
On the longest increasing subsequence of a

circular list∗

M. H. Albert† M. D. Atkinson† Doron Nussbaum‡

Jörg-Rüdiger Sack‡ Nicola Santoro‡

Abstract

The longest increasing circular subsequence (LICS) of a list is consid-
ered. A Monte-Carlo algorithm to compute it is given which has worst case
execution time O(n3/2 log n) and storage requirement O(n). It is proved

that the expected length µ(n) of the LICS satisfies limn→∞
µ(n)

2
√

n
= 1.

Numerical experiments with the algorithm suggest that |µ(n) − 2
√

n| =
O(n1/6).

1 Introduction

The properties of the longest increasing subsequence (LIS) of a finite sequence of
numbers have inspired a number of research areas in mathematics and computer
science over many decades. As long ago as 1935 Erdös and Szekeres showed that
every sequence of length n has an increasing subsequence or a decreasing sub-
sequence of length about

√
n. It follows immediately that the expected length

of an LIS in a random permutation of length n is at least 1
2

√
n. That result

was the first in a series of investigations (see [3] for a survey) that culminated
in the seminal paper [5] which obtained the complete limiting distribution of
the length of an LIS in a permutation of length n chosen uniformly at random.
An important step in this research was taken by Baer and Brock [4] who cor-
rectly estimated the expected length to be 2

√
n by computer simulation. Their

work ties in with another aspect of the LIS problem: to find efficient algo-
rithms for computing the LIS. That problem was solved by Schensted by a now
classical textbook algorithm (see e.g., [7, 10, 11, 13]) for computing an LIS in
time O(n log n) based on dynamic programming, and that algorithm in turn has

†Department of Computer Science, University of Otago, Dunedin, New Zealand.
‡School of Computer Science, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario

K1S5B6, Canada.
∗Research supported in part by NSERC and SUN Microsystems.

1

connections to the study of Young tableaux. Computing the LIS has recently
gained some practical importance since it is used in the MUMmer system [8] for
aligning whole genomes. Fredman [9] has shown that the dynamic programming
algorithm is optimal under the comparison model.

In this paper we study a variant of the LIS problem. We shall regard the given
sequence as a circular structure. In other words, we shall allow the LIS to
wrap around if necessary. The longest increasing circular sequence (LICS) is
defined as the longest increasing subsequence when wrap-around is permitted.
The LICS is never more than twice as long as the LIS but examples such as
4, 5, 6, 1, 2, 3 show that this bound can be attained. Throughout the paper we
interpret “increasing” in the non-strict sense. Strictly increasing sequences can
be found by a minor variation.

Although the LICS problem seems to be a natural extension of the LIS problem
we know of only one paper that bears upon it. In [2] a (Las Vegas) randomized
algorithm was developed to compute the LIS in all windows of a given span. If
applied to a sequence of the form XX (a sequence X concatenated with itself)
then, with a window span n = |X|, it can compute the LICS of X in worst case
time O(n2) and expected time O(n3/2).

The contribution of the present paper is both practical and theoretical. Specifi-
cally, we give a Monte-Carlo randomized algorithm for the LICS problem whose
worst case run-time is O(n3/2 log n) with tiny error probability, and storage re-
quirement O(n) which is simple to program. The algorithm depends on a result
(Proposition 1) that gives a connection between the LIS and LICS which ap-
pears interesting in its own right. Then we prove that the expected length of the
LICS is asymptotic to 2

√
n which, since this is true also for the LIS, is somewhat

surpising. Finally we report on some numerical evidence that suggests an even
tighter result.

The LICS problem can be thought of as a special case of a class of permutation
problems that was introduced in [1]. In this broader framework one is given a
fixed set A of permutations and some input permutation σ of length n; the task
is to compute the longest subsequence of σ that is order isomorphic to one of
the permutations in A. The ordinary LIS problem is the special case that A is
the set of identity permutations; the LICS problem is the case that A is the set
of all permutations k +1, k +2, . . . ,m, 1, 2, . . . , k for some k,m. As noted in [1],
there are only few classes A for which an O(n log n) algorithm is known.

Besides the fact that circular lists are a natural extension of linear lists another
reason for seeking a solution to the LICS problem is that genomes of bacteria
are (considered to be) circular [6]; so circular problems do arise naturally.

2

2 Review of the LIS algorithm

An important ingredient of our approach is the standard dynamic programming
algorithm to find an LIS. To make the paper self-contained and to clarify what
can be gleaned from this algorithm we review its operation.

