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Abstract

We prove that the multiple sequence alignment problem with weighted sum-of-pairs score isAPX-hard for arbitrary metric
scoring functions over the binary alphabet. This holds even when the weights are restricted to zero and one.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The multiple sequence alignment problem (MS
is one of the most fundamental problems in com
tational biology [10]. One of the most widely use
measures for scoring multiple sequence alignmen
the sum-of-pairs score(SP-score), which is the sum
of pairwise distances of the sequences in this al
ment. MSA is the problem of finding an alignme
with minimum SP-score. Elias [3] proved MSA to b
NP-hard for all metric scoring functions over bina
alphabets. The currently best approximation algorit
for MSA with SP-score achieves an approximation
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tio of 2 − r/n for any metric scoring function [2]
Here,n is the number of sequences, andr is an ar-
bitrary fixed constant. It is unknown whether MS
admits a polynomial time approximation scheme [6

Although widely used, the SP-score is no long
an appropriate measure for multiple alignments if
evolutionary distances between the sequences ar
evenly distributed. In this case, several highly cor
lated sequences may dominate the whole alignm
This problem can be solved by using theweighted
SP-score[5], where we have a non-negative weig
for each pair of sequences. The weighted SP-s
of an alignment is the sum of all pairwise distanc
each multiplied with the corresponding weight. W
call the problem of finding an alignment with min
mum weighted SP-scoreweighted multiple sequenc
alignment (WMSA). A restriction of WMSA isbi-
.
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nary weighted multiple sequence alignment(BMSA),
where the weights are restricted to zero and o
BMSA is equivalent togeneralized SP alignment[7]:
In addition to the sequences, we have a subse
pairs of sequences whose pairwise alignments are
pecially critical. The aim is to find an alignment th
minimizes the sum of all pairwise alignments of pa
in this subset. Manthey [8] proved that BMSA a
WMSA are APX-hard for a three-letter alphabet a
one specific metric scoring function. WMSA can
approximated with factor O(logn), where n is the
number of sequences, due to work by Wu et al. [
and Fakcharoenphol et al. [4].

We will prove the following theorem.

Theorem 1. For every metric scoring function an
every alphabet that contains at least two lette
WMSA and BMSA areAPX-hard.

Throughout the paper, we restrict ourselves to c
sidering WMSA. For any fixed scoring function, th
weights used in our proofs are at most linear in
number of sequences. Thus, theAPX-hardness hold
for BMSA as well, since WMSA with polynomially
bounded weights and BMSA are equivalent with
spect to their approximability [8].

2. Preliminaries

Let Σ be an alphabet andΣ ′ = Σ ∪ {-}, where- /∈
Σ denotes the gap. LetS be a sequence of length�
overΣ , thenS = S[1]S[2] . . . S[�] with S[k] ∈ Σ . Let
S = {S1, S2, . . . , Sn} be a multiset of sequences. A
alignmentof S is a multisetA = {S̃1, S̃2, . . . , S̃n} of
sequences overΣ ′, such that all̃Si are of equal length
�A andS̃i is obtained fromSi only by inserting gaps.

Let d :Σ ′ × Σ ′ → R
+
0 be ascoring function. We

allow arbitrary metrics as scoring functions, i.e.,
all x, y, z ∈ Σ ′, we haved(x, y) � 0 with d(x, y) = 0
if and only if x = y, d(x, y) = d(y, x), andd(x, z) �
d(x, y)+d(y, z). Given an alignmentA of S , thecost
of two sequencesSi andSj is

DA(Si, Sj ) =
�A∑

k=1

d
(
S̃i[k], S̃j [k]).

We omit the indexA when the alignment we ar
speaking of is clear. Furthermore, we have non-ne
-

tive integer weightsW = (WSi,Sj
)Si ,Sj ∈S . Theweight-

ed SP-scoreof the alignmentA is

DW(A) =
∑

1�i<j�n

WSi,Sj
· DA(Si, Sj ).

