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Fair Cost-Sharing Methods for the Minimum Spanning Tree GameEri
 Angel Evripidis Bampis L�elia Blin Laurent Gourv�es1. LaMI, CNRS UMR 8042, Universit�e d' �Evry, Tour �Evry 2, 523 Pla
e des terrasses de l'agora, 91000�Evry Cedexfangel,bampis,lblin,lgourvesg�lami.univ-evry.frAbstra
tWe study the problem of sharing in a fair manner the 
ost of a servi
e provided to a set of playersin the 
ontext of Cooperative Game Theory. We introdu
e a new fairness measure 
apturing thedissatisfa
tion (or happiness) of ea
h player and we propose two 
ost sharing methods minimizingthe maximum or average dissatisfa
tion of the 
lients for the 
lassi
al minimum spanning treegame.Keywords: 
ost sharing, fairness, minimum 
ost spanning tree game, Bird rule1 Introdu
tionCooperative Game Theory applies in situations where more than one de
ision makers are involvedsu
h as in the 
ase where a group of de
ision makers de
ide to undertake a proje
t together in orderto in
rease (resp. de
rease) their total revenue (resp. 
ost). They have then to solve two problems:i) how to exe
ute their proje
t in an optimal way and ii) how to allo
ate the revenue/
osts amongthe parti
ipants. The se
ond problem is the subje
t of Cooperative Game Theory whi
h proposespro�t/
ost allo
ations taking into a

ount the revenue/
ost of all possible 
oalitions (subsets ofthe set of parti
ipants). Indeed, if one or more players 
on
eive of a proposed allo
ation as beingdisadvantageous to them, they 
an de
ide to do not parti
ipate. Even when an allo
ation isindividually rational, there may be a problem if a group of players �gure out that they 
an dobetter without working with the others. This is not possible when the revenue 
ost allo
ationbelongs to the 
ore of the game. Thus, one important issue in Cooperative Game Theory 
onsistsin sear
hing for a revenue/
ost allo
ation belonging to the 
ore of the game. But, if for some gamesthe situation is problemati
 be
ause of the emptynness of the 
ore, for other games the situationbe
omes problemati
 be
ause of the huge number of di�erent allo
ations that belong to the 
ore.In this later 
ase, an individual player even if he has not in
entive to do not parti
ipate, he maybe unhappy with respe
t to the revenue/
ost allo
ation when 
omparing with the best (for him)allo
ation that belongs to the 
ore. Our goal, in this paper, is to introdu
e new tools allowingto take into a

ount the dissatisfa
tion (or happiness) of the players. We thus introdu
e a new
riterion for measuring the dissatisfa
tion of the players, the dissatisfa
tion fa
tor, and study theproblem of providing a solution in the 
ore and minimizing the dissatisfa
tion fa
tor. We illustrateour approa
h using the 
lassi
al minimum spanning tree game.1.1 De�nitions and NotationsMore formally, a 
oalition game with transferable payo� hV; 
i 
onsists of a �nite set V of players,and a fun
tion 
 that asso
iates with every nonempty subset S (a 
oalition) of V a real number1




(S) whi
h is the 
ost in
urred by the 
oalition S. The quantity 
(S) is the amount that the playersin the 
oalition S have to pay 
olle
tively in order to have a

