ELSEVIER

Available online at www.sciencedirect.com

sc.snce@o.“w

Information Processing Letters 98 (2006) 150-155

Information
Processing
Letters

www.elsevier.com/locate/ipl

Optimal register allocation for SSA-form programs
in polynomial time

Sebastian Hack *, Gerhard Goos

Institut fiir Programmstrukturen und Datenorganisation, Adenauerring 20a, 76131 Karlsruhe, Germany

Received 11 February 2005; received in revised form 23 November 2005
Available online 17 February 2006

Communicated by F. Meyer auf der Heide

Abstract

This paper gives a constructive proof that the register allocation problem for a uniform register set is solvable in polynomial time

for SSA-form programs.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Combinatorial problems; Graph algorithms

1. Introduction

Register allocation is the task in a compiler, which
maps (temporary) variables to processor registers. The
most prominent approach is to map this task to a graph
coloring problem. The nodes of the so-called interfer-
ence graph are formed by the temporaries of the pro-
gram. Whenever the compiler finds out, that two tem-
poraries cannot be held in the same register (due to
interference), an edge is drawn between the correspond-
ing nodes in the interference graph. Colors correspond
to processor registers. Thus, having k registers, a k-col-
oring of the interference graph forms a correct register
assignment.

Chaitin et al. [4] show that for each undirected graph
a program can be given which has this graph as its inter-
ference graph. So, since graph coloring is NP-complete,

* Corresponding author.
E-mail addresses: hack@ipd.info.uni-karlsruhe.de (S. Hack),
ggoos @ipd.info.uni-karlsruhe.de (G. Goos).

0020-0190/$ — see front matter © 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.ip.2006.01.008

register allocation must also be. However, if one only
considers programs in SSA-form (e.g., refer to [5]) the
situation changes. It turns out, that interference graphs
of SSA-form programs belong to the class of chordal
graphs, which is in turn a subset of the class of perfect
graphs. It is well known, that chordal graphs can be col-
ored in quadratic time. This also answers the question
posed by Andersson [1] whether interference graphs are
perfect.

This paper is structured as follows: First, we describe
the model of a program used in this paper. Then we give
anew definition of liveness for SSA-form programs. Af-
ter quoting basic facts from graph theory, we will prove
that interference graphs of SSA-form programs always
have perfect elimination orders and show how they are
determined.

2. SSA-form programs

Here, we consider a program (in SSA-form) given by
its control flow graph (CFG) whose nodes are made up
of labeled single instructions. We will therefore identify

S. Hack, G. Goos / Information Processing Letters 98 (2006) 150-155 151

if ... then if ... then

lyix < --- Ly ixp < -+
else else

l3:x < --- £3:xp < -+
end end
ly:y < x+1 £y 1x3 < (x1,x2)

Ly:y) < x3+1

Fig. 1. Program fragment and its equivalent in SSA-form.

the node and its label in the following. Let us call the set
of labels £. The CFG has one distinct start node which
has no predecessor nodes and is denoted by start. The
instruction corresponding to a node is of the following
form:

C:(dy,....dyn) < 1t(Uy,...,uy).

We denote the operation T at a label £ by Op,. We call
Resg ={d,, ..., d,} the ordered set of result values and
Arg, ={uy, ..., u,} the ordered set of argument values
at the label ¢. All dy,...,d,, and uy,...,u, are ele-
ments of the set of (abstract) values V of the considered
program. Given a label £, let us denote Arg,(i) the ith
argument to the operation at £. Each label has an or-
dered set of k predecessor labels which we will denote
by P}, ..., Pf.

We will also write ¢/ —' ¢ if ¢/ = P}. If we do
not care about the position, we simply write ¢/ — £
to denote that ¢’ is a predecessor to £. A path p is
an ordered set {{1,...,¢,} of at least two nodes, for
which £; — €5,4, — £3,...,€,_1 — £, holds. To in-
dicate that a set p = {{1,...,£,} is a path, we write
ply— =L,

Finally, we say a label ¢ dominates another label ¢’
if each path from start to ¢’ contains £, writing £ < ¢'.
Note, since < is reflexive, £ < £.

