Kolmogorov complexity of enumerating finite sets

Nikolai K. Vereshchagin*

Keywords: Kolmogorov complexity, the a priori probability.

Abstract

Solovay [5] has proved that the minimal length of a program enumerating a set A is upper bounded by 3 times the negative logarithm of the probability that a random program will enumerate A. It is unknown whether one can replace the constant 3 by a smaller constant. In this paper, we show that the constant 3 can be replaced by the constant 2 for finite sets A.

We recall first two complexity measures ("information content") of computably enumerable sets attributed by Solovay in [5] to G. Chaitin (wee keep Solovay's notations).

Let M be a machine with one infinite input tape and one infinite output tape. At the start the input tape contains an infinite binary string ω called the input to M. The output tape is empty at the start. We say that a program p enumerates a set $A \subset \mathbb{N}=\{1,2, \ldots\}$ if in the run on every input ω extending p machine M prints all the elements of A in some order and no other elements, and does not move the head on input tape beyond p. We do not require M to halt in the case when A is finite. ${ }^{1}$ Let $I_{M}(A)$ denote the minimal length of a program enumerating A. There is a machine M_{0} (called a universal machine) such that for every other machine M there is a constant c such that

$$
I_{M_{0}}(A) \leqslant I_{M}(A)+c
$$

for all $A \subset \mathbb{N}$. Fix any such M_{0} and call $I(A) \stackrel{\text { def }}{=} I_{M_{0}}(A)$ the complexity of enumeration of A. This complexity thus depends on the choice of the universal machine but this dependence is rather weak: for any other universal machine M_{1} the difference $\left|I_{M_{0}}(A)-I_{M_{1}}(A)\right|$ is bounded by a constant not depending on A.

The second complexity measure is related to the a priori probability distribution on enumerable sets. The definitions are as follows. Let M be a machine

[^0]with one infinite input tape and one infinite output tape as described above. For every infinite $0-1$-sequence ω let $M(\omega)$ denote the set enumerated by M when ω is written on its input tape. For every $A \subset \mathbb{N}$ consider the probability
$$
m_{M}(A)=\operatorname{Pr}[M(\omega)=A] .
$$

A theorem of de Leeuw, Moore, Shannon and Shapiro [2] states that if $m_{M}(A)>$ 0 then A is enumerable.

The class of distributions of such form has a maximal one up to a multiplicative constant. In other words, there is a machine M_{1} (called optimal) such that for every machine M there is a constant c such that

$$
c \cdot m_{M_{1}}(A) \geqslant m_{M}(A)
$$

for all $A \subset \mathbb{N}$. Fix any such M_{1} and call $m(A) \stackrel{\text { def }}{=} m_{M_{1}}(A)$ the a priori probability of enumerating A. The a priori distribution thus depends on the choice of the optimal machine but this dependence is also weak: for any other optimal machine M_{2} both ratios $m_{M_{1}}(A) / m_{M_{2}}(A)$ and $m_{M_{2}}(A) / m_{M_{1}}(A)$ are bounded by a constant not depending on A. Let $H(A)$ denote the negative binary logarithm of the a-priori probability of $A: H(A)=\lceil-\log m(A)\rceil$.

Comparing M_{0}, the machine defining $I(A)$, with M_{1}, the machine defining $m(A)$, we see that

$$
H(A)=\left\lceil-\log m_{M_{1}}(A)\right\rceil \leqslant I_{M_{1}}(A) \leqslant I_{M_{0}}(A)+O(1)=I(A)+O(1)
$$

for all A. Solovay [5] has proved that conversely $I(A) \leqslant 3 H(A)+O(\log H(A))$ for all A, which can be viewed as a sharpening of de Leeuw et al.'s result.

Theorem 1 (Solovay). There is a constant c such that for every set $A \subset \mathbb{N}$ we have $I(A) \leqslant 3 H(A)+2 \log H(A)+c$.

It is unknown whether we can replace the constant 3 in this inequality by a smaller constant. In this paper, we show that the constant 3 can be replaced by the constant 2 for finite sets A.

Theorem 2. There is a constant c such that for every finite set A we have $I(A) \leqslant 2 H(A)+2 \log H(A)+c$.

