
Computing sparse permanents faster

Rocco A. Servedio Andrew Wan

Department of Computer Science, Columbia University, New York, NY 10027,

USA

Abstract

Bax and Franklin (2002) gave a randomized algorithm for exactly computing the

permanent of any n × n zero-one matrix in expected time exp
[

−Ω
(

n1/3

2 ln n

)]

2n.

Building on their work, we show that for any constant C > 0 there is a constant
ε > 0 such that the permanent of any n × n (real or complex) matrix with at
most Cn nonzero entries can be computed in deterministic time (2− ε)n and space
O(n). This improves on the Ω(2n) runtime of Ryser’s algorithm for computing the
permanent of an arbitrary real or complex matrix.

Key words: algorithms, combinatorial problems, computational complexity

1 Introduction

1.1 Background

The permanent of an n × n real or complex valued matrix A is defined to be

per(A) =
∑

σ

a1σ(1) . . . anσ(n)

where the sum ranges over all n! permutations σ of [n] = {1, . . . , n}.

The permanent is an interesting and important characteristic of matrices. For
example, the permanent of the adjacency matrix of a bipartite graph G is ex-
actly the number of perfect matchings in G. Additionally, there are problems
in statistical mechanics, quantum field theory, chemistry, combinatorics, and
linear algebra that have been reduced to the computation of a permanent. Un-
fortunately, computing the permanent is believed to be quite hard, as Valiant
proved in 1979 that even the problem when restricted to 0/1 matrices is #P
complete [4]. On the other hand, a fully-polynomial randomized approximation

Preprint submitted to Elsevier Science 19 June 2005

scheme for computing the permanent of arbitrary matrices with non-negative
entries was recently discovered by Jerrum, Sinclair, and Vigoda in [2].

Although we do not expect to find polynomial time algorithms for exactly com-
puting the permanent, we can still hope to find algorithms with substantial
improvements in efficiency over a naive approach, and progress in this direc-
tion has been made. Ryser’s formula [3] gives the best known running time
of Θ(n2n) (instead of the trivial n! algorithm) for arbitrary matrices. More
recently in [1], Bax & Franklin gave a randomized algorithm for computing

the permanent of 0/1 matrices that runs in expected time exp
[

−Ω
(

n1/3

2 ln n

)]

2n.

1.2 This work.

In this work we consider the problem of exactly computing the permanent
of sparse matrices with real or complex entries. Even this problem must be
hard; it is easily seen that computing the permanent of a 0/1 matrix with at
most Cn ones is also #P complete. 1 We are not aware of previous work on
algorithms that specifically target this problem. As our main result we give
a deterministic algorithm B to compute the permanent of any sparse n × n

matrix A, and prove the following theorem:

Theorem 1.1 For any constant C > 0, there is a constant ε > 0 such that
algorithm B runs in at most (2− ε)n time on any n×n matrix A with at most
Cn nonzero entries.

Theorem 1.1 improves on the Θ(n2n) runtime of Ryser’s algorithm, which as
far as we know was the previous best algorithm for exactly computing the
permanent of a sparse matrix.

1.3 Relation to previous work.

Our algorithm is an extension of Ryser’s algorithm which exploits an idea
in [1]. Bax and Franklin use a finite difference formula for the permanent
(this is a generalization of Ryser’s formula; like Ryser’s formula, it expresses

1 If we have an algorithm to compute the permanent of such a matrix that runs
in time f(n) for some function f , then we have an algorithm that computes the
permanent for arbritrary 0/1 matrices that runs in time f(n2); the algorithm simply
takes the arbitrary n×n matrix and embeds it in a diagonal n2×n2 matrix with the
original matrix in the upper left corner instead of the ones. Since this matrix has
the same permanent as the original matrix and at most 2n2 − n ones, the original
algorithm can be run on it to obtain the permanent in time f(n2).

2

the permanent as a sum over 2n many terms), and show that by randomly
augmenting the matrix in a particular way, the finite difference formula will
have at most a exp[−Ω(n1/3)] expected fraction of nonzero terms. They then
show how to evaluate the formula while avoiding most of the zero terms.

