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Abstract

We prove that the multiple sequence alignment problem with weighted sum-of-pairs se@evé-erd for arbitrary metric
scoring functions over the binary alphabet. This holds even when the weights are restricted to zero and one.
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1. Introduction tio of 2 — r/n for any metric scoring function [2].
Here,n is the number of sequences, ands an ar-
The multiple sequence alignment problem (MSA) bitrary fixed constant. It is unknown whether MSA
is one of the most fundamental problems in compu- admits a polynomial time approximation scheme [6].
tational biology [10]. One of the most widely used Although widely used, the SP-score is no longer
measures for scoring multiple sequence alignments is an appropriate measure for multiple alignments if the
the sum-of-pairs scoréSP-score), which is the sum evolutionary distances between the sequences are not
of pairwise distances of the sequences in this align- evenly distributed. In this case, several highly corre-
ment. MSA is the problem of finding an alignment lated sequences may dominate the whole alignment.
with minimum SP-score. Elias [3] proved MSA to be This problem can be solved by using theighted
NP-hard for all metric scoring functions over binary SP-score[5], where we have a non-negative weight
alphabets. The currently best approximation algorithm for each pair of sequences. The weighted SP-score
for MSA with SP-score achieves an approximation ra- of an alignment is the sum of all pairwise distances,
each multiplied with the corresponding weight. We
maddressmanthey@tcs.uni—Iuebeck.de (B. Manthey). call the PrObIem of f'”d'”g an a“gnm_ent with mini-
URL: http://iwww.tcs.uni-luebeck.de/pages/manthey/. mum weighted SP-sconeeighted multiple sequence
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nary weighted multiple sequence alignm@mSA),

where the weights are restricted to zero and one.

BMSA is equivalent tageneralized SP alignmefi]:
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tive integer weights¥ = (Ws, 5,)s, s;es- Theweight-
ed SP-scoref the alignmentA is

In addition to the sequences, we have a subset of Dw(A)= > Ws. s, - DA(S:, S)).

pairs of sequences whose pairwise alignments are es-

pecially critical. The aim is to find an alignment that
minimizes the sum of all pairwise alignments of pairs
in this subset. Manthey [8] proved that BMSA and
WMSA are APX-hard for a three-letter alphabet and
one specific metric scoring function. WMSA can be
approximated with factor Qogn), wheren is the
number of sequences, due to work by Wu et al. [11]
and Fakcharoenphol et al. [4].
We will prove the following theorem.

Theorem 1. For every metric scoring function and
every alphabet that contains at least two letters,
WMSA and BMSA araPX-hard.

Throughout the paper, we restrict ourselves to con-
sidering WMSA. For any fixed scoring function, the
weights used in our proofs are at most linear in the
number of sequences. Thus, theX-hardness holds
for BMSA as well, since WMSA with polynomially
bounded weights and BMSA are equivalent with re-
spect to their approximability [8].

2. Preliminaries

Let X be an alphabet an®’ = X U {-}, where- ¢
X denotes the gap. Lef be a sequence of length
over X, thenS = S[1]S[2]... S[¢] with S[k] € X. Let
S =1{81,82,...,S,} be a multiset of sequences. An
alignmentof S is a multiset4 = {81, S, ..., S,} of
sequences ovex’, such that alfS; are of equal length
¢4 ands§; is obtained froms; only by inserting gaps.
Letd: X' x ¥’ — R{ be ascoring function We
allow arbitrary metrics as scoring functions, i.e., for
allx,y,ze X', we haved (x, y) > 0 withd(x, y) =0
ifand only if x =y, d(x, y) =d(y, x), andd(x, z) <
d(x,y)+d(y, z). Given an alignmen#l of S, thecost
of two sequences; ands; is
LA
DA(S;. Sy =Y _d(Silk]. S;[k]).
k=1
We omit the indexA4 when the alignment we are

1<i<j<n

We omit the indexW if the weight matrix is clear.
WMSA is the optimization problem of finding an
alignment with minimum weighted SP-score. If we re-
strict the weights to zero and one, we obtain BMSA.
By setting all weights to one, we obtain MSA.