The proof of Theorem 2 is basically a simplification of that of Theorem 1. Thus we first sketch the latter one and then present the former one, explaining the main difference between two proofs. Our proof of Theorem 1 keeps the main ideas of Solovay's proof but differs from it in many technical details.

First we introduce some terminology and notation. Let Ω stand for the set of all infinite binary sequences. We write $x \leqslant \omega$ if x is a finite prefix of an infinite 0 -1-sequence ω. Let Ω_{x} denote the set of all $\omega \in \Omega$ with $x \leqslant \omega$.

We will consider Cantor topology on Ω. Its base open sets are all sets of the form Ω_{x}. We call a subset of Ω finitely based if it is a finite union of sets of the form Ω_{x}.

There is a natural one-to one correspondence between the family of all subsets of \mathbb{N} and Ω. Each subset A of \mathbb{N} corresponds to its characteristic sequence, whose nth bit is 1 iff $n \in A$. In what follows we will identify subsets of Ω with its characteristic sequences. In particular, we will write $A \in \Omega_{x}$ and $x \leqslant A$ to indicate that x is a prefix of the characteristic sequence of A. The notation $A \subset B$ will be used for the inclusion relation.

Fix and optimal machine M defining the a priori distribution m. Let $M^{t}(\omega)$ stand for the set enumerated by M in t steps on input ω. For each $A \subset \mathbb{N}$ and t let

$$
S^{t}(A)=\left\{\omega \mid M^{t}(\omega)=A\right\} .
$$

The set $S^{t}(A)$ is finitely based and a code of $S^{t}(A)$ (a finite list of respective x 's) can by computed given t and A. (For all infinite A and all t the set $S^{t}(A)$ is empty.) Let μ denote the uniform measure on Ω and $m^{t}(A)=\mu\left(S^{t}(A)\right)$. According to our agreement to identify sets with their characteristic sequences, we denote by $m^{t}\left(\Omega_{x}\right)$ the total m^{t}-measure of all sets whose characteristic sequence begins with x.

Note that $m^{t}(A)$ can both increase and decrease as t increases (if A is finite). Indeed, assume that $M^{t-1}(\omega)=A$ and on step t of the run on input ω the machine M writes a new element b on the output tape. Let x be the length- t prefix of ω. Then $S(A)$ is decremented by Ω_{x}, while $S(A \cup\{b\})$ is incremented by Ω_{x} on step t.

Proof of Theorem 1 (a sketch). Let T be a subset of $\{0,1\}^{*}$. A limit point of T is an infinite $0-1$-sequence ω having the following property: Every its prefix is a prefix of some string in T. By T^{n} we denote the set of all strings of length n in T. We say that an algorithm constructs a set T of binary strings if for any given n it prints the list of strings in T^{n} and then halts.

An essential part of the proof is an algorithm that for every k constructs a set of strings T_{k} and computes a sequence of natural numbers

$$
t_{0}<t_{1}<t_{2}<\ldots
$$

having the following properties:

$$
\begin{align*}
& m^{t_{n}}\left(\Omega_{x}\right) \geqslant 2^{-k-1} \text { for all } n \text { and all } x \in T_{k}^{n} \tag{1}\\
& \text { if } m(A) \geqslant 2^{-k} \text { then } A \text { is a limit point of } T_{k} . \tag{2}
\end{align*}
$$

Lemma 1. There is an algorithm that given k and an auxiliary binary string λ_{k} of length $k+1$ constructs a set T_{k} and computes an increasing sequence t_{0}, t_{1}, \ldots having the properties (1) and (2).

For the goal of this paper, we do not need the proof of this lemma. However, for the seek of completeness we present its proof in the Appendix.

So, assume Lemma 1. We are going to construct an algorithm that on input λ_{k} enumerates certain subsets C_{1}, \ldots, C_{N} of \mathbb{N}, where $N=O\left(2^{2 k}\right)$, having the following property: Every limit point A of T_{k} (the tree constructed by the algorithm of Lemma 1) is among C_{1}, \ldots, C_{N}.

