Available online at www.sciencedirect.com

: - Information
§@ SGIENCE@DIRECT" P .
i3 rocessing
& Letters
ELSEVIER Information Processing Letters 93 (2005) 249-253

www.elsevier.com/locatefipl

A fast algorithm for computing a longest common increasing
subsequence

I-Hsuan Yangd, Chien-Pin Huan§ Kun-Mao Chag"*

@ Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
b |nstitute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan

Received 21 May 2003; received in revised form 9 August 2004
Available online 2 December 2004
Communicated by P.M.B. Vitanyi

Abstract

Let A = (aq,a2,...,an) and B = (b1, bo, ..., b,) be two sequences, where each pair of elements in the sequences is
comparable. A common increasing subsequencd aind B is a subsequencey, = bj,,a;, = bj,,...,a; = bj,), where
i1 <ip<---<ipandji <j2<---<jjsuch that for all I< k </, we haveg;, <a;_,. A longest common increasing
subsequence of and B is a common increasing subsequence of the maximum length. This paper presents an algorithm for
delivering a longest common increasing subsequencgrmptime and Qmn) space.

00 2004 Elsevier B.V. All rights reserved.

Keywords: Algorithms; Computational biology; Longest commsubsequence; Longest increasing subsequence

1. Introduction wheren < m and the subsequences are drawn from
a set of bounded size. Szymanski [13] proposed an
The longest common subsequence (LCS) problem O((n + m) log(n + m)) algorithm for the special case
and the longest increasing subsequence (LIS) problemin which no element appears more than once in an in-
are both very classical problems in computer science. put sequence. Interested readers can refer to a recent
By using the dynamic programming technique, the survey by Bergroth et al. [1].
LCS problem can be solved in(@n) time. Knuth [3] On the other hand, there is a rich history for the

posed the question of whether a sub-quadratic algo- |ongest increasing subsequence problem as well, e.g.,
rithm for the LCS problem exists. Masek and Paterson see [6,11]. Schensted [12] and Knuth [8] gave an

[10] gave an algorithm that runs in(@n/ logn) time, O(nlogn) time algorithm for this problem where the
input is an arbitrary sequence afnumbers. For a
* Corresponding author. special case in which the input sequence is a permu-
E-mail address: kmchao@csie.ntu.edu.tw (K.-M. Chao). tation of {1, 2, ..., n}, Hunt and Szymanski [7], and

0020-0190/$ — see front mattéi 2004 Elsevier B.V. All rights reserved.
doi:10.1016/).ipl.2004.10.014

250 I-H. Yang et al. / Information Processing Letters 93 (2005) 249-253

Bespamyatnikh and Segal [2] gave algorithms that run between the sequences, a, ..., a;) and{b1, b, ...,
in O(n loglogn) time. b;), where 1< i <m and 1< j, k < n. In order
In this paper, we consider the longest common in- to keep the backtrackingrformation, we need two
creasing subsequence (LCIS) problem, whose goal is more variables. Specifically, Igt_index’[k] (1 <i <
to find a maximum-length common subsequence of m, 1< j, k <n) record the index paix, y) such that
the two sequences such that the subsequence is in-L;[k] is the element, and by, and letPrev[i, j]
creasing. This problem might arise in the situation (1 <i <m,1< j < n) record the index paifx, y)
where we wish to find the longest set of MUMs whose such that there is a link fron, j) to (x, y). A link
sequences occur in ascending order in three or morewill be made in the functioiIS insert and used in
genomic sequences [4,5]. Formally speaking,det the backtracking process.
and B be two sequenced = (a1, az,...,a,) and It can be shown that the difference between arrays
B = (b1,b2,...,b,), wherem > n and each pair of L; and L as well as betweed. and Lj'—l is at
elements in the sequencisscomparable. A common most one entry, which will be proved later in Lemma 1.
increasing subsequence Afand B is a subsequence We therefore use a variabkéj'. for keeping the index
(aj, = bjl,a,-z = bj29 ce G = bj,), wherei; < iz <
- <ijandji < j2 <--- < ji, such that for all I
k <1, we havey;, < a;,,,.Alongestcommon increas- i {l if Li'[l] # Lj.‘l[l] for somel,
Xj= 1

of the difference betweehj. andL;‘1 as follows.

ing subsequence of and B is a common increasing
subsequence of the maximum length. A straightfor-
ward Qimn?)-time algorithm for this problem is to Variable x is used while i1 and Li . are
i - . " J Jj—1
sort the shorter sequence, and then find a longest com merged in themismatch case.
mon subsequence among the two sequences and the Fori >2 and;j > 2, L’ can be derived froni!~?
= = H]]

sorted sequence. Here we give an algorithm that solves L h ¢ inée th
the longest common increasing subsequence problem®"” Lf_;. There are two cases for computmg. the
match case ifa; = b;, and themismatch case ifa; #

in O(mn) time and Qmn) space. .
b;. In thematch case, we do the following:

e ri_ ri—1
|ij_Lj .