Let us now fix some terms that we will frequently
use in the next section. Let agaih= (S1,..., S‘n} be
an alignment o = {51, ..., S,}. Letk be the position
where S;[k] occurs inS;. We say thats; [k] matches
S;[k'] i k is also the position wherg;[k'] occurs in
S;. We say thass;[k] matches a gan S; if S;[k]=-.
If no letter of S; matches a gap i5; and no letter
of §; matches a gap df;, we say thatS; andS; are
identically aligned When some letter matches a dif-
ferent letter (but not a gap) in some other sequence,
we call this amismatch In the following alignment,
the N matching theO is a mismatch, and the othir
matches a gap.

ALIGNMENT - -
AL-GOR I -THM

3. Proof

We will now give the proof of Theorem 1, which
was stated in the introduction. Throughout the paper,
we consider the alphabdb, 1}. The scoring func-
tion d will be given ass; = d(0,-), 81 =d(1,-), and
a = d(0,1). Without loss of generality, we assume
1< 81 <& and 1< . We start by considering scor-
ing functions witha < §¢ + §; and postpone the case
o = &g + 81 to Section 3.2.

We reduce from Max-Cut, which i&PX-comple-
te [9]. Max-Cut is the following optimization prob-
lem: Given an undirected grapti = (V, E), we ask
for a subsetV C V that maximizes the number of
edges connectin§ to V \ V. Throughout this work,
G = (V, E) is a graph with node sét = {vy, ..., v,}
and edge sef of cardinalitym. Nodev; has degree
yi and is incident with the edges1, ¢; 2, ..., ¢, (in

speaking of is clear. Furthermore, we have non-nega- arbitrary order).
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3.1. The case < §g + 81

Letn =min{1, o + §; —a} > 0. We construct a set
of sequences that depend on a paramet@ihis para-
meter depends on the scoring function, and we will set
its value later on.

e We have one control sequenZe= 000...000 of
length 4c + 4.

For each node; € V, we have a sequencg =
1000...0001 of length 4 + 5 containing 4 + 3
0s.

Let e, j = ey j» = {vi, v} be any edge ofG.
(Without loss of generality, we assume: i’.) We
represent this edge by two sequences

Y,-,j =100...00 01010...101000...001 and
——— —— — —
(k+1) 0s « 1s and(x+1) 0s (x+1) Os
Yy 7=100...0010101...0101 00...00 1.
’ —_—— —,——, ——
(k+1) 0s (x+1) 1s andk 0s (x+1) Os

Let S be the set of all sequences thus constructed.

The weights between the sequences are as follows

(we will specifyw later):

e Forie{l, ... ,n}, wesetWy x, =yiw.

e Forie{l,....,n} andj € {1,...,y}, we set
WXi,Yi.j =w.

e Foralledges; ; =e¢; jy of G, we setWy, ; v, b=
1 .

e All pairs not mentioned have weight 0.

We call an alignmen#l of S consistent witfe; ; =
e, j’ if

e X; andY; ; are identically aligned,

e X; andYy ; are identically aligned,

e only either the first or the last character &f
matches a gap i, and

only either the first or the last letter &f;; matches
agapinZ.

We call an alignmentonsistentf it is consistent with
all edges inE.

If an alignment is consistent wit) ; = ¢;/ 7, then
Y; j andYy ; are either identically aligned or they are
displaced by one position (d§,1 and Y21 in Fig. 1
are). We obtain a subsét € V from a consistent
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Z =-000000000000-

vy X, =1000000000001-

€11 = €21 Y11 =1000010100001-
V2 Y3: =-1000101010001

X, =-1000000000001

Fig. 1. A simple graph and a consistent alignment«fet 2 repre-
sentingV = {v1}.

alignment by considering thg;: If the first letter of
an X; matches a gap irZ, then we havey; € V.
If the last letter of theX; matches a gap iz, we
havev; ¢ V. See Fig. 1 for an example. If, for an
edgee; j =e; jr, Y; j andYy ;- are identically aligned
(meaning that eithen;, vy € V or v;, vy ¢ V), they
cost (2« + 1) - «. If they are displaced by one posi-
tion (meaning that either; € V or vy € V), they cost
3o + 261. Let Ay = (2¢ + 1) - o — (B + 261). We
choosec sufficiently large such that, becomes pos-
itive. Then having exactly one of; andv; in V is
cheaper than having both or none of thenVin