We omit the indexW if the weight matrix is clear
WMSA is the optimization problem of finding a
alignment with minimum weighted SP-score. If we r
strict the weights to zero and one, we obtain BMS
By setting all weights to one, we obtain MSA.

Let us now fix some terms that we will frequent
use in the next section. Let againA = {S̃1, . . . , S̃n} be
an alignment ofS = {S1, . . . , Sn}. Let k̃ be the position
whereSi[k] occurs inS̃i . We say thatSi[k] matches
Sj [k′] if k̃ is also the position whereSj [k′] occurs in
S̃j . We say thatSi[k] matches a gapin Sj if S̃j [k̃] = -.
If no letter of Si matches a gap inSj and no letter
of Sj matches a gap ofSi , we say thatSi andSj are
identically aligned. When some letter matches a d
ferent letter (but not a gap) in some other seque
we call this amismatch. In the following alignment,
the N matching theO is a mismatch, and the otherN
matches a gap.

A L I G N M E N T - -
A L - G O R I - T H M

3. Proof

We will now give the proof of Theorem 1, whic
was stated in the introduction. Throughout the pa
we consider the alphabet{0,1}. The scoring func-
tion d will be given asδ0 = d(0, -), δ1 = d(1, -), and
α = d(0,1). Without loss of generality, we assum
1 � δ1 � δ0 and 1� α. We start by considering sco
ing functions withα < δ0 + δ1 and postpone the cas
α = δ0 + δ1 to Section 3.2.

We reduce from Max-Cut, which isAPX-comple-
te [9]. Max-Cut is the following optimization prob
lem: Given an undirected graphG = (V ,E), we ask
for a subsetṼ ⊆ V that maximizes the number o
edges connecting̃V to V \ Ṽ . Throughout this work
G = (V ,E) is a graph with node setV = {v1, . . . , vn}
and edge setE of cardinalitym. Nodevi has degree
γi and is incident with the edgesei,1, ei,2, . . . , ei,γi

(in
arbitrary order).
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3.1. The caseα < δ0 + δ1

Let η = min{1, δ0 + δ1 −α} > 0. We construct a se
of sequences that depend on a parameterκ . This para-
meter depends on the scoring function, and we will
its value later on.

• We have one control sequenceZ = 000 . . .000 of
length 4κ + 4.

• For each nodevi ∈ V , we have a sequenceXi =
1 000 . . .000 1 of length 4κ + 5 containing 4κ + 3
0s.

• Let ei,j = ei′,j ′ = {vi, vi′ } be any edge ofG.
(Without loss of generality, we assumei < i′.) We
represent this edge by two sequences

Yi,j = 1 00 . . .00︸ ︷︷ ︸
(κ+1) 0s

01010 . . .1010︸ ︷︷ ︸
κ 1s and(κ+1) 0s

00 . . .00︸ ︷︷ ︸
(κ+1) 0s

1 and

Yi′,j ′ = 1 00 . . .00︸ ︷︷ ︸
(κ+1) 0s

10101 . . .0101︸ ︷︷ ︸
(κ+1) 1s andκ 0s

00 . . .00︸ ︷︷ ︸
(κ+1) 0s

1.

Let S be the set of all sequences thus constructed.
The weights between the sequences are as fol

(we will specifyw later):

• For i ∈ {1, . . . , n}, we setWZ,Xi
= γiw.

• For i ∈ {1, . . . , n} and j ∈ {1, . . . , γi}, we set
WXi,Yi,j

= w.
• For all edgesei,j = ei′,j ′ of G, we setWYi,j ,Yi′,j ′ =

1.
• All pairs not mentioned have weight 0.

We call an alignmentA of S consistent withei,j =
ei′,j ′ if

• Xi andYi,j are identically aligned,
• Xi′ andYi′,j ′ are identically aligned,
• only either the first or the last character ofXi

matches a gap inZ, and
• only either the first or the last letter ofXi′ matches

a gap inZ.

We call an alignmentconsistentif it is consistent with
all edges inE.