ess to a servi
e. Let xi, for i 2 V , bethe 
ost that the player i has to pay. The 
entral question is how to fairly allo
ate the 
ost 
(V )among the set of players V ?A solution x = (xi)i2V belongs to the 
ore if no 
oalition 
an obtain an out
ome better for allits members than the 
urrent assignment (xi)i2V [9℄. In other words, the 
ore C of the 
oalitiongame with transferable payo� hV; 
i is the set of 
ost ve
tors (xi)i2V su
h that Pi2V xi = 
(V )and 8S � V one has Pi2S xi � 
(S). An equivalent de�nition is to say that the 
ore is the setof 
osts (xi)i2V for whi
h there is no 
oalition S and 
ost ve
tor (yi)i2V for whi
h Pi2S yi = 
(S)and yi < xi for all i 2 S. Therefore, given a solution in the 
ore, there is no in
entive for an agentto leave the grand 
oalition V .However, ea
h agent may 
ompare its 
urrent 
ost with the best 
ost (the smallest one) it 
ouldhave payed in another solution in the 
ore. Given a solution (xi)i2V , we de�ne the dissatisfa
tionof agent i as: �i(x; C) = ximiny2C yi :Two optimization problems naturally arise:� mwd: minimize the worst dissatisfa
tion, i.e. �nd an allo
ation x = (xi)i2V 2 C whi
hminimizes maxi2V �i(x; C).� mad: minimize the average dissatisfa
tion, i.e. �nd an allo
ation x = (xi)i2V 2 C whi
hminimizesPi2V �i(x; C).1.2 The spanning tree game and our 
ontributionTo illustrate our approa
h we 
onsider the problem of broad
ast routing. Suppose that a servi
ehas to be provided to a set of 
lients V over a network G(V r; E). We 
onsider that G is anundire
ted 
onne
ted graph. Among all nodes of G, we distinguish the root (the provider), denotedby r. The set of nodes is denoted by V r while V (the set of 
lients) denotes V rnfrg. Ea
hedge e 2 E has a non-negative integral 
ost 
e. The servi
e 
an be provided dire
tly to a 
lientor via others. Thus, the minimum substru
ture that 
an be used is a tree spanning all 
lients.This tree has a 
ost whi
h must be shared by the 
lients. This is a 
lassi
al 
ooperative gameproblem sin
e 
ooperation may redu
e aggregate 
osts. Formally, one has for any 
oalition S � V ,
(S) = minfPe2TS 
e jTS is a spanning tree of G[S[frg℄g, where G[S[frg℄ denotes the subgraphof G indu
ed by the set of verti
es S [ frg.Cost sharing for this problem has been �rst addressed by Claus and Kleitman [2℄, while Bird [1℄treated this problem with game theoreti
 methods and proposed a 
ost allo
ation rule known asBird's rule. It 
onsists in assigning to ea
h 
lient the 
ost of the edge in
ident upon him on theunique path from him to the sour
e/provider in a minimum 
ost spanning tree. Let TG be the setof all minimum 
ost spanning trees of G and let Copt be the 
ost of any tree in this set. Let T bea tree in TG and v be a vertex in V . There is a unique path between r and v in T . This path usesexa
tly one edge [x; v℄, where x 2 V rnfvg. Let �(T; v) = 
[x;v℄ be the 
ost of this edge. Bird's ruleallo
ates to v the quantity �(T; v), i.e. the fee of v is xv = �(T; v) = 
[x;v℄.Bird's rule ensures that no 
oalition has in
entive to be formed. In fa
t, the set of allo
ationsCBird arising from this rule are always in the 
ore C of the minimum spanning tree game (seeGranot and Huberman [7℄, [3℄). In addition, the set of Bird tree allo
ations is the unique non-emptysolution for the minimum spanning tree game that satis�es three important properties eÆ
ien
y,2



leaf 
onsisten
y and 
onverse leaf 
onsisten
y. (For more details on that see [5℄, [3℄.) However,sin
e in general there are more than one minimum 
ost spanning trees for a given network, thisway of dividing the 
osts does not ne
essarily lead to a unique 
ost allo
ation. Even worse, from anindividual point of view, it may lead to a 
ost allo
ation that 
harges a very high fee to a 
lient (ora subset of 
lients) 
ompared to the one that he would pay with a di�erent minimum 
ost spanningtree. As a 
onsequen
e, the dissatisfa
tion of an agent grows as the pri
e he is 
harged deviatesfrom the best possible. We therefore de�ne the dissatisfa
tion of v with respe
t to T and Bird'srule as follows: �v(T; CBird) = �(T; v)minT 02TGf�(T 0; v)g :The goal of this work is to design algorithms whi
h provide 
ost allo
ations based on Bird's rulein order to ensure that they always belong to the 
ore of the game, while taking into a

