
HAL Id: hal-01194609
https://hal.science/hal-01194609

Submitted on 7 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improved Undecidability Results on Weighted Timed
Automata

Patricia Bouyer, Thomas Brihaye, Nicolas Markey

To cite this version:
Patricia Bouyer, Thomas Brihaye, Nicolas Markey. Improved Undecidability Results on
Weighted Timed Automata. Information Processing Letters, 2006, 98 (5), pp.188-194.
�10.1016/j.ipl.2006.01.012�. �hal-01194609�

https://hal.science/hal-01194609
https://hal.archives-ouvertes.fr

Improved Undecidability Results on

Weighted Timed Automata

Patricia Bouyer a, Thomas Brihaye b, Nicolas Markey a

aLab. Spécification & Vérification, CNRS & ENS de Cachan, France
bUniv. Mons-Hainault, Centre Fédéré en Vérification, Belgium

Abstract

In this paper, we strengthen two recent undecidability results of [9,10] about weighted timed
automata, an extension of timed automata with cost variables. More precisely, we propose
new encodings of a Minsky machine that only require three clocks and one stopwatch cost,
while they required five clocks and one stopwatch cost in [9,10].

Key words: Weighted timed automata, weighted timed games, undecidability

1 Introduction

Weighted timed automata (WTA for short), or priced timed automata, have been
defined in 2001 independently by Alur et al. [5] and Larsen et al. [6] for modelling re-
source consumption in timed systems. They extend classical timed automata (TA) [3]
with cost information on both locations and edges. These costs increase while time
elapses, but are never tested in the automaton. An interesting problem is then to
compute the optimal cost for reaching a given state. In [5,6], this problem (called
optimal reachability) is proved decidable.

In order to express more involved properties, the logic WCTL has been proposed as
an extension of TCTL [2] in which cost variables can be constrained [11]. Model-
checking this logic is undecidable in general for the classical dense-time seman-
tics [11,9]. Games played on WTAs with an optimality criterion have been considered
in [12,1,7,10] and though partial decidability results have been obtained in [1,7], it
has recently been proved in [10] that the general problem of finding optimal strate-
gies in such a game is undecidable. In this paper, we improve both undecidability
results mentioned above: our encodings are simpler, and above all, the reductions
use only three clocks, instead of five in [9,10].

Email addresses: bouyer@lsv.ens-cachan.fr (Patricia Bouyer),
thomas.brihaye@umh.ac.be (Thomas Brihaye), markey@lsv.ens-cachan.fr
(Nicolas Markey).

Preprint submitted to Elsevier Science 9 January 2006

2 Preliminaries

In the sequel, X is a finite set of clocks and AP is a finite set of atomic propositions.
We adopt standard notations for TAs and refer to [3] for classical definitions. A WTA
is a tuple (Loc,Edg, Lab, cost) where (Loc,Edg, Lab) is a TA and cost : Loc ∪ Edg →
N

d is an extra cost function. A run of a WTA is a run of the underlying TA, having
both continuous (time-elapsing) and discrete transitions. Given a run ρ and a state p
along that run, we write ρ[p] for the finite prefix of ρ ending at p. Let ρ be the finite

run (ℓ0, α0)
γ0
−→ (ℓ1, α1)

γ1
−→ (ℓ2, α2) · · ·

γk−1
−−−→ (ℓk, αk) where γi ∈ R+ for continuous

transitions and γi ∈ Edg for discrete ones. We define

cost(ρ) =
∑

i≤k,γi∈R+

cost(ℓi) · γi +
∑

i≤k,γi∈Edg

cost(γi).

Our constructions only involve one cost, we thus always have d = 1 in the sequel. A
stopwatch cost is a cost cost s.t. cost(Loc) ⊆ {0, 1}.