If an alignment is consistent withei,j = ei′,j ′ , then
Yi,j andYi′,j ′ are either identically aligned or they a
displaced by one position (asY1,1 andY2,1 in Fig. 1
are). We obtain a subset̃V ⊆ V from a consisten
Fig. 1. A simple graph and a consistent alignment forκ = 2 repre-
sentingṼ = {v1}.

alignment by considering theXi : If the first letter of
an Xi matches a gap inZ, then we havevi ∈ Ṽ .
If the last letter of theXi matches a gap inZ, we
have vi /∈ Ṽ . See Fig. 1 for an example. If, for a
edgeei,j = ei′,j ′ , Yi,j andYi′,j ′ are identically aligned
(meaning that eithervi, vi′ ∈ Ṽ or vi, vi′ /∈ Ṽ ), they
cost (2κ + 1) · α. If they are displaced by one pos
tion (meaning that eithervi ∈ Ṽ or vi′ ∈ Ṽ ), they cost
3α + 2δ1. Let ∆κ = (2κ + 1) · α − (3α + 2δ1). We
chooseκ sufficiently large such that∆κ becomes pos
itive. Then having exactly one ofvi and vi′ in Ṽ is
cheaper than having both or none of them inṼ .

For all edgese = ei,j = ei′,j ′ of G, we define

De = D(Xi,Z) + D(Xi,Yi,j ) + D(Xi′ ,Z)

+ D(Xi′, Yi′,j ′).

Then

D(A) =
∑

e=ei, j =ei′ ,
j ′∈E

w · De + D(Yi,j , Yi′,j ′).

The costsγiw · D(Xi,Z) of Xi with Z are equally
distributed among theγi edges incident withvi . We
defineKκ = (2κ + 3) · α + 2δ1.

Claim 2. If A is consistent withe, thenDe = Kκ . Oth-
erwise,De � Kκ + η.

Proof. Let e = ei,j = ei′,j ′ . If A is consistent withe,
we haveD(Xi,Yi,j ) = κα, D(Xi′ , Yi′,j ′) = (κ +1) ·α,
andD(Xi,Z) = D(Xi′ ,Z) = α + δ1.

If A is not consistent withei,j , we have four pos
sibilities: Xi andYi,j , Xi andZ, Xi′ andYi′,j ′ , or Xi′
andZ are inconsistently aligned. Due to symmetry,
only consider the first two cases.

We start with the first case. There is at least o
letter of Xi matching a gap inYi,j and one letter in
Y matching a gap inX . We call all 1s except for
i,j i



392 B. Manthey / Information Processing Letters 95 (2005) 389–395

t

t an

re

n

to

ove
1,
-
e

nt

t

ed
we
re-
we

.
ate

ces
the first and the last of each sequenceinternal1s. If all
internal1s in Yi,j match0s in Xi , we are done: The
internal1s cost at leastκα, and additionally we have
costs of at least 2δ1 for the two gaps. If an internal1 in
Yi,j matches a1 in Xi , then we have at leastκ 0s and
one1 in Yi,j matching gaps inXi , which costs at leas
κδ0 + δ1, and at leastκ + 1 letters inXi match gaps in
Yi,j , which costs at least(κ + 1) · δ1.

The case that remains to be considered is tha
internal1 of Yi,j matches a gap inXi . For every such
1, there is also one letter inXi matching a gap inYi,j .
If that letter is a0, we are done, sinceδ0 + δ1 � α +
η. If that letter is a1, then the first or last1 of Yi,j

matches a0 in Xi (if it matches a gap again, the
must be another letter inXi matching a gap inYi,j ).
Thus, every such1 results in costs of at leastα + 2δ1.

Now we turn to the case thatXi andZ are not con-
sistently aligned. Then either both1s of Xi match a0
in Z (then still at least one0 of Xi matches a gap inZ)
or there is a0 in Z that matches a gap inXi . In the for-
mer case, we haveD(Xi,Z) � 2α + δ0. In the latter
case, we haveD(Xi,Z) � δ1 + min{δ1, α} + δ0. �
Claim 3. Let A be an arbitrary alignment. We ca
construct a consistent alignment̃A with D(Ã) �
D(A) in polynomial time.