ount thehappiness of the users. To do so, as stated before, two dire
tions 
an be typi
ally followed: Minimizethe worst dissatisfa
tion over all agents or minimize the average dissatisfa
tion. Therefore, we gettwo 
ombinatorial optimization problems that we 
all:spanning tree-mwd: Find a minimum 
ost spanning tree that minimizes the worst dissat-isfa
tion.spanning tree-mad: Find a minimum 
ost spanning tree that minimizes the average dis-satisfa
tion.We provide polynomial time algorithms for these two problems.Remark.Noti
e that a di�erent notion of fairness has been widely used in the 
ontext of bandwidth allo-
ation in network routing, namely the notion of max-min fairness (see e.g. [8℄). In our 
ontextit 
orresponds to a min-max fairness 
ondition stating that in a fair allo
ation the maximum feepaid by a 
lient should be as small as possible, then one should make sure that the next largest feepaid by a 
lient should be as small as possible, and so on. In other words, an allo
ation x is fairif there is no way of de
reasing a fee xi without in
reasing some other fee xj su
h that xj � xi.Noti
e that for the problem we 
onsider, all allo
ations found using the rule of Bird have the samedegree of fairness with respe
t to ea
h other, and therefore no dis
rimination is possible with thisnotion of fairness. This is true sin
e the multiset 
ontaining fx1; : : : ; xjV jg is always the same forany allo
ation x found with the Bird's rule.Organization of the paper.Se
tion 2 study the dissatisfa
tion fa
tor in the 
ontext of the Bird 
ost allo
ation. Se
tions 3 and4 are respe
tively devoted to the spanning tree-mwd and spanning tree-mad problems whileSe
tion 5 gives some 
on
luding remarks.2 The dissatisfa
tion fa
tor with Bird's ruleGiven a tree T 2 TG, the fee of a vertex in this tree using Bird's rule depends on the pla
e ofthe root. This is why it is 
onvenient to deal with arbores
en
es instead of trees (we assumethat arbores
en
es are oriented from the root to the leaves). As a 
onsequen
e, we build fromG = (V r; E; 
) a weighted digraph H = (V r; A; 
) as follows: For ea
h ordered pair of nodesx; y 2 V � V r su
h that x 6= y, put two ar
s (x; y) and (y; x) in A if there is an edge [x; y℄ in Eand set 
(x;y) = 
(y;x) = 
[x;y℄. Thus, for ea
h minimum 
ost spanning tree of G, there exists a3