We require the program to be given in SSA-form,
which means that each variable is statically only as-
signed once. Usually, when a program is transferred
into SSA-form, for each definition of a non-SSA vari-
able x, a SSA variable x; is created. The usages of the
variables then have to be adjusted to refer to the corre-
sponding SSA variable. This is not always possible. It
might be dependent on the control flow, which defini-
tion of the variable is applicable at the usage. Consider
the left program in Fig. 1. At label ¢4, it is depen-
dent on the control flow whether the definition at £,
or the one at ¢3 is relevant for £4. In SSA-form pro-
grams, a special instruction, called ¢-function is used to
disambiguate multiple definitions by control flow. A ¢-
function copies its ith parameter to its result, if it was
reached via P[k. Note, that a basic block can have multi-
ple ¢-functions. So, since the program is in SSA-form,

l1:a <« ---
if ... then
Ly:--
else
03:b <«
end
Ly:y < ¢'(a,b)

Fig. 2. Liveness at ¢’-functions.

for each SSA-variable! v there is exactly one label D,
for which v € Resp, .

Since we allow only one instruction per label, we re-
place the set of all ¢-operations in a basic block

Vi =¢X11, ..., X10),

J’m = ¢(xm17 e 7~xml’l)
by the more concise ¢’-operation:

(1.

which sets y; = x;; if £ was reached via Pej . It is conve-
nient to define Arg,(j) = {x;; | 1 <i < m} subsuming

s Ym) =@ (X1 s Xl ey Xl s Xmn)

all operands of a ¢’-operation which refer to PZJ . Note,
that ¢’ is totally equivalent to the traditional ¢, since
SSA semantics states that all ¢-operations in a basic
block are evaluated simultaneously. In the following,
everything stated for ¢’-operations implicitly holds for
¢-operations. Thus we will only use ¢'.

2.1. Liveness in SSA-form programs

To perform register allocation on SSA-form pro-
grams, a precise notion of liveness is needed. The stan-
dard definition of liveness

A variable v is live at a label £, if there is a path from ¢
to a usage of v not containing a definition of v.

cannot be straightforwardly transferred to SSA-form
programs. The problem arises with ¢- and accordingly
¢’-operations. Consider the program in Fig. 2. Surely,
a is not live at label ¢3 although there is a path from
£3 to a usage of a, namely £4. The cause for this odd-
ity is that the usual notion of usage does not hold for
¢’-operations. In addition to their arguments, a ¢’-op-
eration also uses control flow information to produce
its result. To make the traditional definition of liveness
work, we have to incorporate the predecessor by which
a label was reached into the notion of usage:

1 SSA variables are often called values.

152 S. Hack, G. Goos / Information Processing Letters 98 (2006) 150-155

Definition 1 (Usage).

usage: N x L xV — B,

. v € Arg if Op, # ¢/,
@6 v) { ve Argi(i) if Opi =

Now, a usage is not only dependent on a label and a
value but also on a number which represents the prede-
cessor by which the label was reached. In our example
in Fig. 2, usage(1, €4, a) is true, since a is indeed used
if £4 is entered via £,. usage(2, ¢4, a) is false, since a is
not used if ¢4 is reached through ¢3. If the operation at
a label is not ¢’, this definition resembles the common
concept of usage by simply ignoring the predecessor in-
dex.

The traditional definition of liveness quoted above,
uses paths which end in usages of some variable to de-
fine liveness. In this traditional setting, usages and paths
are unrelated. With Definition 1, paths and usages are no
longer unrelated. So it is straightforward to merge them
in one term.

Definition 2 (Usepath). A path p:4; — --- — £, is a
usepath from £1 to £, concerning a value v, if v is used
at £, regarding this path. More formally:

usepath: £" x V — B,
(p:ily— = L,,v)

., | usage(i, £, v) if p=20; =40,
usepath(ép — --- — £,,v) otherwise.