Proof. Let I ⊆ E be the set of edgese such thatA
is not consistent withe. Let e = ei,j = ei′,j ′ be any
edge. Due to Claim 2, we haveDe = Kκ for e /∈ I and
De � Kκ + η for e ∈ I . If A is consistent withe, then
D(Yi,j , Yi′,j ′) � (2κ + 1) · α.

For all e ∈ I , we realignXi , Xi′ , Yi,j , andYi′,j ′

to obtain a consistent alignment̃A. (For bothvi and
vi′ , we choose arbitrarily whether to put them in
Ṽ or not.) This decreasesDe by at leastη due to
Claim 2. On the other hand, noD(Yi,j , Yi′j ′) in-
creases by more than(2κ + 1) · α − (δ0 + δ1). For
w = �((2κ + 1) · α − δ0 − δ1)/η�, now ·De +D(Yi,j ,

Yi′,j ′) increases, which completes the proof.�
We have a consistent alignment with cost

wmKκ + (2κ + 1) · α · (m − c) + (2δ1 + 3α) · c
= (wKκ + (2κ + 1) · α) · m − ∆κ · c,

if and only if the graphG has a cut of sizec.
Lemma 4. WMSA isAPX-hard for the binary alpha-
bet and all scoring functionsd fulfilling d(0,1) <

d(0, -) + d(-,1).

Proof. We show that the reduction presented ab
is an L-reduction [9] (see also Ausiello et al. [
Def. 8.4]). Let opt(S) be the cost of an optimal align
ment and opt(G) be the size of a maximum cut. W
have opt(S) � (wKκ + (2κ + 1) · α) · m by the choice
of κ and opt(G) � m

2 , since any graph withm edges
has a cut of size at leastm/2. Thus, opt(S) � 2 ·
(wKκ + (2κ + 1) · α) · opt(G).

On the other hand, letA be any alignment with
costD(A). We can construct a consistent alignme
Ã with D(Ã) � D(A) in polynomial time. This align-
ment yields a subset̃V of the nodes, which yields a cu
of sizec. Then we have

∣∣opt(G) − c
∣∣ = 1

∆κ

· ∣∣D(Ã) − opt(S)
∣∣

� 1

∆κ

· ∣∣D(A) − opt(S)
∣∣. �

3.2. The caseα = δ0 + δ1

Now we turn to scoring functions withα = δ0 + δ1.
The difficulty is that a substitution can be explain
by an insertion plus a deletion. The result is that
cannot guarantee consistency when applying the
duction presented in the previous section. Thus,
present a slightly different reduction from Max-Cut

Given a graph as in the previous sections, we cre
sequences as follows:

• We have three control sequences

Zshort= 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 ,

Zmed = 00 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 00,

Zlong =1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1.

• For each nodevi ∈ V , we have a sequence

Xi = 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1.

• Let ei,j = ei′,j ′ = {vi, vi′ } be any edge ofG and
i < i′. We represent this edge by two sequen
(the spaces are only for readability):

Yi,j =1 0000 1 0000 1 1 0000 1 1 0000 1 0000 1,

Yi′,j ′ =1 0000 1 1 0000 1 1 0000 1 1 0000 1.
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The weights between the sequences are as follows
will again specifyw later on):

• We setWZshort,Zmed = WZmed,Zlong = mw.
• For i ∈ {1, . . . , n}, we setWZshort,Xi

= WZlong,Xi
=

γiw.
• For i ∈ {1, . . . , n} and j ∈ {1, . . . , γi}, we set

WXi,Yi,j
= w.

• For all edgesei,j = ei′,j ′ of G, we setWYi,j ,Yi′,j ′ =
1.

• All pairs not mentioned have weight 0.