orresponding minimum 
ost spanning arbores
en
e rooted in r (m
sar for short), B, in H. In therest of the paper, we only work with arbores
en
es on the digraph H, and we denote by TH the setof m
sar's of H.In order to determine the dissatisfa
tion of a vertex v 2 V in an arbores
en
e B, it is ne
essaryto know what are the fees it 
an have to pay (this set is denoted by F (v)). It is 
lear by Bird'srule that �(B; v) 
an only take values in f
(x;v) j (x; v) 2 Ag. This 
ondition is ne
essary but notsuÆ
ient. The following pro
edure, denoted by FEE, provides the set of fees a vertex 
ould haveto pay. It 
onsists in removing some ar
s in
ident upon the vertex and enfor
ing him to pay aparti
ular pri
e. We note 
jA0 the set of 
osts on the subset A0 � A.FEEInput: A digraph H = (V r; A; 
), a vertex v 2 VStep 1: Compute a m
sar of H and let Copt be its total 
ostStep 2: L := f
(x;v) j (x; v) 2 AgStep 3: F (v) := ;Step 4: For ea
h l of L doA0 := Anf(x; v) j 
(x;v) 6= lgH 0 = (V r; A0; 
jA0)Compute a m
sar B0 in H 0If B0 exists and its total 
ost is CoptThen F (v) := F (v) [ flgEnd ForOutput: F (v)Then, we are able to determine, for ea
h vertex v, the set F (v) of fees it 
ould pay in anyarbores
en
e B 2 TH . Among these fees, we distinguish the lowest denoted by Fmin(v) and thelargest denoted by Fmax(v). Computing a m
sar 
an take O(mn) time (where m = jAj andn = jV rj) [4℄. Thus, FEE runs in time O(mn2).One 
an remark that if we runFEE on ea
h vertex then one 
an generate the same arbores
en
esagain and again. By keeping tra
k of the 
osts in
urred by ea
h vertex in all arbores
en
es generatedby the algorithm, we may save some 
omputation time. However, in terms of worst 
ase analysis,the time 
omplexity of the algorithm remains un
hanged.In the next se
tion, we study the spanning tree-mwd problem for whi
h we propose anoptimal polynomial time algorithm.3 The minimum worst dissatisfa
tion problemWe study the following problem: Among all spanning arbores
en
es of minimum 
ost, �nd one thatminimizes the worst dissatisfa
tion over all verti
es. Formally, the spanning tree-mwd problem
an be des
ribed as follows: argminB2TH maxv2V f�v(B; CBird)gwhere �v(B; CBird) = �(B; v)minB02THf�(B0; v)g :Even though the pro
edure FEE determines all the 
osts that Bird's rule 
an assign to the ver-ti
es, it is not itself suÆ
ient to �nd a minimum spanning tree minimizing the worst dissatisfa
tion.4
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Figure 1: If we run FEE on G then only trees T2, T3 and T4 
an be generated while T1, an optimumfor the spanning tree-mwd problem, is not built.To see it, 
onsider the instan
e given in Figure 1 for whi
h the optimal tree does not belong to theset of arbores
en
es generated by FEE.The quantity maxv2V fFmax(v)=Fmin(v)g is an upper bound on the worst dissatisfa
tion. Theidea of our algorithm is to de
rease this upper bound until it rea
hes the optimal value. To do so,we propose an algorithm whi
h iteratively deletes some ar
s of H until any m
sar of H is optimalwith respe
t to the worst dissatisfa
tion.ALGO 1Input: A digraph H = (V r; A; 
)Step 1: Compute a m
sar B of H and let Copt be its 
ostStep 2: For ea
h vertex v 2 V , 
ompute F (v) with FEEStep 3: A0 := AStep 4: Sele
t v0 2 V su
h that Fmax(v0)Fmin(v0) = maxv2V nFmax(v)Fmin(v)oStep 5: A00 := A0Step 6: A0 := A0nf(x; v0) j 
(x;v0) = Fmax(v0)gStep 7: Compute a m
sar B0 on H 0 = (V r; A0; 
jA0)If B0 does not exist or its 
ost is greater than CoptThen Goto Step 8Else remove Fmax(v0) from F (v0)Goto Step 4Step 8: Compute a m
sar B00 on H 00 = (V r; A00; 
jA00)Output: B00 5
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Figure 2: The instan
e G is given in (a). A minimum 
ost spanning tree in G has a 
ost Copt = 6.The 
orresponding digraph H is given in (b). One has F (x) = f2; 3g, F (y) = f1; 2; 3g and F (z) =f1; 3g, therefore Fmax(x)Fmin(x) = 3=2, Fmax(y)Fmin(y) = 3 and Fmax(z)Fmin(z) = 3. The worst dissatisfa
tion o

urs onnodes y and z. In (
), the algorithm deletes (r; z). With this new instan
e, it is still possible to
ompute a m
sar with 
ost 6. One has Fmax(x)Fmin(x) = 3=2, Fmax(y)Fmin(y) = 3 and Fmax(z)Fmin(z) = 1. In (d), thealgorithm deletes (r; y). With this new instan
e, it is still possible to 
ompute a m
sar with 
ost6. One has Fmax(x)Fmin(x) = 3=2, Fmax(y)Fmin(y) = 2 and Fmax(z)Fmin(z) = 1. The worst dissatisfa
tion o

