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Abstract

We present a simple family of algorithms for solving the Generalized Assignment Problem (GAP). Our technique is based on
a novel combinatorial translation of any algorithm for the knapsack problem into an approximation algorithm for GAP. If the
approximation ratio of the knapsack algorithm is α and its running time is O(f (N)), our algorithm guarantees a (1 + α)-approxi-
mation ratio, and it runs in O(M · f (N) + M · N), where N is the number of items and M is the number of bins. Not only does our
technique comprise a general interesting framework for the GAP problem; it also matches the best combinatorial approximation
for this problem, with a much simpler algorithm and a better running time.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

We study the following maximization version of the
Generalized Assignment Problem:

Instance: A pair (B,S) where B is a set of M bins
(knapsacks) and S is a set of N items. Each bin
Cj ∈ B has capacity c(j), and for each item i and
bin Cj we are given a size s(i, j) and a profit
p(i, j).

Objective: Find a subset U ⊆ S of items that has a
feasible packing in B , such that the profit is max-
imized.

GAP is applicable in many fields, including data stor-
age and retrieval in disks [14], inventory matching [8],
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and distributed caching [9]. The first known approxima-
tion algorithm for GAP is an LP-based 2-approxima-
tion algorithm, presented implicitly in [13]. Later, this
algorithm was explicitly presented in [7], which also
presents APX-hardness proofs for two special cases.
Moreover, the authors prove that a greedy algorithm that
iteratively fills each bin using an FPTAS for the sin-
gle knapsack has a constant approximation ratio for two
special cases:

(a) e
e−1 + ε for every ε, when all bins have the same
size and each item has the same profit for all bins;

(b) 2 + ε for every ε, when bins may vary in size and
each item has the same profit for all bins.

In [9] the authors showed that two extensions of GAP
cannot be approximated within ( e

e−1 ) unless NP ⊆
DTIME(nO(log logn)).
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Several papers address special cases of GAP [8,14,
12]. Ref. [3] provides a family of algorithms for solving
resource allocation problems. Although not specified
explicitly in [3], their approach will yield a (2 + ε)-
approximation algorithm that runs in O((N · M)2/ε).
A combinatorial local search algorithm with a (2 + ε)-
approximation guarantee and an LP-based algorithm
with an ( e

e−1 + ε)-approximation guarantee are pre-
sented in [9]. The ( e

e−1 + ε)-approximation is the best
known approximation for GAP. The combinatorial local
search algorithm of [9] uses algorithm A for the single
knapsack problem. The running time of the local search
algorithm is O(M · f (N) · N ln (1/ε)

β−1+1
), where β is the ap-

proximation ratio of A.
In this short paper we present a combinatorial al-

gorithm for GAP that has the same approximation ra-
tio as the combinatorial local search algorithm pre-
sented in [9], but with a better running time. Our al-
gorithm is actually a family of algorithms produced
by applying the local-ratio technique [4] to any al-
gorithm for the single bin (knapsack) problem. Any
α-approximation algorithm A for the knapsack prob-
lem can be transformed into a (1 + α)-approximation
algorithm for GAP. The running time of our algorithm
is O(M · f (N) + M · N), where f (N) is the running
time of algorithm A. Specifically, the greedy 2-approx-
imation for knapsack, which runs in O(N logN) time
using sorting or O(N) using weighted linear selection,
is translated into a 3-approximation algorithm whose
running time is O(NM logN) or O(NM), respectively.
The FPTAS for knapsack described in [11] will be trans-
lated into a (2+ε)-approximation algorithm that runs in
O(MN log 1

ε
+ M

ε4 ).
The rest of this paper is organized as follows. In Sec-

tion 2 we present the new algorithm. In Section 3 we
discuss its possible implementations and in Section 4
we conclude the paper.

2. The new algorithm

We shall use the “local-ratio technique” as proposed
in [4] and extended in [1,3,5]. For the sake of complete-
ness, this technique is outlined here.

Let w(x) be a profit function and let F be a set of fea-
sibility constraints on a solution x. Solution x is a feasi-
ble solution to a given problem (F,w()) if it satisfies all
the constraints in F . The value of a feasible solution x is
w(x). A feasible solution is optimal for a maximization
problem if its value is maximal among all feasible solu-
tions. A feasible solution x is an r-approximate solution
if r ·w(x) � w(x∗), where x∗ is an optimal solution. An
algorithm is said to be an r-approximation algorithm if
it always computes r-approximate solutions.