We need a slightly different notion of consisten
An alignment is now calledconsistent withei,j = ei′,j ′
if the following properties hold:

• All 0s and1s in Zshort match0s and1s, respec-
tively, in Zmed. All 0s and1s in Zmed match0s
and1s, respectively, inZlong.

• One of the following two cases holds forXi :
– The first five letters ofXi match gaps inZshort,

and the last five letters ofZlong match gaps
in Xi . This corresponds tovi ∈ Ṽ .

– The last five letters ofXi match gaps inZshort,
and the first five letters ofZlong match gaps
in Xi . This corresponds tovi /∈ Ṽ .

All other letters inXi , Zshort, and Zlong match
equal letters in the other two sequences.
The same condition holds forXi′ .

• All letters in Yi,j match equal letters inXi . The
same holds forYi′,j ′ andXi′ .

We call an alignmentconsistentif it is consistent
with all edges. See Fig. 2 for an example.

Let e = ei,j = ei′,j ′ be any edge andA be any
alignment. We define

Zshort= - - - - - 1000010000100001000010000100001- - - - -

Zmed = - - - 00100001000010000100001000010000100- - -

Zlong =10000100001000010000100001000010000100001

X1 =100001000010000100001000010000100001- - - - -

Y1,1 =10000100001- - - - 100001- - - - 10000100001- - - - -

Y2,1 = - - - - - 100001- - - - 100001- - - - 100001- - - - 100001

X2 = - - - - - 100001000010000100001000010000100001

Fig. 2. A consistent alignment representingṼ = {v1} for the graph
shown in Fig. 1.
De = D(Zshort,Zmed) + D(Zmed,Zlong)

+ D(Xi,Yi,j ) + D(Xi′ , Yi′,j ′)

+ D(Xi,Zshort) + D(Xi,Zlong)

+ D(Xi′,Zshort) + D(Xi′ ,Zlong).

Then we have

D(A) =
∑

e=ei,j =ei′,j ′ ∈E

w · De + D(Yi,j , Yi′,j ′).

The costsγiw · (D(Xi,Zshort) + D(Xi,Zlong)) are
equally distributed among theγi edges incident with
vi . The costsmw ·(D(Zshort,Zmed)+D(Zmed,Zlong))

are equally distributed among allm edges.

Claim 5. If Zshort, Zmed, and Zlong are consistently
aligned, then we haveD(Zshort,Zmed) + D(Zmed,

Zlong) = 8δ0 + 2δ1. Otherwise,D(Zshort,Zmed) +
D(Zmed,Zlong) � 8δ0 + 3δ1.

Proof. If Zshort, Zmed, and Zlong are consistently
aligned, then we haveD(Zshort,Zmed) = 4δ0 and
D(Zmed,Zlong) = 4δ0 + 2δ1. In every alignment, we
have D(Zshort,Zmed) � 4δ0 and D(Zmed,Zlong) �
4δ0 + 2δ1.

Assume thatZshort and Zmed are not consistently
aligned. We prove that thenD(Zshort,Zmed) � 4δ0 +
δ1. Assume that there is a mismatch, which costsα =
δ0 + δ1. Additionally, at least three0s in Zmed cannot
match0s in Zshort, which costs at least 3δ0. If there is
no mismatch, at least one letter inZshortmatches a gap
in Zmed, which costs at leastδ1. Additionally, at least
four 0s inZmed cannot match0s inZshort, which costs
at least 4δ0.

The proof thatZmed andZlong cost at least 4δ0 +
3δ1, if they are not consistently aligned, is very simil
and we therefore omit it. �
Claim 6. Assume thatZshortandZlong are consistently
aligned. If Xi is consistently aligned withZshort and
Zlong, thenD(Xi,Zshort)+D(Xi,Zlong) = 8δ0 + 2δ1.
If Xi is not consistently aligned withZshort andZlong,
then the cost is at leastδ1 higher.