Referring to the example in Fig. 2, £1,42,€4 is a
usepath of a and €1, £3, £4 is a usepath of b.

Using this definition of usage together with the tra-
ditional definition of liveness stated above, one obtains
a realistic model of liveness in SSA programs:

Definition 3 (Liveness). A value v is live at a label £; iff
there exists a label ¢, with usepath({1 — €, — --- —
£y,v)and Dy ¢ (€, ..., ¢,}.

We use the definition of usepaths to re-formulate the
notion of a strict program coined by Budimli¢ et al. [3].

Definition 4 (Strict program). A program is called
strict, iff for each value v each path from start to some
label £ with usepath(start — --- — £, v) contains the
definition of v.

From now on, we will only consider strict programs.?

The next lemma is essential for the rest of this paper and
has also been given by Budimli¢ relying on a slightly
different liveness definition.

Lemma 5. Each label ¢ at which a value v is live is
dominated by D,.

Proof. Suppose, £ is not dominated by D, . Then, there
is path from start to ¢ not containing D,. From the fact,
that v is live at £ follows, that there is a usepath of v
from £ to some ¢'. So there is a usepath from start to ¢’
not containing D, which contradicts the definition of a
strict program. 0O

2.2. Common facts about SSA-form programs

Since the definition of liveness given above seems
rather unusual, we shortly derive some well-known facts
about SSA-form programs from our definition. These
facts are not vital for the rest of the paper and are only
given to clarify certain properties of SSA-form pro-
grams.

Corollary 6. Each value v, used in a non-¢’-operation
at a label ¢ is dominated by its definition.

Proof. Then, for each predecessor of P(j of £, usage(}J,
£, v) holds. With Definition 3, v is live at each PZJ . With
Lemma 5, D, dominates each predecessor of £. Thus
D, also dominates £.

Corollary 7. If a value v € Arg),(i) for a ¢'-operation at
a label £ and some i, then the definition of v dominates
Pi

/2

Proof. Surely, usage(i, ¢, v) holds. So p: Pé —{isa
us;:path concerning v. So, after Deﬁnition 3, v is live at
Pé. Thus, with Lemma 5, D, < Pé.

Corollary 8. Let £ be a label with Op, # ¢'. Each pair
of values v, w € Arg, interfere.

Proof. Due to Definition 3, v and w are live at each
predecessor of that label. So v and w interfere.

Often, one can read statements like:

2 Surely, each non-strict program can be turned into a strict one by
inserting instructions which initially define the variables by an arbi-
trary value.

S. Hack, G. Goos / Information Processing Letters 98 (2006) 150-155 153

e ¢’-operations do not cause interferences.

e Concerning liveness, ¢’-operations can be treated
as if they had no arguments.

e ¢’-operations extend the lifetimes of their argu-
ments to the end of the respective predecessor label.

All these statements try to describe Corollary 8 the other
way around. With the definition of usepaths, they are
covered implicitly. In our model the basic assumption
is, that the property of usage is always tied to a value
and a path, which makes Corollary 8 the “special” case.

3. Graph theory

Here we quote definitions from basic graph theory
and the theory of perfect graphs important to this paper.
Let G = (V, E) be an undirected graph. If there is an
edge from v € Vg to w € V, we write vw € Eg. We
leave out the G in Eg, Vg if it is clear from the context,
which graph is considered. We call a graph G complete,
iff for each v, w € V, there is an edge vw € E. We call
G’ an induced subgraph of G, if Vg C Vi and for all
nodes v, w € Vg, vw € Eg — vw € Eg holds.

Definition 9 (Simplicial vertex). A vertex v € Vg is
called simplicial, if v and its neighbors induce a com-
plete subgraph in G.

Definition 10 (Perfect Elimination Order, PEO). We
call a linearly ordered sequence of vertices vy, ..., v,
a perfect elimination order, if each v; is simplicial in
G —{vy,...,v,—1} where G —{ay, ..., ay} is the graph
obtained by deleting all vertices {ay, ..., a;} and their
incident edges from the graph.