Suppose we are given a sequence X = x1x2 · · ·xn. We scan the sequence term
by term and maintain at every step certain positions t1, t2, . . . tr. The term xtk

is
the value of the least possible ending term in an increasing subsequence of length
k in the prefix of the sequence that has been scanned to this point. Initially we
have r = 0 (and t0 = 0, x0 = −∞, by convention) indicating that, before the
sequence is examined, no increasing subsequences have been identified. Notice
that we shall necessarily have

xt1 ≤ xt2 ≤ . . . ≤ xtr

since, if xtk−1 > xtk
, the terminator xtk

of an increasing subsequence of length
k will be preceded by the penultimate term of that subsequence, and that term
will be a smaller terminator than xtk−1 of an increasing subsequence of length
k − 1).

When we inspect the term y = xi (which we do for values i = 1, 2, . . . , n in
turn) we have to update the positions t1, t2, . . . , tr. To do this, we locate (using
binary search), the index s for which

xts−1 ≤ y < xts

If such an index is found then we know that y extends an increasing sequence of
length s− 1 ending at position ts−1 and that this new sequence of length s has
a smaller terminator than xts

; thus we redefine ts to be i. The only situation
where s cannot be located is the case xtr

≤ y; this implies that, for the first
time, we have encountered an increasing subsequence of length r + 1, so we set
tr+1 equal to i and increment r. We also define back pointers bi by setting
bi = ts−1 (or, in the latter case, bi = tr−1). The back pointers record how xi

was established as the final term of an increasing sequence of length s.

When the entire sequence X has been inspected the final value of r is the length
of the LIS. We can then reconstruct (in reverse) the LIS itself by following
back pointers from position tr. Indeed, by recording the value of tr for each of
i = 1, 2, . . . , n, we can reconstruct an LIS in any initial segment of X.

Clearly this algorithm takes time O(n log n). Notice that the algorithm can
equally be used to construct a longest decreasing subsequence. It can also
operate from right to left if desired.

We note some technical properties of the LIS algorithm. Let t
(i)
1 , t

(i)
2 , . . . denote

the values of the variables t1, t2 . . . at the point that xi has just been processed.
The position i itself will occur among t

(i)
1 , t

(i)
2 , . . . and, of course, all the other

3

positions of this set will be less than i. We define si by

t(i)si
= i

Thus si is the length of the increasing subsequence that xi created (either for
the first time or by having a smaller final term than previously known increasing
subsequences of length si). Clearly

t
(i)
j ≤ t

(i+1)
j

It is convenient to think of the positions

t
(i)
j , t

(i+1)
j , t

(i+2)
j . . .

as being the positions of X which “improve” increasing subsequences of length
j (in the sense that they define final positions with decreasing values).

Lemma 1 Let i, j be two positions of X with i < j and xi ≤ xj. Let j ≤ q and
sj = sq. Then

1. xj ≥ xq (with strict inequality if j < q) and

2. there exists an index p with i ≤ p < q, si = sp, and xp ≤ xq

Proof: The hypotheses sj = sq and j ≤ q tell us that both xj and xq improved
increasing subsequences of length sj and that xj precedes xq. If xq is a strictly
later improvement (that is, j < q) we have xj > xq.

Put p = t
(q)
si . In other words, just after xq was processed, p was the position

where the current “best” increasing subsequence of length si ended. Therefore
both xi and xp, when they were processed, each created improved increasing
subsequences of length si; that is to say, si = sp. Furthermore, as xi ≤ xj ,
xj improved an even longer subsequence than the one improved by xi; that is,
si < sj .

Since q is the unique maximal position of {t(q)1 , t
(q)
2 , . . .} we have p < q (with

strict inequality since sp < sq).

Finally, as the values of the sequence X at the positions {t(q)1 , t
(q)
2 , . . .} are non-

decreasing we have xp ≤ xq.

Corollary 1 Let Y = xu1xu2 · · ·xum
be an increasing subsequence of X. Then

there exists an increasing subsequence Z = xv1xv2 · · ·xvm
such that

1. u1 ≤ v1,

2. xum
≥ xvm

,

4

3. vm ∈ {t(n)
1 , t

(n)
2 , . . .}

Proof: Let d = sum
and let t

(n)
d = vm. In other words, when xum

was
processed it improved an increasing sequence of length d and this was improved
for a final time when xvm was processed. So, with j = um and q = vm we have
j ≤ q and sj = sq. Also, if i = um−1 then i < j and xi ≤ xj . In other words
the hypotheses of the previous lemma hold.

The lemma tells us that xum ≥ xvm and that there is an index p = vm−1 with
um−1 ≤ vm−1 < vm, that si = sp (i.e. xvm−1 improves the sequence that xum−1

improved), and that xvm−1 ≤ xvm
.

We can now repeat the argument and successively construct the sequence Z
with the appropriate properties.

3 The algorithm for the LICS

We first discuss a deterministic algorithm for computing the LICS of a sequence
X whose worst case time is still no better than O(n2 log n) (although its ex-
pected time is O(n3/2 log n)). Then we give the Monte-Carlo variant that, with
vanishing error probability, has worst case time O(n3/2 log n).