Similar to the algorithm of Bax and Franklin, ours works by augmenting the
matrix and then using Ryser’s formula in a way that lets us avoid most of
the zero-valued terms. The main differences between our work and [1] are: (1)
We show that for sparse matrices, an appropriate augmented matrix can be
chosen deterministically (i.e. we show how to efficiently derandomize a random
augmentation of the matrix); (2) We show that our algorithm works for any
(real or complex valued) sparse matrix, whereas their algorithm works for any
0/1 matrix; (3) We show that our algorithm requires only O(n) space whereas
their algorithm requires 2n/2 space.

2 Using Ryser’s Formula

Ryser’s well known formula gives an alternate expression for the permanent:

per(A) = −1n
∑

S⊆[n]

(−1)|S|
n

∏

i=1

∑

j∈S

aij.

By ordering the subsets S ⊆ [n] according to a Gray code, this yields a Θ(n·2n)
time algorithm for the permanent.

Our algorithm will compute per(A) using Ryser’s formula on a different ma-
trix Ab that has the same permanent as A. The time savings will come from
creating Ab so that the number of nonzero terms in the outer sum will be
(2 − ε)n instead of Θ(2n). (Note that it is easy for a sparse matrix A to have
Θ(2n) many nonzero terms in Ryser’s formula; for example, any 0/1 matrix
with all 1s in the first column will have at least 2n−1 nonzero terms.) Since
the term

∏n
i=1

∑

j∈S aij corresponding to a particular subset S of [n] evaluates
to zero whenever there is some i such that

∑

j∈S aij = 0, we construct Ab with
the aim of increasing the fraction of terms which have some row summing to
zero.

Given an n × n matrix A and an n-dimensional column vector b, as in [1] we
let Ab be the (n + 1) × (n + 1) matrix

Ab =







A b

0 1





 .

3

Note that Ab and A have the same permanent regardless of the choice of b.

Using Ryser’s formula, the permanent of Ab is

per(A) = per(Ab) = −1n+1
∑

S⊆[n+1]

(−1)|S|
n+1
∏

i=1

∑

j∈S

(ab)ij

Since the (n + 1)-st row sum
∑

j∈S(ab)n+1,j is either 1 or 0 depending on
whether or not S contains n + 1, we have that

per(A) = per(Ab) = −1n+1
∑

S⊆[n]

(−1)|S|
n

∏

i=1



bi +
∑

j∈S

aij



 . (1)

For any S ⊆ [n] and i ∈ [n], the i-th row sum for the term corresponding to
S will be zero iff

∑

j∈S aij = −bi. Therefore we will choose the vector b so that
many terms have some row sum equal to zero.

2.1 Augmenting A to create many zero terms

We henceforth suppose that the matrix A has at most Cn nonzero entries. It is
easy to see that at least half the rows of A must each have at most 2C nonzero
entries. Since permuting rows does not change the value of the permanent, we
may assume that these are rows 1, . . . , n

2
.

Now if there are at most 2C nonzero entries in row i of A, then over all 2n

choices of S ⊆ [n] there are at most 22C distinct values that
∑

j∈S aij can
assume. Let Bi = {v :

∑

j∈S aij = −v for some S ⊆ [n]}. Suppose we choose
each coordinate bi of b uniformly at random from Bi. Then for each S ⊆ [n]
and i ∈ [n

2
], the probability that

∑

j∈s aij = −bi is at least 1
22C . Since each

bi was chosen independently, for each S ⊆ [n] and any m ≤ n
2

we have that
bi +

∑

j∈S aij 6= 0 for all i = 1, . . . ,m with probability at most (1 − 1
22C)m. By

linearity of expectation, we have that for a random choice of b as described
above, the expected number of subsets S ⊆ [n] for which bi +

∑

j∈S aij 6= 0 for
all i = 1, . . . ,m is at most 2n · (1 − 1

22C)m. Consequently there must be some
particular choice of b for which at most 2n · (1 − 1

22C)m many subsets have all
nonzero row sums in the first m rows.

