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Abstract

This paper describes an optimal triangulation algorithm for rectangles. We derive lower bounds on the maximum degree
of triangulation, and show that our triangulation algorithm matches the lower bounds. Several important observations are also
made, including a zig-zag condition that can verify whether a triangulation can minimizes the maximum degree to 4 or not.
In addition, this paper identifies the necessary and sufficient condition that there exists a maximum degree 4 triangulation for
convex polygons, and gives a linear time checking algorithm.
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1. Introduction a rectangular parametric domain, and the number of
interval points on the four sides of this domain, we
Mesh generation is one of the most import as- have to come up with amitial triangulation, which
pects in many computational disciplines, including connects only vertices on the domain boundary. Af-
computation fluid dynamics, image rendering, electro- ter the initial mesh is constructed, we add vertices
magnetic simulations, and resonance of piezoelectric to where they are needed as indicated by local point
crystal [2,8,9]. The quality of simulation results de- spacing requirement, and adjust the triangulation ac-
pend heavily on the quality of the mesh used in the cordingly [3-5,7].
simulation. As a result mesh generation is a very im- There has been a rich body of literature on the
portant step in all unstructured mesh related computa- problem of triangulating two- and three-dimensional
tions. computation domains [1]. Triangulation techniques on
During mesh generation we often do not know yarious two-dimensional domains, including simple
where we should put the vertices, therefore when given polygons, polygons with holes, point set, and planar
straightline graph, were studied in [1]. For example,
¥ Tel.: +886 2 33664888 fax: +886 2 23628142, Delaunay triangulation produces a good triangulation
E-mail addresspangfeng@csie.ntu.edu.tw (P. Liu). in O(nlogn) time for point sets, whee is the number
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of the points. Also various quality measurements of
triangulation were proposed, including the minimum
triangulation angle, the maximum triangulation angle, 3
and the minimum height of triangles.

The focus of this paper is to find a triangulation that
minimizes the maximum degree for triangulation on 4
rectangles and convex polygons. Note that we use the 4
maximum degree of all vertices as a rough estimate
on the mesh quality, since when a vertex has a large
degree in a triangulation, skewed triangles with sharp 2 6 2
angles will often occur. These sharp angles cause nu-
merical instability in mesh computation, and should Fig. 1._Ar1 iqstance of rectangle triangulation. The degree of each
be avoided [1]. Since the quality measurement is the Venex s indicated nextto the vertex.
maximum degree of the triangulation, we do not cope
with the geometry information, and the input consists
of only the number of points along the rectangles or
convex polygons. This simplification transforms our

2.1. General lower bounds

Before we describe our algorithm we establish sev-

. . . S eral lower bounds on the maximum degree for the rec-
problem into a combinatorial optimization problem. : . '

tangle triangulation problem. We first need to count

The minimization of maximum degree is difficult the number of edges and triangles in a rectangle tri-
on general graphs. For example, Jansen showed that 9 9 9

) . angulation. In addition, we denote those edges along
the problem to triangulate a plane geometric graph the boundary as “boundary” edges, and those that are
with degree at most seven is NP-complete [6]. This pa- y y” edges,

per shows that for rectangles, there exists an algorithm added during the triangulation as *internal” edges.
that when given the number of vertices along the rec-
tangle, computes an triangulation that minimizes the
maximum degree of all vertices. In addition, we also
generalize the results to convex polygons, and identify
the necessary and sufflt_:lent cor_ldltlons that there existsp. ot consider am-sided polygonR, which has a
a maximum degree 4 triangulation.