The algorithm is based on two ideas. The first is an algorithm A1 for finding
the LICS that contains a specific term of X. The second is an algorithm A2 for
identifying a set of candidates for terms of X which are part of some LICS. The
standard LIS algorithm is used in both methods. The LICS itself is computed
by applying A1 to each of the candidates found by A2 and selecting the longest.

Suppose we are given a term of X and wish to construct a LICS containing this
term. For convenience we rotate X so that the given term is xn. Let XL and
XU be (respectively) the subsequences of X whose terms xk satisfy xk ≤ xn and
xk ≥ xn. We run the LIS algorithm twice. First we run it in the left to right
version (as described above) on the subsequence XU ; this is done by processing
X from left to right and ignoring terms less than xn. For each k we record the
length vk of the LIS of XU ∩ x1x2 · · ·xk.

In the second run of the LIS we process X from right to left searching for se-
quences that decrease from right to left, and we consider only terms of (the
reverse of) XL. This allows us to find longest increasing subsequences in
all suffixes of XL. For each k we record the length uk of the LIS of XL ∩
xn−k+1xn−k+2 · · ·xn.

An LICS containing xn will have an initial part of length un−k in the segment
xk+1 · · ·xn and a final part of length vk in the segment x1 · · ·xk. Thus we can
identify the LICS containing xn by choosing k to maximize un−k + vk and then
use the output of the two runs of the LICS above to find the two constituents

5

of the LICS.

Clearly A1 runs in time O(n log n). However, for A1 to correctly identify the
LICS we must give it a term of X that lies within some LICS. Algorithm A2

finds candidates for such terms and is very simple: we just run the ordinary
LIS algorithm and note the final values of t1, . . . , tr; these are the candidate
positions. The following result justifies this process.

Proposition 1 If t1, . . . , tr is the output of the ordinary LIS then there is an
LICS that passes through one of these positions.

Proof: Consider any LICS. It has some initial subsequence Y = xu1xu2 · · ·xum

and then continues cyclically from the beginning of X as a subsequence W say.
By Corollary 1 there exists an increasing subsequence Z that begins no earlier
than Y , has final position one of t1, . . . , tr, and whose final term is no larger
than the final term of Y . It follows that ZW is a LICS with the stated property.

Suppose that A2 computed m candidate terms through which the LICS passed.
Then we have to run A1 a total of m times and so we shall find the LICS in
time O(mn log n). However, m is the length of an LIS of X and its expected
value is known to be close to 2

√
n which means that our LICS algorithm has

expected execution time O(n3/2 log n).

The Monte-Carlo variant simply modifies this last step. If A2 has computed m
candidates then, if m ≤ 3

√
n, we proceed as above for a total execution time

O(n3/2 log n). However, if m > 3
√

n, we proceed differently and exploit that the
length of the LICS is at least equal to m. We sample values from X uniformly
at random and, for each one, compute the longest increasing circular sequence
that passes through it. The probability p that a randomly sampled element of
X belongs to a LICS is at least m/n. Hence the expected number of elements
of X that have to be sampled before one is found in the LICS is at most n/m.

Indeed, suppose we want to ensure that the probability of failing to find the LICS
is bounded above by ε. Then we require k trials where (1 − p)k < ε. Taking
logarithms and using ln(1 − p) < −p we find that k should exceed − ln(ε)/p.
Hence, if m > 3

√
n, it suffices to choose k > −

√
n ln(ε)/3.

4 The expected length of the LICS

In this section we discuss bounds on the expected length of the LICS and report
on some numerical experiments to estimate the mean µ and variance σ2 of the
length of the LICS. For the LIS itself these statistics are known. From [5] we
have

µ(LIS) = 2n1/2 − γn1/6 + o(n1/6)

6

and
σ(LIS) = δn1/6 + o(n1/6)

where γ = 1.711 and δ = 0.902.

The following result shows that, asymptotically, the length of the LICS is the
same as that of the LIS. This may seem somewhat surprising but, as the proof
below indicates, it is essentially because of the tight concentration of the LIS
distribution around its mean.

Theorem 1
lim

n→∞

ELICSn

2
√

n
= 1.

Proof: The permutations of length n fall into (n−1)! classes, the permutations
of each class being cyclic rotations of one another. In each class, choose a
permutation whose LICS is actually a LIS and let Mn be the set of all such
representatives. Let C be such a class and θ its representative. Then∑

π∈C

|LICS(π)| = n |LIS(θ)|

Thus: ∑
π∈Sn

|LICS(π)| = n
∑

θ∈Mn

|LIS(θ)| .