We consider the logic WCTL 1 , a branching-time logic close to TCTL [2] and ICTL [4].
It is built over AP with boolean combinators, and with two families of modalities
E U∼c and A U∼c , where ∼ ∈ {<,≤,=, >,≥}, and c ∈ N. Let ξ ∈ WCTL, A be
a WTA and q be a state of A. That ξ holds in A at state q, denoted by A, q |= ξ, is
defined in the standard way for atomic propositions and boolean combinators, and
by:

• A, q |= E (ϕU∼c ψ) iff there exists a run ρ = (qi)i≥0 in A with q = q0, and
a position p in ρ such that A, p |= ψ and cost(ρ[p]) ∼ c and A, p′ |= ϕ for all
positions p′ 6= p of ρ[p];

• A, q |= A (ϕU∼c ψ) iff for any infinite run ρ = (qi)i≥0 in A with q = q0, there
exists a position p in ρ such that A, p |= ψ and cost(ρ[p]) ∼ c and A, p′ |= ϕ for
all positions p′ 6= p of ρ[p].

In the sequel, we might omit to mention A when it is clear from the context, and
simply write q |= ϕ.

3 Encoding the Counters

We now explain the undecidability proof for WCTL model-checking. Let M be a two-
counter machine [13]. We build a WTA AM (with three clocks and one stopwatch
cost) and a WCTL-formula Φ such that given q0, a well-chosen state of AM, we have
that M halts if, and only if, q0 |= Φ. The two counters c1 and c2 will be encoded
alternately by three clocks x, y and z. The value of c1 is encoded by x1 = 1/2c1 (with
x1 ∈ {x, y, z}) whereas the value of c2 is encoded by x2 = 1/3c2 (with x2 ∈ {x, y, z}).
To each instruction will be associated six modules, one for each injective function
{x1, x2} → {x, y, z}.

1 WCTL stands for “Weighted CTL”.

2

3.1 Incrementation of a counter

We consider the following instruction of the two-counter machine:
pi : c1 := c1 + 1; goto pj .

We also assume that the initial value of c1 is stored in clock x whereas that of c2
is stored in y. To pi, we associate the automaton Aut

i
1,+(x, y, z) as in Fig. 1. In

that figure (and in all the other ones), costs which are omitted are equal to zero.
The subscript 1,+ is a remainder that instruction pi deals with counter stored in
the first clock (x here) and is an incrementation (we might omit it when it is not
necessary), the tuple (x, y, z) indicates which clocks encode counters c1 and c2: here,
c1 is initially stored in x and c2 is initially stored in y. At the end of this module,
the new values of c1 and c2 are stored in z and y, resp.; that’s why we swap x and z
when leaving the module (transition from Di

x,y,z to Aj
z,y,x).

Ai
x,y,z Bi

x,y,z Ci
x,y,z Di

x,y,z Aj
z,y,x

Test(x = 2z, {y})Power2(x, {y, z})

Power3(y, {x, z})

cost=1

x=1,x:=0 z:=0

y=1,y:=0 y=1,y:=0

Fig. 1. Automaton Aut
i
1,+(x, y, z)

For that automaton to really increment the first counter, we will enforce the following
requirements (see Section 5): (1) the delay between arrival in Ai

x,y,z and arrival

in Di
x,y,z is 1 t.u., (2) when entering Di

x,y,z, z equals x/2 and (3) the delay elapsed

in Di
x,y,z is 0.

The last point will be ensured through a global WCTL-formula stating that no
cost is accumulated in location Di

x,y,z. The second point is obtained by a module
Test(x = 2z, {y}), together with a WCTL-formula ϕ1 (see Section 4.2 for details on
that module). Finally, according to Lemma 1 below, the first point is enforced by
checking that the values of x and y when entering Di

x,y,z are 1/2n and 1/3m for some
integers n and m. Those conditions are ensured by modules Power2 and Power3 and
the associated formulas ϕ2 and ϕ3, whose construction is explained in Section 4.3.

Lemma 1 If a run enters location Ai
x,y,z with x = 1/2c1, y = 1/3c2 and enters

location Di
x,y,z t time units later with the value of x of the form 1/2n for some n,

and the value of y of the form 1/3m for some m, then t = 1, n = c1 and m = c2.