The rest of the paper is organized as follows. Sec-
tion 2 formally defines the triangulation problem and addition, each edge adds a new triangle into the trian-

gives severa! lower bounds. Section 3 describes Ourgulation so the number of internal edges wittiris
optimal algorithm that matches the lower bounds. Sec- n—3. O

tion 4 generalizes the lower bounds and zig-zag con-
ditions from rectangle to convex polygons. Finally,  \ye now count the number of corner vertices that
Section 5 concludes with possible future work and ex- haye degree 2, i.e., those comners that are not connected

Lemma 1. Letn be the total number of intervals along
the rectangleR. Every triangulation onR hasn — 3
internal edges insid&, andn — 2 triangles.

sum of (n — 2)7r of its inner angles. That means the
number of triangles from any triangulatiorvis- 2. In

tension. to any other vertices. We will refer to such corner as
“isolated”, and show that there are at least 2 isolated
2. Rectangletriangulation corners.

The problem of rectangle triangulation can be Lemma2.The number ofiisolated cornersis at ledst
stated as follows. Given four numbeus, b, ¢, and
d, which represent the number of intervals along four Proof. Consider a cornee. If ¢ is not isolated, i.e.,
sides of a rectangle, we want to triangulate the rectan- ¢ is connected to a vertex then there exists another
gle so that the maximum number of edges adjacent to cornera such thatz, b andc form a triangle (see Fig. 2
a single vertex is minimized. Fig. 1 gives an example for an illustration). Apparently: will not connect to
in which there are 3, 3, 2, 2 intervals along the sides of any vertex, so it is isolated. As a result we will have at
arectangle, with the maximum degree being 6. least two isolated corner in every triangulatiort
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Fig. 2. An illustration that a non-isolated corner will introduce an
isolated one.

Theorem 3. For every rectangle triangulation with at
least5 intervals along the boundary, there exists a ver-
tex with degree at leagt

Proof. From Lemma 1 there are exactly— 3 inter-
nal edges and boundary edges. Each of them will be
counted twice from both endpoints so the total num-
ber of degrees of all vertices i:14- 6. Also from
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Fig. 3. The vertex: is of degree 4, but is not connected to two adja-
cent vertices along the boundary.

edges. Adding the two boundary edges and the lower
bound follows. O

2.2. Specific lower bounds

Theorem 3 establishes a general lower bound on
the maximum degree, and we will further improve this
bound when the numbers of intervals along the bound-
ary are in a particular condition. We will establish

Lemma 2 we have at least two isolated corner with de- the necessary and sufficient condition for being able
gree 2, therefore the total number of degrees besidesto find a triangulation with maximum degree 4—any

these two isolated corners i& 4 10. As a result at
least one vertex among those remaining 2 vertices
will have at leastf (4n — 10)/(n — 2)7 adjacent edges.
This number is at least 4 whenis at least 5. O

configuration not satisfying this condition will have a
maximum degree at least 5.

Theorem 5. A rectangleR with at least7 intervals on
its boundary has a maximum degréé&iangulation if

We estabnsh another genera' |ower bound on the and Only |f one Of two fOllOWing Conditions hOIdS. ThIS
maximum degree for rectangle triangulation. We need Will be referred to as the “zig-zag” condition.

this lower bound in order to prove that our triangula-
tion algorithm, which will be introduced in the next
section, is optimal.

Theorem 4. Consider a rectangleR that hasa, b,

¢, and d intervals on four boundaries. The maxi-
mum degree for any triangulation is at ledst: — 2)/
b+c+d-D1+3

Proof. Let A be the boundary with intervals. We use
N to denote the set of the+ ¢ + d — 1 vertices that
are not onA. From Lemma 1 we know that there are
a+ b+ c +d — 3 internal edges. Since every one of
these edges must connect to a verteNirthere exists

a vertex inN that is adjacent to

at+b+c+d-3 _ a—2
b+c+d—1 | |b+c+d-1

e The number of intervals on one side®fand the
number of intervals on the other three sides differ
by at mostl.

e The number of intervals on two adjacent sides of
R and the number of intervals on the other two
sides differ by at mosit.