urs on vertexy. In (e), the algorithm deletes (x; y) but there is no more a m
sar with 
ost 6. Therefore, thealgorithm 
omputes on (d) a m
sar and returns the 
orresponding tree (f). Finally, the worstdissatisfa
tion is 2.Theorem 1 The algorithm ALGO 1 gives an optimal solution for the spanning tree-mwdproblem and runs in polynomial time.Proof. Suppose that the minimum worst dissatisfa
tion is equal to Æ�. Take the original digraph Hand, for ea
h vertex v 6= r, remove every ar
 (x; v) su
h that 
(x;v) > Æ� Fmin(v). This pro
essingprodu
es a subgraphH� for whi
h, 
omputing am
sar is possible and anyone of them is optimal forthe spanning tree-mwd problem. Suppose ALGO 1 returns a m
sar with worst dissatisfa
tionÆ > Æ�. This means only ar
s (x; v) with 
ost stri
tly larger than Æ Fmin(v) were removed and thereis at least one ar
 (x0; v0) su
h that 
(x0;v0) = Æ Fmin(v0). The algorithm stops if the removal of(x0; v0) leads to one of the following out
omes: No more m
sar exists or any m
sar has a total 
oststri
tly greater than Copt. However, su
h a digraph is a subgraph of H�. We get a 
ontradi
tion.Step 2 runs in O(mn3) time while the loop between Step 4 and 8 runs in O(m2n) time. 2A 
omplete example is given in Figure 2.Next se
tion addresses the problem of minimizing the average dissatisfa
tion over all 
lients.4 The minimum average dissatisfa
tion problemWe study the following problem: Among all spanning arbores
en
es of minimum 
ost, �nd one thatminimizes the average dissatisfa
tion. Noti
e that sin
e the number of verti
es is �xed, minimizing6
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Figure 3: This instan
e has two possible minimum 
ost spanning trees. The �rst one, denotedby T , removes the edge [r; e℄ and the se
ond one, denoted by T 0, removes the edge [r; a℄. For T ,the worst dissatisfa
tion o

urs on vertex d and is equal to 3:9 while the average dissatisfa
tion is(41=11 + 1 + 1 + 39=10 + 1)=5 � 2:12. For T 0, the worst dissatisfa
tion o

urs on vertex e and isequal to 4:1 while the average dissatisfa
tion is (41=10 + 1 + 39=12 + 12=11 + 1)=5 � 2:08.the sum or the average dissatisfa
tion is equivalent, therefore the spanning tree-mad problem
an be des
ribed as follows: argminB2TH Xv2V �v(B; CBird):Even though for numerous instan
es, a solution whi
h minimizes the average dissatisfa
tion alsominimizes the worst dissatisfa
tion, this is not true in general (see Figure 3 for an example).The idea of the se
ond algorithm is to give, for ea
h ar
 (x; y), a weight w(x;y) whi
h is equalto the dissatisfa
tion of vertex y if this ar
 belongs to the 
hosen m
sar. Therefore we transformthe initial graph G = (V r; E; 
) into a digraph H = (V r; A; 
) as follows: For ea
h edge [x; y℄ of Gsu
h that x 2 V r, y 2 V and 
(x;y) � Fmin(y), we add an ar
 (x; y) in A with 
ost 
(x;y) and weightw(x;y) = 
(x;y)=Fmin(y). It is 
lear that a spanning arbores
en
e rooted in r whi
h minimizes theweight also minimizes the sum of dissatisfa
tions. However, it is not ne
essarily optimal for the
ost 
riterion (see Figure 4 for an example). For the spanning tree-mad problem, we seek amongarbores
en
es that are optimal for the 
ost, one of minimum weight. The idea of the algorithmis, for ea
h ar
 (x; y), to 
ombine 
(x;y) and w(x;y) into a new 
omposite 
ost ~
(x;y) su
h that anyarbores
en
e optimal for this new 
ost is also optimal for the spanning tree-mad problem:~
(x;y) = �
(x;y) + (1� �)w(x;y)where 0 < � < 1. With a � 
lose enough to 1 but stri
tly inferior, one 
an get an optimal solutionfor the spanning tree-mad problem. In the following algorithm, � depends on the instan
e andis given expli
itly.ALGO 2Input: A digraph H = (V r; A; 
)Step 1: For ea
h vertex v 2 V , 
ompute F (v) with FEEStep 2: Compute a m
sar B of H and let D =Pv2V �v(B; CBird)Step 3: � := DD+1Step 4: Compute a m
sar B� of H� = (V r; A; ~
)Output: B�Theorem 2 The Algorithm ALGO 2 gives an optimal solution for the spanning tree-madproblem and runs in polynomial time. 7
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tion of (4=3+3=2+2+1+ 3+ 1+ 1+ 1)=8 � 1:47. Nevertheless, the tree T 00 whi
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tion DjV j . Sin
e B� is optimal for H�, one hasDD+1C�opt+ 1D+1D� � DD+1Copt+ 1D+1D whi
h means B� is below the dotted line on Figure 5. Sin
e
osts are integral, any feasible solution below the dotted line also has a 
ost Copt. Thus, B� has a
ost Copt and minimizes the average dissatisfa
tion.The running time of ALGO 2 is O(mn2) be
ause of FEE. 2A 
omplete example of ALGO 2 on the instan
e of Figure 4 is given on Figure 6. One 
anremark that ALGO 2 
an also work with 
osts that are not integral. A se
ond best solution s0 isnearly optimal and its 
ost Copt + � is su
h that no feasible solution s00 with 
ost Copt + Æ veri�es0 < Æ < �. For the minimal weight spanning tree problem, a se
ond best tree with 
ost Copt+ � 
aneasily be 
omputed [6℄. Thus, by repla
ing � := DD+1 by � := DD+� in ALGO 2 we get the result.
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5 Con
luding remarksFairness is subje
tive and espe
ially in 
ost sharing problems, this notion, often 
on
i
ting in dif-ferent situations, is not 
learly established. In this work, we introdu
ed a new measure takinginto a