To this end we need a computable strategy to win an infinite two person game defined in Martin's paper [4]. Let N, K be natural numbers. A configuration in this game is an N-tuple of finitely based subsets of Ω : $\left\langle Z_{1}, \ldots, Z_{N}\right\rangle$. The initial configuration is $\langle\Omega, \ldots, \Omega\rangle$. Player I on his turn plays a finitely based set Y with $\mu(Y) \geqslant 1 / K$. If Y is disjoint with Z_{i} for all $i=1, \ldots, N$, player I wins. If not, player II chooses a Z_{i} intersecting Y and replaces Z_{i} by Y, and the game continues. Player II wins if he can prevent I to win as described above for the entire, infinitely long game.

Martin [4] has proved that if $N=K(K+1) / 2$ then player II has a computable winning strategy (uniformly in K). We use Martin's result for $K=$ 2^{k+1}. (We present its proof in the Appendix.)

Algorithm. We make steps $n=1,2, \ldots$. At the end of step n we will have a configuration $\left\langle Z_{1}, \ldots, Z_{N}\right\rangle$ in Martin's game and the sets C_{1}, \ldots, C_{N} enumerated so far. They will satisfy the following conditions:
$C_{i} \subset\{1, \ldots, n\}$ for all $i \leqslant N$;
$C_{i} \subset M^{t_{n}}(\omega)$ for all $\omega \in Z_{i}$ and all $i \leqslant N$;
every $x \in T_{k}^{n}$ is a prefix of C_{i} for some $i \leqslant N$;
the configuration $\left\langle Z_{1}, \ldots, Z_{N}\right\rangle$ was obtained by applying a computable
winning strategy of player II against a sequence of moves of player I.
At the start $n=0, C_{i}=\emptyset$ and $Z_{i}=\Omega$, and conditions (3), (4), (5) and (6) are straightforward.

Step n. At the beginning of step n the conditions (3), (4), (5) and (6) are true for $n-1$. The conditions (3) and (4) for $n-1$ imply conditions (3) and (4) for n. Thus all the conditions except (5) are true at the beginning of step n. The condition (5) however may become false for any of $x \in T_{k}^{n}$, as T_{k}^{n} and T_{k}^{n-1} can be unrelated.

How to restore condition (5)? First, using the algorithm of Lemma 1, find the list of T_{k}^{n}. Then pick any x from T_{k}^{n}, call it x_{1}. Play $Y_{1}=S^{t_{n}}\left(\Omega_{x_{1}}\right)$ for player I in Martin's game. By condition (1) this is a legal move. Assume that the winning strategy of player II plays Z_{i}.

We want to add some elements to C_{i} to ensure $x_{1} \leqslant C_{i}$. To this end we need to show that C_{i} is a subset of the set $X_{1}=\left\{j \mid j\right.$ th bit of x_{1} is 1$\}$. We are given that there is $\omega \in Z_{i}$ which is in Y_{1}, that is,

$$
x_{1} \leqslant M^{t_{n}}(\omega)
$$

By condition (4) we have

$$
C_{i} \subset M^{t_{n}}(\omega)
$$

Thus C_{i} is a subset of a set whose charactersitic sequence begins with x_{1}, therefore $C_{i} \cap\{1, \ldots, n\} \subset X_{1}$. By conditon (3) this implies that thus $C_{i} \subset X_{1}$.

Update C_{i} by letting $C_{i}=X_{1}$. Thus condition (5) is fulfilled for $x=x_{1}$.
Replace Z_{i} by Y_{1}. This replacement restores conditon (4) (that might become false after changing $\left.C_{i}\right)$. Indeed, $x_{1} \leqslant M^{t_{n}}(\omega)$ for all $\omega \in Y_{1}$ and C_{i} has just become equal to X_{1}.

Next we pick another element x_{2} from T_{k}^{n} and repeat the procedure for x_{2} in place of x_{1}. Note that the set Y_{2} is disjoint with Y_{1}, as $M^{t_{n}}\left(Y_{2}\right)$ and $M^{t_{n}}\left(Y_{1}\right)$ are equal to disjoint sets $\Omega_{x_{2}}$ and $\Omega_{x_{1}}$. Thus the new move Z_{i} of player II is different from Y_{1} and the condition (5) remains true for $x=x_{1}$. Repeating the procedure $\left|T_{k}^{n}\right|$ times we fulfil condition (5) for all $x \in T_{k}^{n}$. End of Algorithm.