Proof. A rectangleR with at least 7 intervals on its
boundary has a maximum degree 4 triangulation only
when every vertex of degree 4 is connected to adjacent
vertices along the boundary. The reason is that no more
than 2 internal edges are adjacent to a vertex, and the
internal edges induce a connected graph. Note that we
need at least 7 intervals to avoid the configuration in
Fig. 3, in which the vertex: is not connected to two
adjacent vertices along the boundary, and it does have
only degree of 4.
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Fig. 4. Two cases of zig-zag.

Now the vertices with degree 4 must be connected
in zig-zag fashion, i.e., they will go to different sides of

the rectangle back and forth since they have to connect

to adjacent vertices along the boundary. In addition,

those vertices on the same side cannot connect to each

other, therefore the zig-zag is either going from one

side to the other three, or between two groups—each

has two adjacent sides @, as indicated in Fig. 4.
Notice that the number of intervals on the two sides of
zig-zagging could differ by 1, as in Fig. 4(a), or be the
same, as in Fig. 4(b).O

The implication of Theorem 5 is that if we are given
a rectangler that does not satisfy the zig-zag condi-
tion, we know immediately that the maximum degree
is at least 5.

3. Theoptimal algorithm

We now describe our optimal algorithi®. Let A
be the side that has the maximum number of intervals
in R, anda be the number of intervals id. We will
consider only two cases—whenis greater tham +
c+d+1,orlesstha + ¢ + d — 1. If neither case
is true the zig-zag condition applies agdsimply zig-
zags the rectangle with optimal degree 4.

3.1. Thecasewhan>b+c+d-+1

Since A has a very large number of intervals, the
idea is to evenly distribute them to the vertices on the
other three sides. The algorith first identifies the
a — 2 intervalsin the middle ofA, then evenly dis-
tributes them to thé + ¢ + d — 1 vertices not inA.

A

Fig. 5. Distributing the intervals id to vertices not inA.

Fig. 5 illustrates an example of distributing 10 inter-
vals in the middle ofA to 5 vertices not i4, so that
each vertex not i has degree 3.

The algorithmZ produces an optimal maximum
degree triangulation. The algorithm guarantees that
a vertices not inA will be connected to at most
[(a—2)/(b+c+d—1)] + 1 vertices onA, since
there area — 2 intervals andb+c+d —1 ver-
tices. The maximum degree is then bounded by
[(@a—2)/(b+c+d—1)] + 3 after adding the two
boundary edges. This number matches the lower
bound in Theorem 4.

3.2. Thecasewhen<b+c+d—-1

Now we consider the second case wher b +

¢c+d — 1. Let A be the side withu intervals,C be

the opposite side oft (with ¢ intervals), andB and

D be the two adjacent sides df, with b andd in-
tervals each. Without loss of generality, we assume
thatb > d, thereforea + b > ¢ + d sincea has the
maximum number of intervals. We further assume that
a+b>c+d+ 1, otherwise the zig-zag condition



132

C

A
(a)

P. Liu / Information Processing Letters 96 (2005) 128-135

C

A
(b)

Fig. 6. We zig-zag orfi(e + 1)/2] intervals onA with | (e + 1)/2] intervals inB in the corner (a), then zig-zag on the remaining part (b).

holds and we simply use the zig-zag to obtain the op-

timal maximum degree 4 triangulation.

3.2.1. Corner removal

The key idea in the algorithr& is to remove some
of the intervals fromA and B, so that the number
of intervals in C and D is the same as those re-
maining in A and B. In that caseZ can apply the
Zig-zag method and obtain a low degree triangula-
tion. Lete = (a + b) — (c + d). Z first zig-zags on
[(e +1)/2] intervals onA with | (e + 1)/2] intervals
in B, as shown in Fig. 6(a). We denote thisasner
zig-zagging Notice that[(e + 1)/2] and (e + 1)/2]
differ by at most one so the zig-zagging is possible.
After removing[(e + 1)/2] and | (e + 1)/2] from A
and B, we have introduced a new edge on the cor-
ner, so the number of intervals ohand B becomes
at+b—TJ(e+1)/2]—|(e+D)/2|+1=a+b—e=
¢+ d, and Z can zig-zag the rest of the rectangle
(Fig. 6(b)). We denote this asterior zig-zagging

Now we need to show that and B indeed have at
least[(e + 1)/2] and | (e + 1)/2] intervals so that the
“corner-removal” method will work.