Theorem 2.1 (Local ratio). Let F be a set of constraints
and let w(), w1(), and w2() be profit functions such
that w() = w1() + w2(). Then, if x is an r-approximate
solution with respect to (F,w1()) and with respect to
(F,w2()), it is also an r-approximate solution with re-
spect to (F,w()).

Proof. [4] Let x∗, x∗
1 and x∗

2 be optimal solutions for
(F,w()), (F,w1()), and (F,w2()), respectively. Then
w(x) = w1(x) + w2(x) � r · w1(x

∗
1 ) + r · w2(x

∗
2 ) � r ·

(w1(x
∗) + w2(x

∗)) = r · w(x∗). �
Algorithm 1. Let M be the number of bins and N be
the number of items. Let p be an N × M profit ma-
trix. The value of p[i, j ] indicates the profit of item i

when selected for bin Cj . Let A be an algorithm for the
knapsack problem. We now construct from A an algo-
rithm for GAP. Since our algorithm modifies the profit
function, we use the notation pj to indicate the profit
matrix at the j th recursive call. Initially, we set p1 ← p,
and we invoke the following Next-Bin procedure with
j = 1:

Procedure Next-Bin(j)

1. Run algorithm A on bin Cj using pj as the profit
function, and let S̄j be the set of selected items re-
turned.

2. Decompose the profit function pj into two profit
functions p1

j and p2
j such that for every k and i,

where 1 � k � M and 1 � i � N ,

p1
j [i, k] =

{
pj [i, j ] if (i ∈ S̄j ) or (k = j),

0 otherwise
and

p2
j = pj − p1

j .

This implies that p1
j is identical to pj with regard to

bin Cj ; in addition, if item i ∈ S̄j , then i is assigned
in p1

j the same profit pj [i, j ] for all the bins. All the
other entries are zeros.

3. If j < M then
• set pj+1 ← p2

j , and remove the column of bin
Cj from pj+1.

• Perform Next-Bin(j + 1). Let Sj+1 be the re-
turned assignment list.

• Let Sj be the same as Sj+1 except that it also
assigns to bin Cj all the items in S̄j\⋃M

i=j+1 Si .
• Return Sj .
else, return Sj = S̄j .
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item sizes bin sizes profit function

C1C2C3
s = i1 1 1 1

i2 2 3 3
i3 2 3 4
i4 1 2 3

c = C1 C2 C3
(2, 3, 4)

C1 C2 C3
p = i1 3 1 5

i2 1 1 1
i3 5 15 25
i4 25 15 5

C1 C2 C3
i1 3 1 5

p1 = i2 1 1 1
i3 5 15 25
i4 25 15 5

S̄1 = {i1, i4}

C1 C2 C3
i1 3 3 3

p1
1 = i2 1 0 0

i3 5 0 0
i4 25 25 25

C1 C2 C3
i1 0 −2 2

p2
1 = i2 0 1 1

i3 0 15 25
i4 0 −10 −20

C2 C3
i1 −2 2

p2 = i2 1 1
i3 15 25
i4 −10 −20

S̄2 = {i3}

C2 C3
i1 −2 0

p1
2 = i2 1 0

i3 15 25
i4 −10 0

C2 C3
i1 0 2

p2
2 = i2 0 1

i3 0 10
i4 0 −20

C3
i1 2

p3 = i2 1
i3 10
i4 −20

S̄3 = {i3}

C3
i1 2

p1
3 = i2 1

i3 10
i4 −20

C3
i1 0

p2
3 = i2 0

i3 0
i4 0

S3 = ({i3}), S2 = ({}, {i3}), S1 = ({i1, i4}, {}, {i3}), final assignment := ({i1, i4}, {}, {i3})
Fig. 1. Algorithm 1—running example for 4 items.
Fig. 1 illustrates a running example of the algorithm
on 4 items {i1, i2, i3, i4} and 3 bins {C1,C2,C3}. To
simplify the example, at each step algorithm A chooses
the optimal solution with respect to p.

The algorithm clearly stops. The returned solution
must be a valid assignment since no item can be as-
signed to two or more different bins, and if S̄j fits the
size of bin Cj , so must any subset of S̄j .

Claim 2.1. If algorithm A is a α-approximation for
the knapsack problem, then Algorithm 1 is a (1 + α)-
approximation for GAP.