A consequence of formula (1.8) of [5] is that for some constants b and c, any
0 < ε < 5/6, and sufficiently large n:

Pr
(
LISn > 2

√
n + n1/6+ε

)
≤ b exp(−cn3ε/5).

Let Un be the set of those θ ∈ Mn whose LIS has length greater than 2
√

n +
n1/6+ε, and let Dn = Mn\Un. In all of Sn there are fewer than n!b exp(−cn3ε/5)
permutations whose LIS has length greater than 2

√
n+n1/6+ε. So in particular:∑

θ∈Un

|LIS(θ)| < n(n!)b exp(−cn3ε/5)

since n is an upper bound on LIS(θ) for all θ. Also, since |Dn| ≤ (n− 1)!,∑
θ∈Dn

|LIS(θ)| < (n− 1)!
(
2
√

n + n1/6+ε
)

7

Using these estimates we obtain

ELICSn =
1
n!

∑
π∈Sn

|LICS(π)|

=
1

(n− 1)!

∑
θ∈Mn

|LIS(θ)|

=
1

(n− 1)!

∑
θ∈Un

|LIS(θ)|+ 1
(n− 1)!

∑
θ∈Dn

|LIS(θ)|

< bn2 exp(−cn3ε/5) + 2
√

n + n1/6+ε

= 2
√

n + o(
√

n).

Therefore
lim

n→∞

ELICSn

2
√

n
≤ 1.

The reverse inequality is trivial as the LICS is at least as long as the LIS.

The argument in this proof shows that the expected length of the LICS is at
most 2

√
n + n1/6+ε and it is tempting to speculate that the expected length is

actually very close to 2
√

n + n1/6.

For each of various lengths up to 20000 we have generated 100000 random
sequences, found the LICS in each, and computed the mean length and variance.
We did not use the sampling technique even when m exceeded 3

√
n and so we

can be sure that the means in our samples are correct. We found a very close
agreement between the mean and 2

√
n although we are doubtful that they

agree to within a constant. The following subset of our results for the mean and
variance are typical.

n 10000 12000 14000 16000 18000 20000
µ 200.145 219.325 236.959 253.376 268.794 283.371
µ− 2

√
n 0.0094 -0.0097 0.0099 0.0101 0.0103 0.0104

σ2 8.899 9.341 9.776 10.227 10.552 10.880

Although the values of σ2 for this sample do not provide sufficient evidence for a
definitive conjecture, they are not plainly inconsistent with σ2 = cn1/3+o(n1/3).

References

[1] M. H. Albert, R .A. Aldred, M. D. Atkinson, H. van Ditmarsch, B. Han-
dley, C. C. Handley, J. Opatrny: Longest subsequences in permutations,
Australian J. Combinatorics 28 (2003), 225-238.

[2] M. H. Albert, A. Golynski, A. M. Hamel, A. López-Ortiz, S. R. Rao,
M. A. Safari: Longest increasing subsequences in sliding windows, Theo-
retical Computer Science 321 (2004) 405–414.

8

[3] D. Aldous, P. Diaconis: Longest increasing subsequences: from patience
sorting to the Baik-Deift-Johansson theorem, Bull. Amer. Math. Soc. 36,
pp. 413-432, 1999.

[4] R. M. Baer and P. Brock: Natural sorting over permutation spaces, Math.
Comp., 22, (1968), 385-510.

[5] J. Baik, P. Deift and K. Johansson: On the Distribution of the Length
of the Longest Increasing Subsequence of Random Permutations, J. Amer.
Math. Soc., 12, (1999) 1119-1178.

[6] R. Charlebois, 1999. Organization of the Prokaryotic Genome. ASM Press,
Washington, D.C.http://www.life.uiuc.edu/micro/316/topics/chroms-
genes-prots/chromosomes.html

[7] T.H. Cormen, C.E. Leiserson, R.L. Rivest: Introduction to algorithms, MIT
Press, McGraw-Hil Book Company (New York), 1990.

[8] A.L. Delcher, S. Kasif, R.D. Fleischmann, J. Paterson, O. White, S.L.
Salzberg: Alignment of whole genomes, Nucleic Acis Research 27, pp. 2369-
2376, 1999.

[9] M.L. Fredman: On computing the length of longest increasing subse-
quences, Discrete Math. 11, pp. 29-35, 1975.

[10] D. Gries: The Science of Programming, Springer Verlag (Heidelberg, New
York), 1981.

[11] U. Manber: Introduction to algorithms, Addison-Wesley (Reading, Mass.),
1989.

[12] C. Schensted: Longest increasing and decreasing subsequences, Canad. J.
Math 13, pp. 179-191, 1961.

[13] J.M. Steele: Probability Theory and Optimization, SIAM, 1997.

9

	Introduction
	Review of the LIS algorithm
	The algorithm for the LICS
	The expected length of the LICS