Lemma 6. a > [(e+1)/2] and b > [(e+1)/2],
wheree = (a + b) — (c + d).

Proof. We prove the inequalities by contradiction.
Suppose that < [(e + 1)/2], then

"a~|—b—c—d+l—‘ at+b—c—-d+1 1
a< < -

2 2 + 2
This impliesa < b — ¢ — d + 2 < b, which contra-
dicts to the assumption thatis the maximum among

four sides. Again suppose that< |[(e+1)/2] <
(a4+b—c—d)/2, which impliesh <a —c—d + 1,
anda > b + ¢ +d. This is also a contradiction to the
assumptionthad <b +c¢+d-1. O

3.2.2. Final adjustment

The construction above gives a maximum degree 6
triangulation—the endpoints of the new interval in-
troduced in the corner removal may have two edges
from interior zig-zagging, one edge from the new in-
terval, one from the corner zig-zagging, and two from
the boundary. In order to reduce the maximum degree
to 5 we need a final adjustment. We have two cases
to consider—one when the corner removal removes
all the intervals from eitheA or B, and the case that
it leaves at least one interval on bathand B. Note
that the corner removal cannot remove all the intervals
from bothA andB since that will leave only one inter-
val on theA and B, but we have at least two intervals
onC andD.

In the first case the corner removal removes all in-
tervals from eitherA or B. Let the edgd f, g) be the
internal edge introduced by the corner removal, and
be the one that is not at a corner (Fig. 7(a)). When the
section betweelg and/ has one more intervals than
the section betweeh and f, the corner zig-zagging
may start fromg in order to control the maximum
degree within 4 (Fig. 7(a)). In that cagemay have
degree 6 when the interior zig-zagging introduces two
additional edges t@. Z can reduce the degree of
by changing th@rientationof the corner zig-zagging,
i.e., starting the zig-zagging frogninstead of fromf,
as shown in Fig. 7(b). This change add an edge to
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Fig. 7. To change the orientation of the corner zig-zagging.

@ ° b &

Fig. 8. Final adjustment to reduce the maximum degree to 5.

both f and the last vertex of the corner zig-zagging, two nodes exist, we replace the edge as indicated in

but the maximum degree overall is now 5. Fig. 9(a), i.e.,Z replaces the edge frointo f with
In the second case the corner removal will not re- the one fronh to j. This again controls the maximum
move all the intervals from eitheA or B. Again degree within 5. On the other hand4f cannot locate

consider the two end pointg and g of the added the two nodes that appear two steps before, or gfter
edge during corner removal. If the interior zig-zagging andg, then sincef andg both have two interior zig-
starts from either of the endpoints, sgy f will have zagging edges by assumption, the interior zig-zagging
only one interior zig-zagging edge. In the worst case s like in Fig. 9(b). This is impossible since after the
could have degree 6 if the corner zig-zagging also corner removal the interior zig-zagging always has
starts fromg (Fig. 8(a))—two boundary edges, two equal number of intervals on both sides.

interior zig-zagging edges, one edge connecting to We now summarize the upper bounds from the al-
and an edge that starts the corner zig-zagging. In thatgorithm Z.

caseZ simply changes the orientation of the corner

zig-zagging and leff starts. Similar to the construc- Theorem 7. The algorithmZ produces an optimal
tion in the first case we can still control the maximum triangulation of a rectangles. The execution time of al-

degree to be 5 (Fig. 8(b)). gorithm Z is a linear function of the total number of