For all edges =¢; ; = ¢;/ j» of G, we define

D.=D(X;,Z)+ D(X;,Y; ) + D(Xy, Z)

+ DXy, Yy jr).
Then
DAY= > w-D.+ D). Y ).
e:e,-,j:el-/,
j'€E

The costsy;w - D(X;, Z) of X; with Z are equally
distributed among the; edges incident with;. We
defineK, = (2« + 3) - a + 26;.

Claim 2. If A is consistent witle, thenD, = K,.. Oth-
erwise,D, > K, + n.

Proof. Lete =¢; ; =¢y ;. If A is consistent witfe,
we haveD(X;, Yij)=«o, DX, Yy i) =(k+1)-a,
andD(X;,Z)=D(X;, Z) = a + &1.

If A is not consistent witf; ;, we have four pos-
sibilities: X; andY; ;, X; andZ, X; andYy j, or X;s
andZ are inconsistently aligned. Due to symmetry, we
only consider the first two cases.

We start with the first case. There is at least one
letter of X; matching a gap ir¥; ; and one letter in

Y; ; matching a gap irX;. We call all 1s except for
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the first and the last of each sequeimdernal 1s. If all
internal1s in ¥; ; matchOs in X;, we are done: The
internal1s cost at least«, and additionally we have
costs of at least& for the two gaps. If an internalin
Y; ; matches d in X;, then we have at least0s and
onelin Y; ; matching gaps irX;, which costs at least
k3o + 81, and at least + 1 letters inX; match gaps in
Y; ;, which costs at leagk + 1) - 5;.

Lemma 4. WMSA isAPX-hard for the binary alpha-
bet and all scoring functiong fulfilling 4(0,1) <
d(,-)+d(-1).

Proof. We show that the reduction presented above
is an L-reduction [9] (see also Ausiello et al. [1,
Def. 8.4]). Let optS) be the cost of an optimal align-
ment and ofiG) be the size of a maximum cut. We

The case that remains to be considered is that anhave optS) < (wK, + (2« + 1) - «) - m by the choice

internal1 of ¥; ; matches a gap iX;. For every such
1, there is also one letter iKi; matching a gap iry; ;.
If that letter is a0, we are done, sinc& + 81 > o +
n. If that letter is a1, then the first or last of Y; ;
matches & in X; (if it matches a gap again, there
must be another letter iX; matching a gap irY; ;).
Thus, every such results in costs of at leaat+ 25;.
Now we turn to the case that; andZ are not con-
sistently aligned. Then either botls of X; match a0
in Z (then still at least one of X; matches a gap i)
or there is @ in Z that matches a gap iXj; . In the for-
mer case, we hav®(X;, Z) > 2o + 8. In the latter
case, we hav®(X;, Z) > 81 + min{d,, a} + 8. O

Claim 3. Let A be an arbitrary alignment. We can
construct a consistent alignmem with D(A) <
D(A) in polynomial time.

Proof. Let I C E be the set of edges such that4
is not consistent withe. Let e = ¢; j = ey j» be any
edge. Due to Claim 2, we have, = K, fore ¢ I and
D.> K, +nforeel.If Ais consistent witle, then
DY, Yy )< (2 +1)-a.

For all e € 7, we realignX;, X;/, Y; ;, andY; ;s
to obtain a consistent alignmet. (For bothv; and
vy, we choose arbitrarily whether to put them into
V or not.) This decreased, by at leasty due to
Claim 2. On the other hand, n®(Y; ;, Yy ;) in-
creases by more thaf®x + 1) - @ — (§p + 81). For
w=T[((2+1)-a—38 —81)/n],now-D,+D(Y; ;,
Yy, ;) increases, which completes the proofa

We have a consistent alignment with cost

wmK,e+ 2c+1)-a-(m—c)+ (25, +3x)-c
=WwKy+ 2c+1) - -a)-m— A, -c,

if and only if the graphG has a cut of size.

of ¥ and optG) > 7, since any graph witm edges
has a cut of size at least/2. Thus, optS) < 2-
(WK + (2 +1) - ) - opt(G).