The class of graphs for which perfect elimination or-
ders exist are also called chordal or triangulated graphs.
Gavril [6] gives an algorithm for coloring chordal
graphs in O(|V|?). The algorithm constructs a PEO for
a given chordal graph by searching and removing a sim-
plicial node from the graph each step. Afterwards, the
nodes are inserted into the graph in reverse order. Each
node is assigned a color which is not occupied by a
neighbor of the node to insert. It is further proven, that
this algorithm leads to a minimal coloring of the graph.

4. Interference graphs of SSA-programs

We say two values v and v’ interfere, iff there is a la-
bel ¢ where v and v’ are live (regarding Definition 3).
Now, we can define the interference graph IG = (V, E)
of an SSA-form program. The set of vertices is made up

by the values occurring in the program, V;g = V. Since
nodes in the interference graph and values are identi-
cal, we identify both terms in the following. We draw
an edge between to values v and v’ iff they interfere and
write vv’ € Ejg. The following lemmas lead to a theo-
rem that connects the dominance relation of a program
to perfect elimination orders in the interference graph of
that program. Lemmas 11 and 12 have also been shown
by Budimli¢ et al. [3] and are given for the sake of com-
pleteness, here.

Lemma 11 shows that each edge in the interference
graph is directed according to the dominance relation-
ship of the values their nodes represent.

Lemma 11. If two values v and w are live at some label
L, either D, dominates D, or vice versa.

Proof. By Lemma 5, D, and D,, dominate £. Thus, ei-
ther D, dominates D,, or D,, dominates D,. O

The next lemma shows what is trivial in basic blocks
also holds for complete programs in SSA-form: if one
value starts living before another (it dominates the
other) and both interfere, the value is still alive at the
definition of the other.

Lemma 12. [f v and w interfere and D, < Dy, then v
is live at Dy,.

Proof. Assume, v is not live at D,,. Then there is no
usepath from D,, to some ¢’ concerning v. Since all la-
bels where w is live are dominated by D,,, there is no
label where v and w are simultaneously live. So v and w
do not interfere which contradicts the proposition. O

Lemma 13 shows how the dominance order relation
is reflected by the interference graph. It says that all val-
ues dominating a value v and interfering with v form a
clique in the interference graph. This is used later on to
connect the perfect elimination order to the dominance
relation.

Lemma 13. ab,bc € E and ac ¢ E. If D, <X Dy, then
Dy < D,.

Proof. Due to Lemma 11, either D, < D, or D. < Dj,.
Assume D, < Dj. Then (with Lemma 12), ¢ is live at
Dy,. Since a and b also interfere and D, < Dy, a is also
live at Dj,. So, a and c are live at D;, which cannot be
by precondition. O

154 S. Hack, G. Goos / Information Processing Letters 98 (2006) 150-155

Lemma 14. A value v can extend a perfect elimination
order; if each value whose definition is dominated by D,
is already contained in the PEQO.

Proof. To extend a PEO, v must be simplicial. Assume
v is not simplicial. Then there exist two neighbors a, b
for which va,vb € E but ab ¢ E (by Definition 9).
Due to the proposition, all values whose definitions are
dominated by D, have already been removed from IG.
Thus, D, dominates D,. By Lemma 13, D, dominates
Dj, which contradicts the proposition. Thus, v is simpli-
cia. O

Theorem 15. The interference graph of a SSA-form pro-
gram P is chordal.

Proof. Consider the tree T of immediate dominators
(cf. [9]) concerning the control flow graph of P. We
start with an empty PEO and apply Lemma 14 recur-
sively on T starting at the leaves. This constructs a PEO
for the interference graph of P. Since each graph which
has a PEO is chordal, cf. [7], the interference graph of
P is chordal.