2. Thealgorithm L', = Insertq; into L,

This algorithm utilizes a folklore algorithm (see [9] ahd n thmthh c'ase, we do the following:
for more details) which runs in @logn) time and L) =merge(L}_;, L'™).
O(n) space for the LIS problem. Define an arrajk]

to be the smallest ending number of an increasing sub-
sequence of lengtk, where 1< k < n. Assume that
each entry inL is initially an infinite value. For each
position, perform a binary search to upddteand
make a backtracking link to the former number. The
largestk such thatL[k] contains non-infinite value is
the length of a longest increasing subsequence. Trac-LIS insert(arrayL, arrayL_index, arrayPrev, elementa,
ing back fromL[k] along with the link we established integerp, integeri, integer,)

before will deliver a longest increasing subsequence. = * =7

Here,inserting a number intd. refers to the process of
calling the functiorLIS insert(L, L_index, Prev, a, p,

i, j), which inserts an elementinto L, makes a link

Previi, j] to the former number iri., and returns the
insertion index. Variablg stores the index of the last

Its running time and space is(@logn) and Qn), Wh”fe_(L[ff a) do
respectively. In this paper, the arrdy will be ex- L[);]';xa

ahwWwN R

plored between every pair of the prefix substrings of ¢, index(x] := (i, /)
the two sequences. Instead of using binary search, weg if (x % 1) then
use linear search by a given starting point to update 7. prey(i, j]:= L_index(x — 1]
the arrayL. 8. return x

Let L;[k] be the smallest ending number of a
longest common increasing subsequence of lekgth Fig. 1. The functiorLIS insert.

I-H. Yang et al. / Information Processing Letters 93 (2005) 249-253 251

inserted point, and is used as the starting index for the L_index’. are denoted by ;, x,andL_index;, respec-

next linear search (see Fig. 1). ' _ tively. Once this algorithm reaches line 17 of Fig. 2,

In the merging processJJj = merge(L’j_l, L’j‘l) the last non-infinite element of arral, stores the
is defined to be for any > 1, L [k] = min(Li_,[k] LCIS’s ending number. A longest common increasing

. = il J)]_ E) A R

L’j‘l[k]). Our algorithm first assignB’j‘l o L’j, and f#:ﬁsgsence can be delivered by tracing back along
then compareﬂ’j[x;_l] with L’j_l[x}_l]:
LS’ — L;—l, 3. Correctness
L5[xG-a] = min{L5[x; 1], L1 [xj -]} Assume thaILj.‘l andLi._l keep the correct end-
The resulting L', is equal to merge(L'._, LY ing numbers. For conveniencla"j is first assigned as
which will be proved later. / / L;‘l, and then combined WitﬂLi._l. There are two

The algorithm for computing a longest common cases: the mismatch case and the match case.
increasing subsequence is given in Fig. 2. One obser-
vation is that after finishing computingy;, the array 3.1. The mismatch case
L'™* can be discarded. Therefore, all thg in dif- .
ferent rows can use the same memory space and thus ' the mismatch caser(b;), we do the follow-
avoid the time for copyingjj‘l to L’. Besides,x! Ing:
C . . -
can also be recycled to save space. THus,x;, and L= merge(b1 L’j)-

INPUT: Two sequenced = (a1, ap, ...,ay) andB = (bq, by, ..., by,), wherem > n.
/linitialization
for j=1ton do
for k=1ton do
L[k]:=o00
for j=1tom do
for k=1ton do
Prev(j, k]:=(-1,-1)
/Imain program
7. fori=1tomdo
8. x:=-1,p:=1 [ldefault value
9. for j=1ton do

okl wnpE

10. if (a; =b;) then /thematch case

11. X, p:=LIS insert(L;, L_index;, Prev,q;, p,i, j) //return the insertion position
12. ese //themismatch case

13. if (x #—1) and (L;j_1[x] < L;[x)) then

14. Lilx]l:=L;_1lx]

15. else

16. x:=-1

/lrecover a longest common increasing subsequence in reverse order
17. x := the largest such thatL,[x] # oo (if x does not exist, print “NULL" andxit)
18. (y1,y2) := L_index, [x]
19. print ay,
20. while (Prev[y1, y2] # (=1, —1)) do

21, (y1,y2) :=Prevlys, y2i
22. printay,

Fig. 2. The algorithm for computing a longest common increasing subsequence.