This lemma can easily be proved using elementary arithmetical manipulations. It
plays a crucial role in our reduction: it explains how comparing clocks to powers
of 1/2 and 1/3 gives a way to measure exactly 1 t.u., and thus why we encode the
counters as powers of 1/2 and 1/3. Note that 2 and 3 could be replaced by any two
relatively prime numbers.

3

Similar ideas can be used for designing an automaton Aut
i
2,+(x, y, z) that increments

the second counter (i.e. ends up with z = y/3, while x returns to its original value),
involving module Test(x = 3z, {y}).

3.2 Decrementation of a counter

We now treat instruction: pi : if (c1 > 0) then c1 := c1−1; goto pj else goto pk.
We only give the construction of automaton Aut

i
1,−(x, y, z), which is a slight variation

of the previous construction. This automaton implements the decrementation of the
first counter, initially stored in x, unless it equals zero.

Ai
x,y,z

A′i
x,y,z Bi

x,y,z Ci
x,y,z Di

x,y,z Aj
z,y,x

Ak
x,y,z

Test(z = 2x, {y})Power2(x, {y, z})

Power3(y, {x, z})

cost=1

z:=0 x=1

z=0

x<1 z=0

x=1

x:=0

z:=0

y=1,y:=0 y=1,y:=0

Fig. 2. Automaton Aut
i
1,−(x, y, z)

In the global reduction, we will enforce the following properties: (1) the values of x
and y when entering Di

x,y,z are 1/2n and 1/3m for some n and m, (2) when entering

Di
x,y,z, z equals 2x and (3) the delay in Di

x,y,z is 0. As previously, we can prove that
these three conditions express correctness of the construction. Lemma 1 clearly also
holds for Aut

i
1,−(x, y, z). Automaton Aut

i
2,−(x, y, z) is built in the same way.

4 Modules

4.1 Adding x or 1 − x to the cost variable, where x is a clock

Following [10], we build modules Add
+(x, {z}) and Add

−(x, {z}), displayed on Fig. 3
and 4. Those automata clearly satisfy the following Lemma:

Lemma 2 If a run enters location ℓ0 of Add
+(x, {z}) (resp. Add

−(x, {z})) with x =
α0 ∈ [0, 1], y = β0 ∈ [0, 1] and cost = γ0, it then leaves location ℓ1 with the same
values for x and y, and with cost = γ0 + α0 (resp. cost = γ0 + 1 − α0).

4.2 Checking y = 2x

Module Test(y = 2x, {z}) is the (deterministic) automaton displayed on Fig. 5. It
sets the cost to 2x+ 1− y. Let ϕ1 = S ∧ E F≤1 T ∧ E F≥1 T . The following Lemma
clearly holds:

4

ℓ0 ℓ1
cost=0 cost=1

z:=0

y=1,y:=0 y=1,y:=0

x=1,x:=0 z=1,z:=0

Fig. 3. Automaton Add
+(x, {z})

ℓ0 ℓ1
cost=1 cost=0

z:=0

y=1,y:=0 y=1,y:=0

x=1,x:=0 z=1,z:=0

Fig. 4. Automaton Add
−(x, {z})

S Add
+(x, {z}) Add

+(x, {z}) Add
−(y, {z}) T

cost=0 cost=0

z:=0 z=0

Fig. 5. Automaton Test(y = 2x, {z})

P2 Q2

R2

Test(y = 2x, {z})
z:=0 y:=0

x=1
x:=0

z=1∧x≤1

z:=0

z=0,x:=y

z=0

x=1,z=0

Fig. 6. Automaton Power2(x, {y, z})

Lemma 3 Formula ϕ1 holds in S along module Test(y = 2x, {z}) with x = α0 ∈
[0, 1] and y = β0 ∈ [0, 1] if, and only if, β0 = 2α0.

This construction can easily be adapted for other tests, especially for building a
module Test(y = 3x, {z}) testing if y = 3x.