Proof. If Xi is consistently aligned with bothZshort
andZlong, then we haveD(Xi,Zshort) = D(Xi,Zlong)

= 4δ0 + δ1. In every alignment, we haveD(Xi,Zshort)

� 4δ + δ andD(X ,Z ) � 4δ + δ .
0 1 i long 0 1
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Assume thatXi is not consistently aligned wit
Zshort andZlong. SinceZshort andZlong are assumed
to be consistently aligned, any mismatch ofXi with
Zshort results in a mismatch ofXi with Zlong.

Assume that there is a mismatch betweenXi

and Zlong, which costsα. Additionally, five letters
of Zlong, at least three of them0s, cannot match equa
letters in Xi , which costs at least 3δ0 + 2δ1. Over-
all, D(Xi,Zlong) � 4δ0 + 3δ1. If there is no mismatch
some letter inZshortmatches a gap inXi or some letter
in Xi matches a gap inZlong, which costs at leastδ1.
In the first case, there are at least six letters inXi that
cannot match equal letters inZshort. At least four of
them are0s. We obtainD(Xi,Zshort) � 4δ0 + 3δ1.
In the second case, there are at least six letter
Zlong that cannot match equal letters inXi . At least
four of them are0s. We obtainD(Xi,Zlong) � 4δ0 +
3δ1. �

The proof of the following claim is obvious an
therefore omitted.

Claim 7. Letei,j = ei′,j ′ ∈ E with i < i′. If Xi andYi,j

are consistently aligned, thenD(Xi,Yi,j ) = 8δ0. Oth-
erwise,D(Xi,Yi,j ) � 8δ0 + δ1. If Xi′ and Yi′,j ′ are
consistently aligned, thenD(Xi′ , Yi′,j ′) = 12δ0. Oth-
erwise,D(Xi′ , Yi′,j ′) � 12δ0 + δ1.

In any consistent alignment and for any edgee =
ei,j = ei′,j ′ , we have

De = 8δ0 + 2δ1︸ ︷︷ ︸
Zshort,Zmed,Zlong

+ 2 · (8δ0 + 2δ1)︸ ︷︷ ︸
Xi,Xi′ with Zshort,Zlong

+ 20δ0︸︷︷︸
D(Xi,Yi,j )+D(Xi′ ,Yi′,j ′ )

= 44δ0 + 6δ1.

Furthermore, we haveD(Yi,j , Yi′,j ′) = 20δ0 if either
vi, vi′ ∈ Ṽ or vi, vi′ /∈ Ṽ , andD(Yi,j , Yi′,j ′) = 12δ0 +
2δ1 if exactly one ofvi and vi′ is in Ṽ . (We have
12δ0 + 2δ1 < 20δ0, sinceδ1 � δ0.)

Claim 8. Let A be an arbitrary alignment. We ca
construct a consistent alignment̃A with D(Ã) �
D(A) in polynomial time.

Proof. Let I ⊆ E be the set of edgese such thatA is
not consistent withe. Due to Claims 5, 6, and 7, w
haveDe = 44δ0 + 6δ1 for e /∈ I andDe � 44δ0 + 7δ1

for e ∈ I .
Let e = ei,j = ei′,j ′ ∈ I . If A is consistent withe,

we haveD(Yi,j , Yi′,j ′) � 20δ0. We now realignXi ,
Xi′ , Yi′,j ′ , andYi′,j ′ . If necessary, we realignZshort,
Zmed, Zlong as well (this can be done without increa
ing any edge costs for edges thatA is consistent with).
This is done in such a manner that we obtain a con
tent alignment. (For bothvi andvi′ , we choose arbi
trarily whether to put them intõV or not.)

For e ∈ I , the transformations that are made d
creaseDe by at leastwδ1 while D(Yi,j , Yi′,j ′) in-
creases by at most 20δ0. Settingw = �20δ0/δ1� com-
pletes the proof. �

The reduction presented in this section turns
again to be an L-reduction. Thus, we obtain the follo
ing lemma, which completes the proof of Theorem

Lemma 9. WMSA and BMSA areAPX-hard for the
binary alphabet and all scoring functionsd with
d(0,1) = d(0, -) + d(-,1).
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