,

Li
j

[
χi

j−1

] := min
{
Li

j

[
χi

j−1

]
,Li

j−1

[
χi

j−1

]}
.

The resulting Li
j is equal to merge(Li

j−1,L
i−1
j ),

which will be proved later.
The algorithm for computing a longest comm

increasing subsequence is given in Fig. 2. One ob
vation is that after finishing computingLi

j , the array

Li−1
j can be discarded. Therefore, all theLj in dif-

ferent rows can use the same memory space and
avoid the time for copyingLi−1

j to Li
j . Besides,χi

j

can also be recycled to save space. Thus,Li
j , χi

j , and

INPUT: Two sequencesA = 〈a1, a2, . . . , am〉 andB = 〈b1, b
//initialization
the last non-infinite element of arrayLn stores the
LCIS’s ending number. A longest common increas
subsequence can be delivered by tracing back a
the links.

3. Correctness

Assume thatLi−1
j andLi

j−1 keep the correct end

ing numbers. For convenience,Li
j is first assigned a

Li−1
j , and then combined withLi

j−1. There are two
cases: the mismatch case and the match case.

3.1. The mismatch case

In the mismatch case (ai �= bj ), we do the follow-
ing:

Li
j = merge

(
Li

j−1,L
i−1
j

)
.

. , bn〉, wherem � n.
1. for j = 1 to n do
2. for k = 1 to n do
3. Lj [k] := ∞
4. for j = 1 to m do
5. for k = 1 to n do
6. Prev[j, k] := (−1,−1)

//main program
7. for i = 1 to m do
8. χ := −1, p := 1 //default value
9. for j = 1 to n do
10. if (ai = bj ) then //thematch case
11. χ , p := LIS_insert(Lj ,L_indexj ,Prev, ai ,p, i, j) //return the insertion position
12. else //themismatch case
13. if ((χ �= −1) and (Lj−1[χ] < Lj [χ])) then
14. Lj [χ] := Lj−1[χ]
15. else
16. χ := −1

//recover a longest common increasing subsequence in reverse order
17. x := the largestx such thatLn[x] �= ∞ (if x does not exist, print “NULL” andexit )
18. (y1, y2) := L_indexn[x]
19. print ay1
20. while (Prev[y1, y2] �= (−1,−1)) do
21. (y1, y2) := Prev[y1, y2]
22. print ay1

Fig. 2. The algorithm for computing a longest common increasing subsequence.
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Any common increasing subsequence of lengthk in
the sequences〈a1, a2, . . . , ai〉 and 〈b1, b2, . . . , bj−1〉

list,
ence
of
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ry
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There are four cases. First, ifLi−1
j−1 = Li

j−1 (i.e.,
i i−1 i−1 i−1 i

l

s
ub-

f

ent
or in the sequences〈a1, a2, . . . , ai−1〉 and〈b1, b2, . . . ,

bj 〉 will still exist in the sequences〈a1, a2, . . . , ai〉 and
〈b1, b2, . . . , bj 〉. By the definition ofLi

j [k], we have to
choose the “smallest” one. Moreover, becauseai �= bj ,
there will be no more new elements added into the
which means that a common increasing subsequ
of length k will still be a common subsequence
length exactlyk in the sequences〈a1, a2, . . . , ai〉 and
〈b1, b2, . . . , bj 〉.

Now, we prove thatLi
j computed by our algorithm

is the same asmerge(Li
j−1,L

i−1
j ).

Lemma 1. For any i, j > 1 in the dynamic-program-
ming table, there is at most one different entry be-
tween Li

j and Li−1
j (or between Li

j and Li
j−1). If

the different entry is Li
j [k], then Li

j [k] < Li−1
j [k] (or

Li
j [k] < Li

j−1[k]).

Proof. BetweenLi
j and Li−1

j , if ai matches one o
the letter in sequence〈b1, b2, . . . , bj 〉, we will insert
at most oneai into Li−1

j and cause at most one ent

smaller. Similar arguments hold forLi
j andLi

j−1. �
Lemma 2. For any i, j > 1 in the dynamic-program-
ming table, there are at most two different entries
between Li

j−1 and Li−1
j . If there are two differ-

ences, then one of them is at index χi
j−1 such that

Li
j−1[χi

j−1] < Li−1
j [χi

j−1], and the other difference is

at index λ, where Li
j−1[λ] > Li−1

j [λ]. If there is only

one difference, it is at index χi
j−1.