252 I-H. Yang et al. / Information Processing Letters 93 (2005) 249-253

Any common increasing subsequence of lerigth There are four cases. First, Ez.‘_ll = Lz._l (i.e.,
the ste]quencesal,ézz, ...,a;) and ()blléz(b . b bj_1) X;—l - 1) andL’] 11_ Li—l thenLi'—l _ L;—l' So
or in the sequencegas, ay, ..., a;—1) and(b1, by, ..., ; is1 i-1
b;) will still existinthe sequence@iy, az, . .., a;) and we ha}LveL =Ly = merge(Lj 1’LJ 131 Sec??fl’
(b1, b2, ..., b;). By the definition ofL’.[k], we haveto if L3 =L, (|.e., Xjop=-1andL,; # L}
choose the* smallest one. Moreover becausg b;, where L’ l[k] > Li'_l[k] (Lemma 1), then for all
there will be no more new elements added into the list, Lz 1[k] Li_—:li[k] — I LK1 1t follows Li _
which means that a common increasing subsequence i1’ i1 i
of length k will still be a common subsequence of Lj = = Mmerge(L}_j. L})- Third, if L= # L, 1
length exactlyk in the sequence&, a, ..., qa;) and (i.e., Xj—l #* .1) whereL’j_l[X}_l].< j—_l[Xj—l]
(b1, b2, ... bj). . ib wortm 2 L7] = L7, then for allk # x!_;, L7 k] =

Now, we prove thaL’; compute our algorithm i ; ; ; i1

P P y 9 Lk =L, and Li_j[xt 4] < L7440 =

|sthesameamelge(L] 1 L. Lz—l[X; 1 We setLi = Ll—l and Li[x}_,] =

Lemma 1. For any i, j > 1 in the dynamic-program L% _4[x}_4]. ThusL W'” be equal tomerge(Lj 1
ming table, there is at most one different entry be- L’). Finally, con5|der the case WheLé #L!

tween L. and L~ (or between L, and L' ,). If 1 Lo
Wi j and Lj (or betw j j—l)' (|.e., Xj—l # —1) and L j—l + L’j . If there are

the different entry is L[], then L[k] < L;‘l[k] (or

) , one or two different entries be'[weelr‘;l.‘l andLj._l,
L[kl < L _y[k]).

we let L, = Li™t and L[} _y] = min(Li,_y[x!_,],

' i-1 L’ ! B Lemma2L’ is equal taverge(L’._,,
Proof. BetweenL', and L’j‘l, if a; matches one of ! 1[XJ 1)- By Ljlseq ge(/ 1
the letter in sequencey, by, ..., b;), we will insert L. If there is no dlf;ferent entry betweelri imd
at most oney; into L'~ and cause at most one entry L’] 1 thenL‘J._l = L' ConsequentlyL.’; = Llj =

smaller. Similar arguments hold fér; andL’_,. O merge(L’_;, L'™H.

Lemma 2. For any i, j > 1 in the dynamic-program- 3.2. The match case

ming table, there are at most two different entries

between Lz._l and L’j‘l. If there are two differ- In the match caseif = b;), we do the following:

ences, then one of them is at index X;‘-l such that

Ll [t L7 _,1, and the other differenceis

J,‘l[X/‘l] =5 EX/‘l] 1 , For the two sequencés: , ax,, a;) and(b1, bo, ...,
atindexz, where L _4[1] > Ly "[A]. If thereisonly) 4, —p; is the last “common” @ment. That means
one difference, itisat index x_;. that it can be added to any common increasing sub-

_ _ sequence with ending number smaller tkanThus,
Proof. By Lemma 1, there is at most one differenten- insertingq; into L’j_1 will maintain the invariance of

i-1 i-1 P, , .

try between_le and L,j—ll’ and if this happens, let L';. Whetherg; is already inL’j‘1 or not, the result-
11— 11— 1 .

us assume.;";[A] > L 7[A]. There is also at most 4 ;i js correct because thesertion process will do

one dlfferent entry betweeﬁ 1 andL] 1» andif this nothing if the element is already in it.

happens, let us assurriéfj_l[xj_l] > Lj_l[X}_l]-

If xi_1 # A, then there are two differences and the

lemma holds. Iij._l = A, then there is at most one

different entry, which is recorded 056-_1-)

= Insertq; into L;‘l.