We can deterministically identify such a vector b by iterating over all (|B1| ·
|B2| · · · |Bm|) ≤ 22Cm many possibilities for b1, . . . , bm (and setting bm+1, . . . , bn

arbitrarily). For each such b, we compute the number of subsets S ⊆ [n] that
have all nonzero row sums in the first m rows (and we ultimately take the
b that minimizes this number). This is done as follows: let T ⊆ [n] denote
{j : aij 6= 0 for some i ∈ [m]}, and note that |T | ≤ 2Cm since each of the first

4

m rows has at most 2C nonzero entries. For a given choice of b, the number
of subsets S ⊆ [n] that have all nonzero row sums in the first m rows equals
2n−|T | times the number of subsets S ′ ⊆ T that have all nonzero row sums
in the first m rows. There are at most 22Cm such subsets S ′, and thus the
total time required to choose the best b (based on the first m coordinates) is
at most 24Cm. The procedure is easily seen to be space efficient, and thus we
have the following:

Lemma 2.1 Let A be any n×n matrix with at most Cn nonzero entries, and
let m ≤ n

2
. The above deterministic procedure will construct an augmented

matrix Ab such that the outer sum of (1) has at most 2n
(

1 − 1
22C

)m
many S’s

such that
∑

j∈S aij + bi 6= 0 for all i = 1 . . . m. The procedure takes 24Cm time
and O(n) space.

3 Avoiding Zero Value Terms

We now show how we can compute the permanent of Ab while avoiding many
zero-valued terms. In selecting b we determined whether or not each S ′ ⊆ T

had all nonzero row sums in the first m rows. We will use the same information
to determine which subsets S ⊆ [n] to include in our sum. For a suitably chosen
m, we will avoid enough zero-valued terms to achieve our running time.

Let T ⊆ [n] be defined as in section (2). For each subset S ′ ⊆ T , check if
∑

j∈S′ aij + bi = 0 for some i = 1, . . . ,m. If some i yields 0, we move on to the
next S ′ (since no subset S ⊆ [n] which agrees with S ′ on T can contribute to
(1)). Otherwise, if no i yields 0, then for each R ⊆ [n] \ T , let S = S ′ ∪R and
add to the running total

(−1)|S|
n

∏

i=1



bi +
∑

j∈S

aij



 (2)

(i.e. add to the running total the term corresponding to every S for which
membership in T is fixed according to S ′). Finally, when we have gone through
every S ′ ⊆ T, we multiply the total by (−1)n+1 to obtain the permanent of
Ab.

To bound the running time of this algorithm, we first note that we must check
at most 22Cm subsets S ′ of T. Since any term (2) that we add to the running
total must have nonzero row sums for each of the first m rows, by Lemma

2.1 there are at most 2n
(

1 − 1
22C

)m
subsets S = S ′ ∪ R (across all S ′ ⊆ T)

for which we compute (2). Taking m = n
8C

, the runtime of this phase of the

5

algorithm is

2n/4 + poly(n) · 2n(1 −
1

22C
)n/(8C) = 2n/4 + (2 − ε)n for some ε > 0.

Note that we only need space to indicate the current S,S ′, compute the product
of row sums, and the running total. Since constructing Ab takes time 24Cm =
2n/2 by Lemma 2.1, we have the following theorem:

Theorem 3.1 For any C > 0, there exists ε > 0 such that our algorithm can
compute the permanent of any n× n matrix with at most Cn nonzero entries
in time O((2 − ε)n) and space O(n).

4 Conclusion

We conclude by noting that our algorithm avoids the space requirement of
O(2n/2n) in [1]. Since our algorithm is simple, deterministic, has a faster
asymptotic runtime and uses no more space than a naive application of Ryser’s
formula, it may be a useful alternative to Ryser’s formula for exactly comput-
ing the permanent of sparse matrices.

References

[1] E. Bax and J. Franklin. A permanent algorithm with exp[ω(n1/3/2 lnn)] expected
speedup for 0-1 matrices. Algorithmica, 32:157–162, 2002.

[2] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time
approximation algorithm for the permanent of a matrix with non-negative
entries. In Proceedings of the 33rd Annual Symposium on Theory of Computing,
pages 712–721, 2001.

[3] H.J. Ryser. Combinatorial Mathematics. Carus Mathematical Monograph No.
14. Wiley, 1963.

[4] L. Valiant. The complexity of computing the permanent. Theoretical Computer

Science, 8:189–201, 1979.

6