As we can see by Theorem 15, a post-order visitation
of the dominator tree of a program yields a PEO. Since
the vertices are colored reversely along a PEO, a pre-
order visitation of the dominator tree defines a sequence
in which the values can be colored optimally using the
algorithm described in [6]. Since the liveness analysis
annotates the set of live values to each label, we always
have the set of neighbors present upon coloring a value.
Thus, we do not have to construct the interference graph
itself.

5. Leaving the SSA-form

As no real-world processor has a ¢-instruction the
compiler has to destroy the SSA-form of the program at
some point in time. Conventionally, ¢-functions are re-
placed by copies in its predecessor blocks to implement
the control flow dependent copy as described in Sec-
tion 2. In doing so, one modifies the interference graph
of the program since new interferences are introduced,
as shown in Fig. 3. x3 is now interfering with y; and
y2 which has not been the case in the interference graph
of the SSA-form program. These interferences are in-
troduced due to the fact, that the atomic, simultaneous
evaluation by ¢’-functions (as mentioned in Section 2)
is broken down to a sequential set of operations. In the
worst case, these new interferences render the interfer-
ence graph un-chordal which also might invalidate our

if ... then if ... then
lyix) <+ ly:ix) <+
f3iyp < £3:yp <
else Ly:x3 <X
Lyixp < --- U5:y3 <y
Ly:yy < -+ else
end lyixy < -
£6:(x3,y3) <= ¢’ (x1, y1, X2, ¥2) €51yp < -
Ly:x3 <X
l5:y3 <y
end

Fig. 3. A program fragment in SSA-form and after destroying SSA
using copy instructions.

register allocation. We can however destroy the SSA-
form of the program and convert a register allocation
with k registers of a SSA-form program into a register
allocation with exactly the same number of registers for
the resulting non-SSA-form program.

Consider a ¢’-function

(1,

at some label £. Arriving at £ and coming from P},
the x;; are copied at once into the y; according to SSA
semantics. Consider a valid register allocation The si-
multaneous assignment given by the ¢’-function corre-
sponds to a /-to-m mapping of registers, where [< m <
k, and k represents the number of register available.?
Furthermore, all y; are assigned to different registers,
since all y; interfere. So the question of removing a
¢’-function reduces to implementing /-to-m mappings
between registers on the control flow edges to the ¢'s
label using ordinary processor instructions and m regis-
ters.

,)’m) <_¢/(xllw--7xln,--wxml,---axmn)

Theorem 16. Any simultaneous assignment from [reg-
isters to m registers, where | < m, can be implemented
with m registers using only copy and swap instructions.

Proof. Consider following simultaneous assignment:

Dy e Ym) <= (X1 ee ey XLy ee ey Xy e e ey X1).

m

In general, there may be multiple y; to which the same
xj is assigned. For each x; we arbitrarily pick one of
the y; to which it is assigned and denote it by [x;].
Note, that this induces an equivalence relation ~ on the
Y1, ..., yni yi ~ yj if there is some x; which is assigned
to y; and y;. Thus, y; and y; are members of the equiv-

3 Note, that the same value x can be assigned to different y; by a
¢'-function. E.g., (y1, y2) = ¢/(ay, by, a1, by).

S. Hack, G. Goos / Information Processing Letters 98 (2006) 150-155 155

alence class [x;]. We denote the set of the x; by X and
the set of the equivalence classes [x;] by [X].

Consider a register allocation p :V — R of the SSA-
form program obtained by the algorithm described in
the last section. Let 7 by a function mapping p(x;) to
o([x;]). Note, that since all y; interfere, all [x;] also
interfere and by the fact that all x; interfere, 7 is injec-
tive. 7 may also be partial, since / might be smaller than
k=1|R|.