Lemma 3. In the same row L, the indices p of all
insertion pointsare non-decreasing fromtheindex j =
ltoj=n.

Proof. Observe that, in the same row, every element
By Lemma 2, while mergingL;._l with Lj._l, to be inserted is equal t@;. For all k > 1, from L}
we need to compare at most two different entries. to L, by Lemma 1, each change betwee?ﬁk] and

I-H. Yang et al. / Information Processing Letters 93 (2005) 249-253

253

L3.+1[k] is always decreasing. Assume that the in- Acknowledgements

dex of the last insertion point dtﬂ. is p1, it follows
Li.[l], L?[Z], e L;[pl — 1] are smaller tham;. In

the next match case, this property still holds. Thus,

the insertion point will not be in the range of 1 to
pi—1. O

Lemma 3 implies that we can perform linear search

from the previously recorded indgx

4. Time and space complexity

There are two loops in the algorithm of Fig. 2: an
inner loopfor j = 1ton (line 9) and an outer loofor
i =1tom (line 7). During each execution of the outer
loop body (the same indey, there aren steps with
two casesmismatch andmatch. In themismatch case,
only one comparison is required. In thaatch case,
the procedurélS insert will do linear search fromp
to the insertion point and update By Lemma 3,p
is non-decreasing for each outer loop, angd b < n.
Therefore, for each outer loop, it takegn®time. The
overall time complexity is Qnn).

As Fig. 2 shows, for all 1< i < m, L; and
L_indexi. share the memory spadeg; and L_indexi.,
respectively, and thus requires/3) space. Variables
Prev(i, j] are used for the rangedi <m, 1< j <n,
which would require @nn) space. It follows that this
algorithm runs in @mn) space.

5. Discussion

We thank the reviewers for their helpful comments

that improve the presentation of the paper. Kun-Mao

Chao was supported in part by an NSC grant 92-2213-
E-002-073 from the National Science Council, Tai-

wan.

References

[1] L. Bergroth, H. Hakonen, TRaita, A survey of longest com-
mon subsequence algorithms, Rroc. 7th Internat. Symp. on
String Processing Information Retrieval (SPIRE’00), Spain,
2000, pp. 39-48.

[2] S. Bespamyatnikh, M. Segal, Enumerating longest increasing
subsequences and patience sorting, Inform. Process. Lett. 76
(2000) 7-11.

[3] V. Chvatal, D.A. Klarner, D.E. Knuth, Selected combinatorial
research problems, Technid&port, STAN-CS-72-292, Com-
puter Science Department, Stanford University, 1972.

[4] A.L. Delcher, S. Kasif, R.D. Fleischmann, J. Peterson, O.
White, S.L. Salzberg, Alignment of whole genomes, Nucleic
Acids Res. 27 (1999) 2369-2376.

[5] A.L. Delcher, A. Phillippy, J. Carlton, S.L. Salzberg, Fast al-
gorithms for large-scale genome alignment and comparison,
Nucleic Acids Res. 30 (2002) 2478-2483.

[6] M.L. Fredman, On computing the length of longest increasing
subsequences, Discrete Math. 11 (1975) 29-35.

[7] J. Hunt, T. Szymanski, A fast algorithm for computing longest
common subsequences, Comm. ACM 20 (1977) 350-353.

[8] D.E. Knuth, Sorting and Searching, The Art of Computer Pro-
gramming, vol. 3, Addison-Wesley, Reading, MA, 1973.

[9] U. Manber, Introduction to Algorithms—A Creative Ap-
proach, Addison-Wesley, Reading, MA, 1989.

[10] W.J. Masek, M.S. Paterson, A faster algorithm computing
string edit distances, J. Comput. System Sci. 20 (1) (1980) 18—
31.

[11] J. Matousek, E. Welzl, Good splitters for counting points in
triangles, J. Algorithms 13 (1992) 307-319.

[12] C. Schensted, Longest increasing and decreasing subse-
guences, Canad. J. Math. 13 (1961) 179-191.

We presented an algorithm for computing a longest |13} 1. szymanski, A special case of the maximal common subse-

common increasing subsequence in quadratic time.

Can one do it in sub-quadratic time?

guence problem, Technical RepdFR-170, Computer Science
Laboratory, Princeton University, 1975.