ount the dissatisfa
tion/happiness of the agents and we applied this 
on
ept on a 
lassi-
al broad
ast routing problem, whi
h 
orresponds to the 
lassi
al minimum spanning tree game.Without being restri
ted to our spe
i�
 problem, we think that the dissatisfa
tion fa
tor 
an bestudied for a wide range of problems and parti
ularly 
ost sharing ones.We proposed two algorithms whi
h allow us to minimize the worst or the average dissatisfa
tionand mentioned that an optimal solution for the �rst problem may di�er from an optimal solutionfor the se
ond problem. Therefore, a natural question arises: How far an optimal solution for thespanning tree-mwd problem is from an optimal solution for the spanning tree-mad problemand vi
e et versa?With a simple example, one 
an see that an optimal solution for the spanning tree-madproblem 
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Figure 7: Let X be a very large value and " bebetween 0 and 0.5. This instan
e shows thatan optimal solution for the spanning tree-mad problem 
an have a worst dissatisfa
tionwhi
h is 2 � " times the best possible. Twominimum 
ost spanning trees exist: T whi
hremoves the edge [r; e℄ and T 0 whi
h removesthe edge [r; a℄. They have the same average dis-satisfa
tion but T has a worst dissatisfa
tionmaxfX=4; X+2="�44�2" g while T 0 has a worst dis-satisfa
tion X=2. When X tends to in�nity, theratio between these two worst dissatisfa
tions isabove 2� ".
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Figure 8: Let X be an integer � 2. This in-stan
e shows that an optimal solution for thespanning tree-mwd problem 
an have an av-erage dissatisfa
tion whi
h is 2 times the bestpossible. Two minimum 
ost spanning treesexist: T whi
h removes the edge [r; a℄ and T 0whi
h removes the edge [r; e℄. The tree T 0 isoptimal for the spanning tree-mwd problemand has an average dissatisfa
tion (X10 + 1 +1+(X11�1)=(X�1)+1)=5 while T has an av-erage dissatisfa
tion (X11=(X �1)+1+(X11�1)=X6 +X5 + 1)=5. When X grows to in�nity,the ratio between these two average dissatisfa
-tions tends to 2.
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