On the other hand, lefl be any alignment with
cost D(A). We can construct a consistent alignment
Awith D(A) < D(A) in polynomial time. This align-
ment yields a subsaét of the nodes, which yields a cut
of sizec. Then we have
|opt(G) —¢| = Ai - |D(A) — opt(S)|

K

1
gA—~|D(A)—opt(S)|. m

3.2. The casea =g + 81

Now we turn to scoring functions witta = §q + 8.
The difficulty is that a substitution can be explained
by an insertion plus a deletion. The result is that we
cannot guarantee consistency when applying the re-
duction presented in the previous section. Thus, we
present a slightly different reduction from Max-Cut.

Given a graph as in the previous sections, we create
sequences as follows:

e We have three control sequences

Zshort= 1000010000100001000010000100001,
Zmed = 00100001000010000100001000010000100,
Z)jpng =1000010000 100001 000010000 1000010000100001.

e For each node; € V, we have a sequence

X; =100001000010000100001000010000100001.

o Lete; j =e j» ={v;, vy} be any edge oG and
i <i’. We represent this edge by two sequences
(the spaces are only for readability):

Y; j =10000100001 100001 10000100001,
Y,»/‘j/ =100001 100001 100001 100001.
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The weights between the sequences are as follows (weD, = D(Zshort, Zmed + D(Zmed Ziong)

will again specifyw later on):

b We setWZshorb Zmed — Wzmed Zlong =muw.
o Forie{l,...,n},wesetWzy,.x; = Wz x; =

Yiw.

e Forie{l,...,n} and j € {1,...,y:}, we set
Wx.v; =w.

e Foralledges; ; =¢; j of G, we setWy, ;. v, =
1 i,

¢ All pairs not mentioned have weight 0.

We need a slightly different notion of consistency.
An alignment is now calledonsistent witle; ; =e;’ ;/
if the following properties hold:

e All 0s and1s in Zghort MatchOs andis, respec-
tively, in Zmpeg All 0s andis in Zpeg matchOs
andis, respectively, itZiong.

e One of the following two cases holds faf;:

— The first five letters of; match gaps irZshors
and the last five letters ofjong match gaps
in X;. This corresponds to; € V.

— The last five letters ok; match gaps irZshort
and the first five letters ofong match gaps
in X;. This corresponds to; ¢ V.

All other letters inX;, Zshor, and Ziong match

equal letters in the other two sequences.

The same condition holds fd¥;:.

o All letters in ¥; ; match equal letters iX;. The
same holds fot;s ; andX;.

We call an alignmentonsistentf it is consistent
with all edges. See Fig. 2 for an example.

Let e = ¢; ; = ¢y j» be any edge andd be any
alignment. We define

Zshort=----- 1000010000100001000010000200001- - - - -
Zmed =- - - 00100001000010000100001000010000100- - -
Ziong =10000100001000010000100001000010000100001

X1 =100001000010000100001000010000100001- - - - -
Y11 =10000100001- - - - 100001- - - - 10000100001- - - - -
Y0 =----- 100001- - - - 100001- - - - 100001- - - - 100001
Xp =----- 100001000010000100001000010000100001

Fig. 2. A consistent alignment representifig= {v1} for the graph
shown in Fig. 1.

+ D(X;, Y ;) + DXy, Yy jr)
+ D(Xi, Zsho + D(X;, Zlong)
+ D(X;r, Zshor) + D(Xjr, Zlong)-

Then we have

DAY= )

e=e; j=ey ek

w- Do+ D(Yi j, Yir ).

The costsy,w - (D(X;, Zshor) + D(Xi, Ziong)) are
equally distributed among the edges incident with
v;. The costsnw - (D(Zshort Zmed + D (Zmed Ziong))
are equally distributed among all edges.

Claim 5. If Zshor, Zmed, @nd Zjong are consistently
aligned, then we haveD(Zshorts Zmed + D(Zmed,
Ziong) = 889 + 26,. Otherwise, D(Zshor, Zmed —+
D(Zmed, Ziong) = 8380 + 301.