Proof. For the following proof we use the notation
p(S) to indicate the profit gained by assignment S. The
proof is by induction on the number of bins available
when the algorithm is invoked. When there is a single
bin, the assignment returned by the algorithm, S̄M , is
a (α)-approximation due to algorithm A’s validity, and
therefore a (1 + α)-approximation with respect to pM .
For the inductive step, assume that Sj+1 is a (1 + α)-
approximation with respect to pj+1, and we shall now
prove that Sj is also a (1 + α)-approximation with re-
spect to p2

j . Matrix p2
j is identical to pj+1, except that it

contains a column with profit 0. Sj+1 is also an (1 +α)-
approximation with respect to p2

j , as is Sj because it
contains the items assigned by Sj+1.

Profit matrix p1 has three components:
j
(1) a column for bin Cj , which is identical to Cj ’s col-
umn in pj ,

(2) the rows of items selected for S̄j , whose profit in all
the columns is identical to their profit in the column
of Cj , and

(3) the remaining slots, all of which contain zeros.

We shall now show an upper bound on the profit of any
assignment with respect to p1

j . Only components (1) and

(2) of p1
j can contribute profit to an assignment. By the

validity of algorithm A, S̄j is an α-approximation for
bin Cj with respect to component (1). Therefore the
best possible solution with respect to component (1) will
gain at most α · p1

j (S̄j ). The best possible solution with

respect to component (2) will gain at most p1
j (S̄j ), since

the profit in p1
j of items selected by S̄j is the same re-

gardless of where they are assigned. This implies that
S̄j is a (1 + α)-approximation with respect to p1

j . Ac-
cording to the last step of the algorithm, it is clear that
the items selected for S̄j are a subset of items selected
by Sj . Therefore p1

j (Sj ) � p1
j (S̄j ) (they are actually

equal), and Sj is a (1 + α)-approximation with respect
to p1

j . Since Sj is a (1 + α)-approximation with respect

to both p1
j and p2

j , and since pj = p1
j + p2

j , by Theo-
rem 2.1, it is also a (1 + α)-approximation with respect
to pj . �
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The algorithm approximation ratio is tight. For ex-
ample, consider the case of two 1-unit bins and two
items. Let the first item have profit α > 1 in the first
bin and 0 in the second. Let the second item have profit
1 in both bins. The algorithm might return the solution
with the second item in the first bin, where the optimal
solution is to have the first item in the first bin and the
second item in the second bin.

3. Implementation notes

To discuss the running time of the algorithm, we
present in this section an iterative implementation. For
this implementation we use the vector Pj , j = 1 . . .M ,
to denote the profit function for bin Cj . In addition,
we use a vector T to indicate the status of each item:
T [i] = −1 indicates that item i has not been selected
yet, whereas T [i] = j indicates that this item has been
selected for bin Cj , and Cj is the last bin for which it
was selected. We later show that this iterative version is
equivalent to Algorithm 1.

Algorithm 2 (An iterative version of Algorithm 1).

1. Initialization: ∀i = 1 . . .N , set T [i] ← −1.
2. For j = 1 . . .M do:

(a) Pj creation: For i = 1 . . .N , set

Pj [i] ←
{

p[i, j ] if T [i] = −1;
p[i, j ] − p[i, k] if T [i] = k.

(b) Run algorithm A on bin Cj using Pj . Let S̄j be
the set of selected items returned.

(c) ∀i ∈ S̄j , set T [i] ← j .
3. In the returned assignment, if T [i] �= −1 then item

i is mapped to bin T [i].

We now show that Algorithms 2 and 1 are identical,
using the following three steps:

(1) Both algorithms use the same profit function as in-
put to algorithm A. This is proven in Lemma 3.1.

(2) Given that both algorithms use the same profit func-
tion, the value of S̄j computed by Algorithm 1 is
identical to the value of S̄j computed by Algo-
rithm 2. This follows from the fact that the same
algorithm A is used as a procedure by both algo-
rithms.

(3) Given that the value of S̄j computed by Algorithm 1
is identical to the value of S̄j computed by Algo-
rithm 2, the final assignment returned by both algo-
rithms is identical. The reason is that for both algo-
rithms the merge of S̄j , ∀j = 1 . . .N , is performed
in descending order. If item i has been selected by
algorithm A for multiple bins, it will finally be as-
signed to the bin with the highest index.

Lemma 3.1. At each iteration j , the following holds:
∀i = 1 . . .N , Pj [i] = pj [i, j ].
Proof. Pj [i] is calculated for two cases:

(1) T [i] = −1, that is, item i has not been selected for
bins C1,C2, . . . ,Cj−1; and

(2) T [i] = k, that is, item i has been selected at least
once, and bin Ck is the last bin among C1,C2, . . . ,

Cj−1 to which item i was assigned.