Proof. By Lemma 1, there is at most one different e
try betweenLi−1

j andLi−1
j−1, and if this happens, le

us assumeLi−1
j−1[λ] > Li−1

j [λ]. There is also at mos

one different entry betweenLi−1
j−1 andLi

j−1, and if this

happens, let us assumeLi−1
j−1[χi

j−1] > Li
j−1[χi

j−1].
If χi

j−1 �= λ, then there are two differences and t

lemma holds. Ifχi
j−1 = λ, then there is at most on

different entry, which is recorded byχi
j−1. �

By Lemma 2, while mergingLi−1
j with Li

j−1,
we need to compare at most two different entri
χj−1 = −1) andLj−1 = Lj , thenLj = Lj−1. So

we haveLi
j = Li−1

j = merge(Li
j−1,L

i−1
j ). Second,

if Li−1
j−1 = Li

j−1 (i.e., χi
j−1 = −1) andLi−1

j−1 �= Li−1
j

where Li−1
j−1[k] > Li−1

j [k] (Lemma 1), then for al

k, Li−1
j [k] � Li−1

j−1[k] = Li
j−1[k]. It follows Li

j =
Li−1

j = merge(Li
j−1,L

i−1
j ). Third, if Li−1

j−1 �= Li
j−1

(i.e., χi
j−1 �= −1) whereLi

j−1[χi
j−1] < Li−1

j−1[χi
j−1]

andLi−1
j−1 = Li−1

j , then for allk �= χi
j−1, Li−1

j [k] =
Li−1

j−1[k] = Li
j−1 and Li

j−1[χi
j−1] < Li−1

j−1[χi
j−1] =

Li−1
j [χi

j−1]. We set Li
j = Li−1

j and Li
j [χi

j−1] =
Li

j−1[χi
j−1]. ThusLi

j will be equal tomerge(Li
j−1,

Li−1
j ). Finally, consider the case whereLi−1

j−1 �= Li
j−1

(i.e., χi
j−1 �= −1) and Li−1

j−1 �= Li−1
j . If there are

one or two different entries betweenLi−1
j andLi

j−1,

we let Li
j = Li−1

j andLi
j [χi

j−1] = min(Li
j−1[χi

j−1],
Li−1

j [χi
j−1]). By Lemma 2,Li

j is equal tomerge(Li
j−1,

Li−1
j ). If there is no different entry betweenLi−1

j and

Li
j−1, thenLi

j−1 = Li−1
j . Consequently,Li

j = Li−1
j =

merge(Li
j−1,L

i−1
j ).

3.2. The match case

In the match case (ai = bj ), we do the following:

Li
j = Insertai into Li−1

j .

For the two sequences〈a1, a2, . . . , ai〉 and〈b1, b2, . . . ,

bj 〉, ai = bj is the last “common” element. That mean
that it can be added to any common increasing s
sequence with ending number smaller thanai . Thus,
insertingai into Li−1

j will maintain the invariance o

Li
j . Whetherai is already inLi−1

j or not, the result-

ing Li
j is correct because the insertion process will do

nothing if the element is already in it.

Lemma 3. In the same row Li , the indices p of all
insertion points are non-decreasing from the index j =
1 to j = n.

Proof. Observe that, in the same row, every elem
to be inserted is equal toai . For all k � 1, from Li

1
to Li

n, by Lemma 1, each change betweenLi
j [k] and
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Li
j+1[k] is always decreasing. Assume that the in-

dex of the last insertion point ofLi is p , it follows

us,
to

rch
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est
me.
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Li
j [1],Li

j [2], . . . ,Li
j [p1 − 1] are smaller thanai . In

the next match case, this property still holds. Th
the insertion point will not be in the range of 1
p1 − 1. �

Lemma 3 implies that we can perform linear sea
from the previously recorded indexp.

4. Time and space complexity

There are two loops in the algorithm of Fig. 2:
inner loopfor j = 1 to n (line 9) and an outer loopfor
i = 1 to m (line 7). During each execution of the out
loop body (the same indexi), there aren steps with
two cases:mismatch andmatch. In themismatch case,
only one comparison is required. In thematch case,
the procedureLIS_insert will do linear search fromp

to the insertion point and updatep. By Lemma 3,p
is non-decreasing for each outer loop, and 1� p � n.
Therefore, for each outer loop, it takes O(n) time. The
overall time complexity is O(mn).

As Fig. 2 shows, for all 1� i � m, Li
j and

L_indexi
j share the memory spaceLj andL_indexi

j ,

respectively, and thus requires O(n2) space. Variables
Prev[i, j ] are used for the range 1� i � m, 1� j � n,
which would require O(mn) space. It follows that this
algorithm runs in O(mn) space.

5. Discussion

We presented an algorithm for computing a long
common increasing subsequence in quadratic ti
Can one do it in sub-quadratic time?
We thank the reviewers for their helpful commen
that improve the presentation of the paper. Kun-M
Chao was supported in part by an NSC grant 92-22
E-002-073 from the National Science Council, T
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