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Abstract

In 1999, Smart has shown how to solve in linear time ECDLP for elliptic curves of
trace 1 defined over a prime finite field Fp, the so-called anomalous elliptic curves.
In this article, we show how to construct such cryptographically weak curves for
primes p of industrial length, using complex multiplication theory.
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1 Introduction

During the last decade, a considerable amount of work has been dedicated
to the cryptography based on the Elliptic Curve Discrete Logarithm Prob-
lem (ECDLP). The motivation of this development is that there is no known
sub-exponential algorithm which solves the ECDLP in general. The princi-
pal applications based on this problem are the cryptosystems based on the
ElGamal scheme, like e.g. the standard signature scheme ECDSA [1].

Although the ECDLP is believed to be hard in general, it has been shown that
some special curves do not possess a difficult ECDLP so that malicious parties
could in principle purposely generate cryptographically weak elliptic curves. In
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(Sébastien Varrette), Serge.Vaudenay@epfl.ch (Serge Vaudenay).
1 Supported in part by a grant of the Swiss National Science Foundation, 200021-
101453/1.

Preprint submitted to Elsevier Science 16 November 2004



1999, Smart provided a very efficient method for solving the ECDLP in linear
time when the underlying elliptic curve is anomalous, i.e. when the number
of rational points on Fp is equal to the prime number p. This corresponds to
curves of trace one. In this paper, we show that checking if a given elliptic
curve defined over a prime field Fp is anomalous or not is a crucial step, since a
malicious entity can effectively generate elliptic curves of trace one efficiently.

2 The Attack of Smart

In this section, we explain the attack of Smart [9] and recall most of the
required background. This is essentially a summary of [6]. Most of the results
concerning elliptic curves can be also found in [8].

2.1 Some Background

In this subsection, we present some background required in order to under-
stand the attack of Smart.

P-adic numbers. Let a be in Q and p be a prime integer. We can write a as
a = pr m

n
, where r ∈ N and m,n ∈ Z are not multiples of p. Then, we define

ordp(a) := r and the norm of a nonzero a as |a|p := p−r. The set of p-adic
numbers is defined as the completion of the rational numbers with respect to
the metric dp given by dp(a, b) := |a − b|p. Thus, every p-adic numbers can
be written uniquely in the form of an infinite series c−np−n + · · ·+ c0 + c1p+
· · · + cmp

m + · · · , where the ci’s are integers such that 0 ≤ ci ≤ p − 1. We
denote the set of the p-adic numbers as Qp. The p-adic numbers a such that
ordp(a) ≥ 0 form the set of the p-adic integers denoted as Zp. More details on
p-adic numbers can be found in [4].

Expansion around O. We consider an elliptic curve E given by the Weier-
strass equation y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6 and defined on a field
K. We resume here how we can represent the rational points of E around O
with one parameter in K. We first do the change of variables z = −x/y and
w = −1/y. The pointO is now represented as the pair (0, 0) in the (z, w)-plane.
The Weierstrass equation becomes w = z3+a1zw+a2z

2w+a3w
2+a4zw

2+a6w
3.

By substituing this equation into itself recursively, we can represent w in
a formal power series w(z) in z. Hence, we get x(z) = z

w(z)
= 1

z2 − a1

z
−

a2 − a3z − (a4 + a1a3)z2 − · · · and y(z) = −x(z)
z

. We notice that the pa-
rameter z can describe the points of this elliptic curve only when the series
x(z) converges. For instance, this is the case when K = Qp, z ∈ pZp, and
a1, a2, a3, a4, a6 ∈ Zp. The addition law of E can be described in the coordi-
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nate z with a formal power series. Hence, the addition of two points z1 and
z2 is given by F (z1, z2) = z1 + z2 − a1z1z2 . . .. In the case K = Qp, we define

the group Ê(pZp) as the set pZp with the addition law ⊕ induced by F , i.e.
z1 ⊕ z2 := F (z1, z2).

Reduction modulo p. Let E be an elliptic curve defined over Qp and given
by a Weierstrass equation. This equation can be written with coefficients in Zp.
If we reduce the coefficients modulo p of this equation, we get another curve
defined over Fp denoted by Ē, and called the reduction of E modulo p. We
point out that points of E can be also reduced to points of Ē. This is done by
expressing a point of E in projective coordinates with p-adic integers such that
at least one of them lies in Zp\pZp and then reducing each such coordinate
modulo p. Thus, we have a reduction map E(Qp) −→ Ē(Fp) mapping a point
P to its reduced point P̄ . From now on, we assume that the reduced curve
Ē/Fp is non-singular. We define E1(Qp) = {P ∈ E(Qp)|P̄ = O}. It is the set
of points that reduce to the point at infinity. It can be shown that the function
ϑp mapping from Ê(pZp) to E1(Qp) and defined by ϑp(z) :=

(
z

w(z)
,− 1

w(z)

)
is a

group isomorphism. By defining for an integer n > 0 the subgroup En(Qp) =
{P ∈ E(Qp) |ordp(x(P )) ≤ −2n}∪{O} , where x(P ) denotes the x-coordinate
of P , we can also prove that ϑp induces an isomorphism between En(Qp) and

Ê(pnZp), where this group is the set pnZp with the group law defined by F .