For the first case, since Pj [i] is set as p[i, j ], we need
to prove that pj [i, j ] = p[i, j ]. Since item i is not se-
lected for any S̄k where k < j , then p1

k [i, j ] = 0. Hence
pk+1[i, j ] = pk[i, j ]. Since p1[i, j ] = p[i, j ], we get
pj [i, j ] = pj−1[i, j ] = · · · = p1[i, j ] = p[i, j ].

For the second case, since Pj [i] is set as p[i, j ] −
p[i, k], we need to prove that for Algorithm 1 the fol-
lowing holds:

pj [i, j ] = p[i, j ] − p[i, k], (1)

where item i was selected for the last time before the
j th iteration for bin Ck , where k � j − 1.

Observe that for j + 1 � q the following holds:

pj+1[i, q] = p2
j [i, q] = pj [i, q] − p1

j [i, q].
The first equality holds since p2

j is identical to pj+1, ex-
cept that it holds a column for bin Cj , but j +1 � q . The
second equality follows directly from the algorithm. We
apply this equation iteratively until j = 1 and get that
for j + 1 � q the following holds:

pj+1[i, q] = pj [i, q] − p1
j [i, q]

= pj−1[i, q] − p1
j [i, q] − p1

j−1[i, q] = · · ·

= p1[i, q] −
j∑

h=1

p1
h[i, q].

Since p[i, j ] = p1[i, j ] holds for every i and j , we get
pj+1[i, q] = p[i, q] − ∑j

h=1 p1
h[i, q] for j + 1 � q .

Now, let Lj = {l1, l2, . . . , lp} be the set of indices of
iterations during which item i is selected until (includ-
ing) the j th iteration. We know that p1

h[i, q] = 0 holds
for every h /∈ Lj , and that p1

h[i, q] = ph[i, h] holds for
every h ∈ Lj . Therefore, for every j + 1 � q we get:

pj+1[i, q] = p[i, q] −
∑
h∈Lj

p1
h[i, q]

= p[i, q] −
∑
h∈L

ph[i, h]. (2)

j
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Let xj be the last index in Lj . Note that Lxj −1 = Lj \
{xj }. Hence, Eq. (2) can be written as:

pj+1[i, q] = p[i, q] − p[i, xj ] + p[i, xj ] − pxj
[i, xj ]

−
∑

h∈Lxj −1

ph[i, h]. (3)

Since Eq. (2) holds for every j and q such that j �
q −1, it also holds for j = xj −1 and q = xj . Therefore,
we get:

pxj
[i, xj ] = p[i, xj ] −

∑
h∈Lxj −1

ph[i, h]. (4)

Substituting Eq. (4) into Eq. (3) yields that pj+1[i, q] =
p[i, q] − p[i, xj ]. Substituting q = j + 1 yields
pj+1[i, j + 1] = p[i, j + 1] − p[i, xj ]. By replacing
j + 1 with j we get pj [i, j ] = p[i, j ] − p[i, xj−1],
where xj−1 is the last iteration (bin) for which item i

is selected before (including) the (j − 1)th iteration,
thereby proving Eq. (1). �

The total running time complexity of Algorithm 2 is
O(M · f (N) + M · N), where f (N) is the running time
of algorithm A.

Note that a practical implementation of this algo-
rithm might benefit from reassigning the items in bin
Cj when procedure Next-Bin returns from the (j + 1)th
call. A tighter approximation can be calculated as the
algorithm returns from the recursive calls by maintain-
ing the profit of the assignment against an upper bound
of the optimum.

4. Conclusions and extensions

We presented an efficient algorithm for GAP and
showed a simple way to implement it. Our algorithm
guarantees an (1 + α)-approximation solution, and its
time complexity is O(M · f (N) + M · N), where N

is the number of items, M is the number of bins, and
O(f (N)) is the time complexity of an α-approximation
algorithm for Knapsack, used as a subroutine.

Our algorithm requires only that if S̄j is a feasible so-
lution to bin Cj , then so is any subset of S̄j . Therefore,
this algorithm is also applicable for other problems,
like the “Multiple Choice Multiple Knapsacks” prob-
lem [10], where there are multiple knapsacks and each
item might have a different weight and profit not only
for different knapsacks but also for the same knapsack,
or the Separable Assignment Problem (SAP) [9]. More-
over, for a single machine, the algorithm in Ref. [2] can
also be used, with or without preemption, to solve the
corresponding unrelated machine problem (see [6]). As
this algorithm is optimal (α = 1), our algorithm guar-
antees a 2-approximation solution for maximizing the
number of satisfied jobs, which is the best known result
to the best of our knowledge.
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