4.3 Checking that the value of x is of the form 1/2d

Module Power2(x, {y, z}) is displayed on Fig. 6. Note that it requires two auxiliary
clocks. Note also that it uses an update “x := y”, instead of classical resets. This
is for the sake of simplicity, as the module could be adapted (by duplicating the
periodic part, involving no extra clock) in order to only have standard resets [8].

We let ϕ2 = P2 ∧ E ((Q2 → E (Q2 U ϕ1))UR2). We have the following Lemma:

Lemma 4 Formula ϕ2 holds in P2 in module Power2(x, {y, z}) with x = α0 ∈ (0, 1]
if, and only if, there exists a non-negative integer d s.t. α0 = 1/2d.

PROOF. Let q0 be the configuration (P2, 〈α0,−, 0〉) when entering P2 for the
first time. Assume that Power2(x, {y, z}), q0 |= ϕ2, and pick a run ρ witnessing
this property, i.e., starting from P2, reaching R2, and s.t. intermediate positions
satisfy Q2 → E (Q2 U ϕ1) in Power2(x, {y, z}). Since time cannot elapse in Q2,
Lemma 3 ensures that, when entering Q2, the value of y is always twice the value
of x.

Let n be the number of times ρ enters the location Q2. If n = 0, then α0 = 1 = 20, as
required. Now, assume n > 0. Clearly, clock x has the same value when ρ enters Q2

5

as the previous time it entered P2, provided this value is in (0, 1]. Since y = 2x
when entering Q2, it can easily be proved by induction that, when entering Q2 for
the k-th time, with k ≤ n, then x = 2k−1α0. Thus, the last time run ρ enters Q2,
we have x = 2n−1α0, and y = 2nα0. From that point on, ρ must go to location R2

without entering Q2 any more. This requires that the last value of y in Q2 is 1.
Thus α0 = 1/2n.

Conversely, if there exists a non-negative integer d s.t. α0 = 1/2d we have to prove
that Power2(x, {y, z}), q0 |= ϕ2. We build by induction a run ρd witnessing this fact.
If d = 0, we take ρd = (P2, 〈1,−, 0〉) → (R2, 〈1,−, 0〉). Otherwise, assume we can
build a run ρd−1 from (P2, 〈1/2

d−1,−, 0〉) to (R2, 〈1,−, 0〉). We build ρd as follows:

P2

x=α0

z=0

P2

x=1−α0

z=1−2α0

x=1−α0

y=0
z=1−2α0

x=1
y=α0

z=1−α0

x=0
y=α0

z=1−α0

x=α0

y=2α0

z=1

Q2

x=α0

y=2α0

z=0

ρd−1

x=2α0

z=0

1−2α0

y:=0

α0

x:=0

α0

z:=0 x:=y

Clearly, the paths ρd are paths of Power2(x, {y, z}) and satisfy ϕ2. �

It is easy to adapt this construction in order to build a module Power3(x, {y, z}) and
a formula ϕ3 that check if x is of the form 1/3d, for some integer d.

5 Global Reduction

We build the global automaton AM inductively using sub-automata Aut
i
c,+ and

Aut
i
c,− as explained previously. To the halting instruction corresponds a unique lo-

cation AHalt, labelled with Halt. The initial location is the state A1
x,y,z denoted A1 for

short. In the sequel, a state of AM is written (A, 〈x, y, z〉), where A is the location
and 〈x, y, z〉 is the valuation of x, y and z, in that order. Thus, the initial configu-
ration of M is encoded by q0 = (A1, 〈1, 1, 0〉). We set a new atomic proposition D
which is true in all states Di

σ(x,y,z), for any permutation σ.

As explained in Section 4, our modules (Test, Power2 and Power3) require that some
WCTL formulas (namely ϕ1, ϕ2 and ϕ3) hold in their initial state in order to really
play their roles. This will be ensured in AM through the following formula: Φ =
E [(D → ϕ) U≤0 Halt] where ϕ =

∧
i=1,2,3 E (DU≤0 ϕi).