The formal logarithm. The formal logarithm is a function allowing to trans-
form the group Ê(pZp) in the group pZp with usual addition. To this end, we
have to find an ismorphism logF satisfying logFF (z1, z2) = logF (z1)+logF(z2)
for all z1, z2 ∈ pZp. This function can be expressed by a series of the form
logF(T ) = T + d1

2
T 2 + d2

3
T 3 + · · · . It can also be proved that logF induces an

isomorphism from Ê(pnZp) to pnZp.

From the above statements, we can deduce that En(Qp) ' pnZp since

logF ◦ ϑ−1
p (En(Qp)) = pnZp,

and the function ψp := logF ◦ ϑ−1
p is a group isomorphism. Thus, we remark

that En(Qp)/En+1(Qp) ' pnZp/p
n+1Zp ' F+

p , where F+
p denotes the additive

group of Fp i.e., (Z/pZ,+). Furthermore, it turns out that E(Qp)/E1(Qp) is
isomorphic to Ē(Fp).

Lift of an elliptic curve. Let Ē be defined over Fp. An elliptic curve E
defined over Qp is called a lift of Ē if E reduces to Ē modulo p. Similarly, a
point P ∈ E(Qp) is said to be a lift of a point P̄ ∈ Ē(Fp) if it reduces to P̄
modulo p. We immediatly observe that a lift of a given elliptic curve or of a
point is not unique. One method to find a lift of a given P̄ ∈ Ē(Fp) works
as follows. We first consider E given by the same Weierstrass equation as Ē.
The x-coordinate of P is set to be equal to that of P̄ . Then, the y-coordinate
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can be computed by looking at the p-adic expansion satisfying the Weierstrass
equation. This can be done using a Hensel lifting. Indeed, this method allows
to find successively each term of the right p-adic expansion. Indeed, if we have
a solution of a polynomial equation modulo pi, the Hensel lifting provides a
method to find a solution modulo pi+1.

2.2 The Attack

Let Ē be a non-singular elliptic curve of trace one defined over a finite field
Fp with p prime, i.e., #Ē(Fp) = p.

We provide now the algorithm proposed by Nigel Smart (see [9]) which allows
to solve the discrete logarithm problem on such curves very rapidly. This
problem can be described as following: Given two points P̄ , Q̄ ∈ Ē(Fp) with
Q̄ ∈ { [k] P̄ | k ∈ N} find m such that

Q̄ = [m] P̄ . (1)

At first, we compute the lifts P , Q ∈ E(Qp) of the points P̄ , Q̄, using the
method explained in Subsection 2.1. Since the reduction modulo p is a homo-
morphism and from (1), we have

Q− [m]P = R ∈ E1(Qp). (2)

We recall from Subsection 2.1, that Ē(Fp) ' E(Qp)/E1(Qp) and also that
E1(Qp)/E2(Qp) ' F+

p . From this fact and since #Ē(Fp) = p, we see that the
multiplication by [p] maps the elements of E(Qp) to E1(Qp) respectively the
elements of E1(Qp) to E2(Qp). Hence, multiplying the equation (2) by p leads
to

[p]Q− [m] ([p]P ) = [p]R ∈ E2(Qp).

Since [p]P and [p]Q lie in E1(Qp), we can apply the isomorphism ψp on these
elements and get

ψp ([p]Q)−mψp ([p]P ) ∈ p2Zp.

This relation can be written as

c1 · p+ c2 · p2 + · · · −m(d1 · p+ d2 · p2 + · · · ) = b2 · p2 + · · · ,

where ci’s are the coefficients of the p-adic expansion of ψp ([p]Q) and di’s are
the coefficients of the p-adic expansion of ψp ([p]P ). Thus, we finally obtain

m =
ψp ([p]Q)

ψp ([p]P )
mod p =

c1

d1
mod p.
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In order to find m, we only need to describe how to compute ψp(S) modulo p2

for a point S ∈ E1(Qp), and apply this method to S = [p]P , and S = [p]Q.
According to the definition of ϑp, we have

ϑ−1
p (S) = −x(S)

y(S)
∈ pZp,

where x(S), y(S) denote the x-, y-coordinates of S. Hence, by definition of
the formal logarithm and the definition of ψp, we get

ψp(S) ≡ −x(S)

y(S)
(mod p2).