Proof. If Zshort Zmed and Ziong are consistently
aligned, then we haveD(Zsnort, Zmed = 480 and
D(Zmed Ziong) = 480 + 281. In every alignment, we
have D(Zshort Zmed = 460 and D(Zmed, Ziong) =
450 + 251.

Assume thatZghort and Zimeq @are not consistently
aligned. We prove that theP (Zsnort, Zmed) = 480 +
§1. Assume that there is a mismatch, which cests
8o + 1. Additionally, at least thre@s in Zyeqg cannot
matchO0s in Zshor, Which costs at leastsg. If there is
no mismatch, at least one letterignortmatches a gap
in Zmea, Which costs at least;. Additionally, at least
four 0s in Zmeq Cannot matclds in Zghor, Which costs
at least 4.

The proof thatZmeq and Zjong cost at least & +
381, if they are not consistently aligned, is very similar,
and we therefore omit it. O

Claim 6. Assume thaZghortand Ziong are consistently
aligned. If X; is consistently aligned witlZsnort and
Ziong, thenD(X;, Zshor) + D(X;, Ziong) = 880 + 26;.
If X; is not consistently aligned withshort and Ziong,
then the cost is at least higher.

Proof. If X; is consistently aligned with botZsnort
andZong, then we haveD (X;, Zshor) = D(X;, Ziong)
=459 + ;. In every alignment, we hav@ (X;, Zshor
> 480 + 61 and D (X;, Zjong) = 480 + 81.
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Assume thatX; is not consistently aligned with  haveD, = 445, + 65, for e ¢ I andD, > 445y + 76,
Zshort and Ziong. SiNCe Zsnort and Zjong are assumed  fore e 1.

to be consistently aligned, any mismatchXf with Lete=e; j =ey j» € 1. If Alis consistent witre,
Zsnortresults in a mismatch of; with Zjgng. we haveD(Y; ;, Yy ;1) < 205,. We now realignX;,
Assume that there is a mismatch betwe&n X, Yy jr, andYy ;. If necessary, we realigZsnhort

and Zjong, Which costsa. Additionally, five letters Zmed: Ziong as well (this can be done without increas-
of Ziong, at least three of theiis, cannot match equal  ing any edge costs for edges tbéts consistent with).
letters in X;, which costs at leastsg + 26,. Over- This is done in such a manner that we obtain a consis-
all, D(Xi, Ziong) = 430 + 361 If there is no mismatch,  tent alignment. (For both; andv;,, we choose arbi-
some letter irZshortMmatches a gap iN; or some letter trarily whether to put them int& or not.)

in X; matches a gap i&jong, Which costs at leas; . For e € I, the transformations that are made de-
In the first case, there are at least six letterXjrthat creaseD, by at leastws; while D(Y; ;,Y; ;1) in-
cannot match equal letters isnort At least four of creases by at most &9 Settingw = [205/8,] com-

them are0s. We obtainD(X;, Zshor) > 489 + 351. pletes the proof. O

In the second case, there are at least six letters in

Ziong that cannot match equal letters Xj. At least The reduction presented in this section turns out
four of them areds. We obtainD(X;, Ziong) > 480 + again to be an L-reduction. Thus, we obtain the follow-
38;. O ing lemma, which completes the proof of Theorem 1.

The proof of the following claim is obvious and Lemma 9. WMSA and BMSA araPX-hard for the
therefore omitted. binary alphabet and all scoring functiong with
d0,1)=d(0,-)+d(-1).
Claim?7. Letei,j =e j € E withi <i’.If Xi anin,j
are consistently aligned, them(X;, Y; ;) = 8. Oth-
erwise, D(X;, Y; ;) > 88 + 8. If X; and Y, ;» are Acknowledgement
consistently aligned, the® (X, Y/ ) = 125o. Oth- _
erwise,D(X;, Y ;1) > 1250 + 81. | thank Jan Arpe and Martin Béhme for valuable
' discussions and careful proofreading.

In any consistent alignment and for any edge
e j =ey j, we have
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