Now we consider the situation that the interior zig- intervals. Leta, b, ¢, d be the number of intervals of
zagging does not start at eithgror g. That is, bothf the four sides of a rectangle, ardbe the maximum
andg have two interior zig-zagging edges, aficcan- among them.

not avoid the maximum degree 6 simply by switching

the corner zig-zagging orientation. Let us locate the e If a is betweerb +c+d —1andb+c+d +
two vertices that appear two steps before, or after 1 inclusively, the zig-zag condition holds asd
andg during the interior zig-zagging. If either of these produces an optimal triangulation by zig-zagging.
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Fig. 9. Final adjustment to reduce the maximum degree to 5.

e Whena > b+ ¢ +d + 1, Z produces an optimal
triangulation with maximum degrdéa — 2) /(b +

¢ +d —1)] + 3 according to Theorem.

Whena < b + ¢ +d — 1 we have two cases. If
the zig-zag condition holds thef produces an
optimal triangulation with maximum degreeby
Zig-zagging, else& produces an optimal triangu-
lation with maximum degreB, according to the
discussion in Theoreis

4. Convex polygons

We generalize the previous results on rectangular
domains to convex polygons. We first show that the
general lower bound of 4 in Theorem 3 is still valid.

Theorem 8. For every triangulation on a convex poly-
gon with more than four sides, there exists a vertex
with degree at least.

Proof. It is easy to see that Lemmas 1 and 2 are still
valid for polygons. Lemma 1 makes no difference be-
tween a rectangle with intervals or a polygon with
the same number of intervals. If a corner is not iso-
lated, then it must connect to another vertex via an
edge, which will divide a polygon into two halves. In

angulation only if every node of degrdés connected
to adjacent nodes along the boundary.

Proof. The proofis as same as in Theorem 5. We only
need to make sure that there are at least3 inter-
vals. O

With Lemma 9 in place we now identify the neces-
sary and sufficient conditions that a polygon can have
a maximum degree 4 triangulation.

Theorem 10. Ann-sided polygorP with at least: + 3
intervals on its boundary has a maximum degéee
triangulation if and only if then sides of P can be
partitioned into two sets\ and B, each consisting of
consecutive sides d@f, and the numbers of intervals
in A and B differ by at mostL. This “zig-zag condi-
tion” can be verified inO(n) time.

Proof. We only need to give an algorithm that can ver-
ify the zig-zag condition in linear time. Consider aring
with » numbers on it. We would like to verify that if
there is a way to cut the ring into two parts so that
the sums of the numbers on the two parts differ by at
most 1.

First we compute the sum of all the numbers on

each of these two smaller polygons there exists at leastthe ring (denoted by), which takes @) time. We

one isolated corner and Lemma 2 follows. With a sim-
ilar argument as in Theorem 3 we conclude that the
lower bound on the maximum degree is 4 for all poly-
gons. O

Lemma 9. An n-sided polygonP with at leastn + 3
intervals on its boundary has a maximum degtes-

then use two pointerdjead andtail, to indicate the
two positions where the ring should be cut. Initially
we set both head and tail to the same position in the
ring. If the sum of the numbers between head and tail
(inclusively) is less thanS/2|. We advance the head
pointer. If the sum of the numbers between head and
tail (inclusive) is greater thanS /2], we advance the
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tail pointer. If neither of the above two conditions is a convex polygon to fit the computation domain bet-
true, we have a zig-zag condition, and the region be- ter. This zig-zag condition can be verified in linear
tween head and tail (inclusive) is the answer. If the tail time.

pointer passes through the head pointer, or the start-

ing position where the head pointer started, the zig-zag

condition is not possible. It is easy to see that neither Acknowledgements

pointer will advance for more than®@) steps, and the

time to update the sum of numbers between the head The author thanks Mr. Tian-Ren Chen for helpful
and the tail is @1), therefore the entire verification discussion.

process takes @) time. O
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