Lemma 5 AM, q0 |= Φ iff the two-counter machine M has a halting computation.

PROOF. First assume q0 |= Φ, and pick a run ρ, starting in q0 and witness-
ing Φ, i.e., reaching state Halt with cost 0, and such that intermediate positions
satisfy D → ϕ in AM. As the cost rate in all D-states is 1, and the overall cost
of ρ is 0, no time can elapse in D-state. Also, each time ρ is in a D-state, ϕ holds.
Consider a D-state (Di

y,x,z, 〈xD, yD, zD〉) along ρ (the case of other permutations of
(x, y, z) would be treated similarly). In that state:

• formula E (DU≤0 ϕ2) holds, where ϕ2 = P2 ∧ E ((Q2 → E (Q2 U ϕ1))UR2)
(see Section 4.3). This means that this is possible to immediately enter module

6

Power2(y, {x, z}) and satisfy ϕ2. Lemma 4 then ensures that yD equals 1/2n, for
some integer n.

• similarly, formula E (DU≤0 ϕ3) and module Power3(x, {y, z}) ensure that xD

equals 1/3m for some integer m.
• formula E (DU≤0 ϕ1) holds, where ϕ1 = S∧E F≤1 T∧E F≥1 T (see Section 4.2).

Thus, it is possible to immediately (with clock values yD, xD and zD) enter mod-
ule Test(y = 2z, {x}) (or another Test module, depending on instruction i) and
satisfy ϕ1. According to Lemma 3, this ensures that the corresponding test holds,
i.e. yD = 2zD (for the case of Test(y = 2z, {x})).

It follows that:

• if ρ enters Aut
i
1,+(y, x, z), say, with clock valuation 〈1/3m, 1/2n,−〉, then, accord-

ing to Lemma 1 (whose hypotheses hold, according to the remarks above), it
reaches Di

y,x,z (and then the next sub-automaton Aut
j(z, x, y)) after exactly 1 t.u.

with clock valuation 〈1/3m,−, 1/2n+1〉.
• if ρ enters Aut

i
1,−(y, x, z) with y = 1, then it immediately enters the next sub-

automaton, without letting time elapse.
• if ρ enters Aut

i
1,−(y, x, z) with valuation 〈1/3m, 1/2n,−〉, assuming n 6= 0, then we

can again apply Lemma 1, which claims that ρ reaches Di
y,x,z (and then the next

automaton Aut
j(z, x, y)) after exactly 1 t.u. and with valuation 〈1/3m,−, 1/2n−1〉.

By induction, whenever ρ enters the first location of a sub-automaton Aut
i(α, β, γ),

for any permutation (α, β, γ) of (x, y, z), then α = 1/2n and β = 1/3m, for some
integers n and m. According to Φ, ρ eventually enters state AHalt. In the meantime,
it traverses a (finite) sequence (Ak)k of sub-automata of the form Aut

i(α, β, γ).
Thus, to ρ, we can associate a sequence of tuples pk = (ik, c1,k, c2,k) as follows:
(a) ik is the index i of the sub-automaton Ak, (b) c1,k is the integer s.t. α = 1/2c1,k

when ρ enters Ak, and (c) c2,k is the integer s.t. β = 1/2c2,k when ρ enters Ak.
Quite obviously, our construction ensures that the values of the counters between pk

and pk+1 are updated according to instruction ik of M. The sequence (pk)k thus
corresponds to a halting computation of M.

Conversely, if M has a halting computation, we can exactly mimic this computation
with a run in AM. The arguments are similar to the ones above in order to prove
that this run satisfies Φ. �

Theorem 6 Model-checking WCTL on WTAs with three clocks and one stopwatch
cost is undecidable.

Note that our reduction holds for a restriction of WCTL not involving equality-
constraints, and involves only a stopwatch cost.

6 Application to Optimal Reachability Timed Games

Optimal reachability timed games have been first introduced in [12] and further
studied in [1,7,10]. We refer to the above papers for formal definitions.