3 Complex Multiplication

In this section, we briefly recall the complex multiplication method (see [2]
and [8]) for constructing elliptic curves with some properties.

Given a non supersingular elliptic curve E defined over a field L, its ring of
endomorphisms End(E) is either Z or an order in an imaginary quadratic field.
In the latter case, such an elliptic curve is said to have complex multiplication
by this order.

Let τ be an element of Poincaré’s upper-half plane H = {z = x + iy, x, y ∈
R, y > 0}, and q = exp (2iπτ). The quantities ∆(τ) and j(τ) are defined by:

∆(τ) = q
∏

n≥1

(1− qn)24, j(τ) =
(256∆(2τ) + ∆(τ))3

∆2(τ)∆(2τ)
.

Actually, as long as j(τ) 6= 0, 1728, j = j(τ) may be seen as the modular
invariant of the elliptic curve E with equation:

y2 = x3 − 3j

j − 1728
x+

2j

j − 1728
. (3)

Similar formulae arise in the cases j = 0, 1728, cases that will not be considered
here. Indeed, the above formula applies over the field of definition of j(τ). In
particular, given an element j of a finite field Fp, one can construct in this way
an elliptic curve E defined over Fp, such that its modular invariant jE = j.

On the other hand, let D > 0 be an integer such that −D is a fundamental
discriminant of the imaginary quadratic field K = Q(

√
−D), and let d be the

square-free positive integer such that K = Q(
√
−d); in other words, if d ≡ 3

(mod 4), then D = d, and D = 4d otherwise. Let H/K be the Hilbert class
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field of K, namely the maximal unramified Abelian extension of K. Its Galois
group is isomorphic to the class group of K:

Gal(H/K) ' ClK.

Let hD denote the class number of the field K. It turns out, that H is the de-
composition field of the monic polynomial HD(x) ∈ Z[x] of degree hD defined
by:

HD(x) =
∏

τ∈SD
(x− j(τ)),

where

SD =
{
τ =
−b +

√
−D

2a
; b2 − 4ac = −D, |b| ≤ a ≤

√
|D|/3,

a ≤ c, gcd(a, b, c) = 1 and if |b| = a or a = c then b ≥ 0
}
.

The roots j(τ) of the Hilbert polynomial HD(x) are the j-invariants of elliptic
curves Eτ with complex multiplication by an order in Q(τ) = Q(

√
−D).

Because HD(x) ∈ Z[x], we show in the next section how to use most of these
results also modulo p.

4 Construction of Anomalous Elliptic Curves

Now, let p be a prime number, and let E be an elliptic curve defined over Fp.
Its number of Fp-rational points is:

#E(Fp) = p+ 1− t,

where t = α + α is the trace of the Frobenius endomorphism, and α is an
element of K of norm p. If E is defined by the equation y2 = x3 + ax+ b, and
if u is any non-quadratic residue modulo p, then the quadratic twist Ẽ of the
elliptic curve E is defined by the equation (independant of the choice of u)

uy2 = x3 + ax + b. (4)

The j-invariant of E equals the j-invariant of Ẽ. Moreover, the number of
Fp-rational points of E and of Ẽ are related by

#E(Fp) + #Ẽ(Fp) = 2p+ 2.

If furthermore the prime number p satisfies the condition:

4p = x2 +Dy2,
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for some integers x, y, and if E has furthermore complex multiplication by an
order of discriminant −D, then α = ±(x+ y

√
−D)/2, and t = ±x. Therefore,

the numbers p + 1 ± x will be the orders of E, and of its quadratic twist Ẽ
over Fp. In particular, if x = 1, then the order of E (resp. of Ẽ) over Fp is
equal to p or p+ 2 (resp. p+ 2 or p).

Case hD = 1. So, our strategy to construct elliptic curves E defined over Fp

such that #E(Fp) = p will be first to look for values of D such that the degree
hD of the Hilbert polynomial HD(x) is equal to 1. If p is a prime number such
that 4p = 1 + Dy2, then the root of HD(x) = x − jD, obviously rational
over Fp, is the j-invariant of an elliptic curve E defined over Fp, and of its
quadratic twist Ẽ. The equations of these curves are obtained, thanks to the
equations (3) and (4), and one of these two elliptic curves is anomalous over
Fp. We further focus here on elliptic curves with complex multiplication by
the principal order of an imaginary quadratic number field. These conditions
lead to the values of d,D and of jD stated in the following table (see e.g. [7]):

d D jD

1 4 26.33

2 8 26.53

3 3 0

7 7 −33.53

11 11 −215

19 19 −215.33

43 43 −218.33.53

67 67 −215.33.53.113

163 163 −218.33.53.233.293

We then look for prime numbers of fixed length k (say k = 160 bits) satisfying

4p = 1 +Dy2.