Each register in p([X]) which is not in p(X) can
be assigned immediately since its value is not needed
anymore. So we apply the following recursive scheme:
Let y=m(x). If y € [X] and y ¢ X we issue a copy
from p(x) to p(y) and recursively consider the map-
ping 7| x\(x}-

At the end of this recursive procedure, either all ele-
ments of [X] are processed and thus all of X since 7 is
injective or the remaining subset of [X] equals the one
of X. Thus this rest represents a permutation of regis-
ters which can be, as known from basic linear algebra,
implemented by a sequence of swap instructions. If the
processor does not possess swap instructions, one can
use three xors, adds or subs (cf. [10]).

Finally, each y; € [x;] can be processed by copying
p(lxjD w0 p(y). O

6. Conclusions

We have shown that the interference graphs of strict
SSA-form programs are chordal which leads to a color-
ing algorithm running in quadratic time. Furthermore,
the coloring algorithm does not need to have the inter-
ference graph materialized but uses a coloring sequence
induced by the dominance relation of the program. We
also showed, how a register allocation of a SSA-form
program using m registers can be turned into a register
allocation of a corresponding non-SSA program using
also no more than m registers, by implementing the ¢’-
functions properly.

7. Related work

At the time this paper was submitted, chordal graphs
played no role in register allocation. Meanwhile, they
have drawn the attention of other researchers in the area.
The paper which initiated our research on the topic is
by Andersson [1] who investigated interference graphs
in real-world compilers and found that all of them were
1-perfect (1-perfectness means that the chromatic num-

ber of the graph equals the size of its largest clique). The
result of the quest for a proof of this observation is this
paper. Independently of us, Brisk proved the perfectness
of strict SSA-form programs [2]. In his proof he also
shows their chordality without referring to it. Pereira
and Palsberg extended Andersson’s studies and found
that, with SSA-optimizations enabled, 95% of the (non-
SSA!) interference graphs of the Java standard library
were chordal. They use this fact to derive new spilling
and coalescing heuristics for graph coloring register al-
locators. Finally, the authors of this paper published a
more technical proof (without using perfect elimination
orders) of this paper’s result in a technical report [8].

Acknowledgements

We thank our colleagues Michael Beck, Marco
Gaertler, Gotz Lindenmaier and especially Rubino Geif3
for many fruitful discussions. We also thank the anony-
mous referees for their suggestions helping to improve
this paper.

References

[1] C. Andersson, Register allocation by optimal graph coloring,
in: G. Hedin (Ed.), CC 2003, Lecture Notes in Comput. Sci.,
vol. 2622, Springer-Verlag, Heidelberg, 2003, pp. 33—45.

[2] P. Brisk, F. Dabiri, J. Macbeth, M. Sarrafzadeh, Polynomial time
graph coloring register allocation, in: 14th Internat. Workshop on
Logic and Synthesis, ACM Press, New York, 2005.

[3] Z. Budimli¢, K.D. Cooper, T.J. Harvey, K. Kennedy, T.S. Oberg,
S.W. Reeves, Fast copy coalescing and live-range identification,
in: Proc. ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation, ACM Press, New York,
2002, pp. 25-32.

[4] G.J. Chaitin, M.A. Auslander, A.K. Chandra, J. Cocke, M.E.
Hopkins, P.W. Markstein, Register allocation via coloring,
J. Comput. Languages 6 (1981) 45-57.

[5] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, F.X. Zadeck,
An efficient method of computing static single assignment form,
in: Symp. on Principles of Programming Languages, ACM Press,
New York, 1989, pp. 25-35.

[6] F. Gavril, Algorithms for minimum coloring, maximum clique,
minimum covering by cliques, and independent set of a chordal
graph, SIAM J. Comput. 1 (2) (1972) 180-187.

[7]1 M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs,
Academic Press, New York, 1980.

[8] S. Hack, Interference graphs of programs in SSA-form, Tech.
Rep. 2005-25, Universitit Karlsruhe, June 2005.

[9] T. Lengauer, R.E. Tarjan, A fast algorithm for finding domina-
tors in a flowgraph, Trans. Programm. Languages Systems 1 (1)
(1979) 121-141.

[10] H.S. Warren, Hacker’s Delight, Addison-Wesley, Reading, MA,
2003.