7

A weighted timed game (WTG) is a WTA with a distinguished set of winning states,
and where the set of actions is split into controllable actions (played by the con-
troller) and uncontrollable actions (played by the environment). We assume a clas-
sical definition of strategies, and the aim of a game is, for the controller, to enforce
winning states and to minimize the cost of the plays, whatever does the environment.
To illustrate these notions, we better give an example.

Example 7 ([7]) We consider the WTG in Fig. 7. Dashed (resp. plain) arrows
are for uncontrollable (resp. controllable) actions. Depending on the choice of the
environment (going to location ℓ2 or ℓ3), the accumulated cost along plays of the
game is either 5t + 10(2 − t) + 1 (through ℓ2) or 5t + (2 − t) + 7 (through ℓ3)
when t is the delay in state ℓ0. The optimal cost the controller can ensure is thus
inft≤2 max(5t+ 10(2 − t) + 1, 5t+ (2 − t) + 7) = 14 + 1/3, and the optimal delay is
then t = 4/3. The optimal strategy for the controller is thus to wait in state ℓ0 until
x = 4/3, and then enter state ℓ1. Then, the environment chooses to go either to ℓ2
or to ℓ3, and finally as soon as x = 2, the controller goes to state Win.

ℓ0 ℓ1

ℓ3

ℓ2

Win
x≤2; c1

y:=0
u

u

x≥2; c2

cost=1

x≥2; c2

cost=7
[y=0]cost=5

cost=10

cost=1

cost=5

Fig. 7. A weighted timed game

This example indicates that the region partitioning (of [3]) is not sufficient for solving
optimal WTGs. Restricted decidability results have however been obtained in [1,7],
but the general problem has been recently proved undecidable [10]. This result relies
on a reduction which uses five clocks. A construction similar to that of WCTL can
be used to get a reduction with only three clocks, we sketch it now.

Given a two-counter machine M we construct a WTG GM with one cost variable
cost. The shape of the automaton is similar to the one described in Section 3, we
only point out the few differences:

• When arriving in state AHalt we add a discrete cost 3;
• All arrows leading to a test module (dashed on the figures) are uncontrollable;
• The module for checking that y = 2x is split into two branches, one setting the

cost to 2 + 2x + (1 − y), and the other to 1 + 2(1 − x) + y (these two branches
are slight adaptations of Fig. 5 and transitions leading to one or the other branch
are uncontrollable). If the relation y = 2x does not hold, the environment has a
strategy to set the cost up to a value strictly greater than 3 (if y < 2x, he takes the
branch storing 2 + 2x+ (1− y) in the cost, otherwise he takes the other branch).
If the relation y = 2x holds, then whatever branch chooses the environment, the
accumulated cost will be exactly 3, and the controller will win the game;

• The module for checking that y = 3x is similar, and has two branches, one setting
the cost to 2+3x+(1−y), and the other one setting the cost to 3(1−x)+y. Thus,
if the relation y = 3x does not hold, the environment has a strategy to set the

8

cost up to a value strictly greater than 3 (if y < 3x, he takes the branch storing
2 + 3x+ (1 − y) in the cost, otherwise he takes the other branch). If the relation
y = 3x holds, then whatever branch chooses the environment, the accumulated
will be exactly 3, and the controller will win the game;

• The modules Power2 and Power3 are similar to the one for WCTL (tests y = 2x
(resp. y = 3x) are done as described above). In this module, if the controller
cheats, that’s because at some point of the loop he does not satisfy y = 2x (resp.
y = 3x), which can be detected by the environment going to the corresponding
test module, or that’s because he will not be able to reach a location labelled
by R2 (or R3). In the first case, a state labelled by T will be reached (the play
will thus be winning), but the cost will be strictly greater than 3, whereas in the
second case, the play will not be winning.