Some values of D listed in the table are not convenient for our purpose. Indeed,
we want to construct elliptic curves with coefficients of length k. This means
that the values d = 1, 2, and 3, corresponding to small values jD ≥ 0 have
to be excluded. Moreover, one easily checks that the conditions on p require
that D ≡ 3 mod 8, and the value D = 7 is also excluded. In other words, one
looks for prime numbers p of the form given in the following table, where m
is an integer such that p is of length k:
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D = 11 p = 11m(m+ 1) + 3

D = 19 p = 19m(m+ 1) + 5

D = 43 p = 43m(m+ 1) + 11

D = 67 p = 67m(m+ 1) + 17

D = 163 p = 163m(m+ 1) + 41

Computation shows that there are many such prime numbers of length k
of this form. Then, using Section 3, we compute a curve E over Fp with
modular invariant jD. This curve is provided by the reduction modulo p of the
equation (3), with j = jD. To decide which one between the two curves E or
Ẽ is anomalous, one simply takes a point P ∈ E(Fp)− {O} at random, and
checks if [p]P = O. If this is the case, E is anomalous, and #Ẽ(Fp) = p + 2.
Otherwise, we change E into its quadratic twist Ẽ. To illustrate the first issue
over Fp, where p is a prime number of length 160 bits, we outline an example
(obtained using the Magma package) in the case D = 11, and j11 = −215.

Example 1. For m = 257743850762632419871495, p = 11m(m + 1) + 3 is a
prime number of length 160 bits. Then, the elliptic curve E over Fp is defined
by the equation y2 = x3 + µx+ ν, where

µ = 25706413842211054102700238164133538302169176474,

and
ν = 203362936548826936673264444982866339953265530166,

and one checks that E(Fp) = p, and the curve E is anomalous over Fp. Now,
if

P = (25, 37304648684346883938862473354554031475866783037) ∈ E(Fp)

and

Q = (20, 157931136836524102701922129702410179003466984543) ∈ E(Fp),

the method shows that Q = nP , with

n = 210393287966660756596132643172172640405085536179.

In this example, it was enough to use a routine written in Maple in order to
recover the discrete logarithm in a few seconds on a 1.5 GHz Pentium 4.

Case hD ≥ 2. It is of course possible to consider other values of D for which
the degree hD of the Hilbert polynomial is ≥ 2. However, the equations of the
curves E and Ẽ we are looking for are obtained by (3) and (4); in particular,
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they are defined over Fp(j), where j is a root of HD(x). It turns out, that such
a root is defined over Fp: Let D > 0 a square-free integer such that D ≡ 3
mod 8. Let p be a prime number such that 4p = 1 + Dy2 for an integer y.
Then the Hilbert polynomial HD(x) is completely split over Fp:

HD(x) ≡
hD∏

i=1

(x− ji) mod p, with ji ∈ Fp.

This is a consequence of class field theory. We provide here a simple proof in
the case hD = 2 (the case hD = 1 is obvious). The condition D ≡ 3 mod 8
requires that D and HD(x) are as in the following table (see [3] and [5]) :

D HD(x)

35 x2 + 117964800x − 134217728000

51 x2 + 5541101568x + 6262062317568

91 x2 + 10359073013760x − 3845689020776448

115 x2 + 427864611225600x + 130231327260672000

123 x2 + 1354146840576000x + 148809594175488000000

187 x2 + 4545336381788160000x − 3845689020776448000000

235 x2 + 823177419449425920000x + 11946621170462723407872000

267 x2 + 19683091854079488000000x + 531429662672621376897024000000

403 x2 + 2452811389229331391979520000x − 108844203402491055833088000000

427 x2 + 15611455512523783919812608000x + 155041756222618916546936832000000

In case D = 35, the discriminant of HD(x) is ∆ = 232.53.72.232. On the other
hand, if p is a prime number not dividing ∆, and such that 4p = 1 + 35y2,
then, if y = 2m+1, one has p = 9+35m(m+1). Finally, thanks the quadratic
reciprocity law, one shows that 5 is a square mod p, and hence that ∆ is also
a square mod p. Thus, HD(x) is completely split over Fp. The proof for the
other values of D in the table is straightforward.

Finally, each odd prime p is such that 4p = 1 + Dy2 for an integer y, and
a non-negative integer D ≡ 3 mod 8. One recovers hD j-invariant values
defined over Fp, to which one can associate anomalous elliptic curves over Fp

with the formulae (3) and (4), in a similar way as we did in the case hD = 1.
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