Following the lines of [10] and our previous proof for WCTL: M halts iff the controller
has a winning strategy in GM to enforce one of the states labelled by {Halt, T,R2, R3}
with cost less than or equal to 3. This is true because if the environment does not
do any uncontrollable action, then the controller will have to never wait in states
with a positive cost (otherwise the global cost will be strictly greater than 3). If the
environment does an uncontrollable action, it means that he wants to check that
the controller has played correctly, and if (and only if) the latter has really played
correctly, he will be able to reach a state labelled by T , R2 or R3 with cost less than
or equal to 3. Thus:

Theorem 8 The problem of deciding whether there exists a winning strategy with
cost less than or equal to a given value in a WTG with three clocks and one stopwatch
cost is undecidable.

7 Conclusion

In this paper, we have improved two undecidability results of [9,10] by decreasing the
number of clocks used in the reductions: both WCTL model-checking and optimal
timed games are undecidable with three clocks and one stopwatch cost. These bounds
are quite tight, as the same problems with only one clock are decidable. We did not
manage to close the gap, with WTAs having two clocks, even when trying to encode
both counter with only one clock x = 1/(2c13c2). But on the other hand, for priced
timed automata with two clocks and one stopwatch, the coarsest bisimulation has
in general an infinite index [11].

References

[1] R. Alur, M. Bernadsky, and P. Madhusudan. Optimal reachability in weighted timed
games. In Proc. 31st Int. Coll. Automata, Languages and Programming (ICALP’04),
vol. 3142 of LNCS, pages 122–133. Springer, 2004.

[2] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Information
and Computation, 104(1):2–34, 1993.

[3] R. Alur and D. Dill. A theory of timed automata. Theor. Comp. Sci., 126(2):183–235,
1994.

9

[4] R. Alur, Th. A. Henzinger, and P.-H. Ho. Automatic symbolic verification of embedded
systems. IEEE Trans. Soft. Engin., 22(3):181–201, 1996.

[5] R. Alur, S. La Torre, and G. J. Pappas. Optimal paths in weighted timed automata.
In Proc. 4th Int. Workshop Hybrid Systems: Computation and Control (HSCC’01), vol.
2034 of LNCS, pages 49–62. Springer, 2001.

[6] G. Behrmann, A. Fehnker, Th. Hune, K. G. Larsen, P. Pettersson, J. Romijn, and
F. Vaandrager. Minimum-cost reachability for priced timed automata. In Proc. 4th Int.
Workshop Hybrid Systems: Computation and Control (HSCC’01), vol. 2034 of LNCS,
pages 147–161. Springer, 2001.

[7] P. Bouyer, F. Cassez, E. Fleury, and K. G. Larsen. Optimal strategies in priced timed
game automata. In Proc. 24th Conf. Foundations of Software Technology & Theoretical
Computer Science (FST&TCS’04), vol. 3328 of LNCS, pages 148–160. Springer, 2004.

[8] P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Updatable timed automata. Theor.
Comp. Sci., 321(2–3):291–345, 2004.

[9] Th. Brihaye, V. Bruyère, and J.-F. Raskin. On model-checking timed automata with
stopwatch observers, 2005. Submitted.

[10] Th. Brihaye, V. Bruyère, and J.-F. Raskin. On optimal timed strategies. In Proc. 3rd
Int. Conference Formal Modeling and Analysis of Timed Systems (FORMATS’05), vol.
3821 of LNCS, pages 49–64. Springer, 2005.

[11] Th. Brihaye, V. Bruyère, and J.-F. Raskin. Model-checking for weighted
timed automata. In Proc. Joint Conf. Formal Modelling and Analysis of
Timed Systems and Formal Techniques in Real-Time and Fault Tolerant System
(FORMATS+FTRTFT’04), vol. 3253 of LNCS, pages 277–292. Springer, 2004.

[12] S. La Torre, S. Mukhopadhyay, and A. Murano. Optimal-reachability and control for
acyclic weighted timed automata. In Proc. 2nd IFIP Int. Conf. Theor. Comp. Sci.
(TCS 2002), vol. 223 of IFIP Conf. Proc., pages 485–497. Kluwer, 2002.

[13] M. Minsky. Computation: Finite and Infinite Machines. Prentice Hall Int., 1967.

10