We need to prove that for every limit point A of T_{k} there is i with $C_{i}=A$. For every prefix x of (the characteristic sequence of) A, at the end of some step $n \geqslant|x|$ the string x is a prefix of C_{i} for some i. That i may depend on x. However, as the number of possible i 's is finite, there is i such that every prefix x of A is a prefix of C_{i} at the end of some step $n \geqslant|x|$.

This obviously implies that $A \subset C_{i}$. To prove the converse inclusion, pick any $j \in C_{i}$ and assume that j was included in C_{i} on the step m (thus $m \geqslant j$). The length- m prefix of A is a prefix of C_{i} at the end of some step $n \geqslant m$. Thus j th bit of the characteristic function of A is 1 .

Consider the machine that on every input ω beginning with

$$
p=0^{\log k} 1(\text { binary notation of } k)\left(\lambda_{k}\right)(\text { binary notation of } i)
$$

scans p and then, running the Algorithm, enumerates the set C_{i} (and no other sets among C_{1}, \ldots, C_{N}). For this machine M^{\prime} it holds

$$
I_{M^{\prime}}\left(C_{i}\right) \leqslant 2 \log k+1+k+1+\log O\left(2^{2 k}\right)
$$

and by universality

$$
I\left(C_{i}\right) \leqslant I_{M^{\prime}}\left(C_{i}\right)+O(1) \leqslant 3 k+2 \log k+O(1)
$$

for all i.
Let A be any enumerable subset of \mathbb{N} and $k=H(A)$. By condition (2) there is i such that the set C_{i} enumerated by the Algorithm coincides with A. Thus we obtain

$$
I(A) \leqslant 3 H(A)+2 \log H(A)+O(1)
$$

How can we improve Solovay's bound

$$
I(A) \leqslant 3 H(A)+2 \log H(A)+O(1) ?
$$

We could try to improve the upper bound of N in Martin's game. However, Ageev [1] showed that the condition $N=\Omega\left(K^{2}\right)$ is necessary for player II to win. Another option would be to reduce the length of the auxiliary string λ_{k} in Lemma 1. We do not know if this is possible.

For finite sets we can simplify the above construction as follows. If A is finite and $m(A) \geqslant 2^{-k}$ then $m^{t}(A) \geqslant 2^{-k-1}$ for all large enough t (Lemma 2 below). Thus we do not need the algorithm of Lemma 1. The algorithm that enumerates sets C_{1}, \ldots, C_{N} enforces, on step t, that every finite A with $m^{t}(A) \geqslant 2^{-k-1}$ be among C_{1}, \ldots, C_{N}. Thus we get rid of the string λ_{k}, and the enumeration complexity of C_{1}, \ldots, C_{N} is reduced by about k bits.

Proof of Theorem 2. We construct an algorithm that given k enumerates $N=O\left(2^{2 k}\right)$ sets C_{1}, \ldots, C_{N} so that every finite set A with $m(A) \geqslant 2^{-k}$ coincides with C_{i} for some $i \leqslant N$. Just as in the proof of Theorem 1 this implies

$$
I(A) \leqslant 2 H(A)+2 \log H(A)+O(1)
$$

Algorithm. We make steps $t=1,2, \ldots$ At the end of each step t we will have a configuration $\left\langle Z_{1}, \ldots, Z_{N}\right\rangle$ in Martin's game for $K=2^{k+1}$ and the sets C_{1}, \ldots, C_{N} enumerated so far. They will satisfy the following conditions:

$$
\begin{equation*}
C_{i} \subset M^{t}(\omega) \text { for all } \omega \in Z_{i} \text { and all } i=1, \ldots, N \tag{7}
\end{equation*}
$$

every finite A with $m^{t}(A) \geqslant 2^{-k-1}$ is among C_{1}, \ldots, C_{N},
the configuration $\left\langle Z_{1}, \ldots, Z_{N}\right\rangle$ was obtained by applying a computable
winning strategy of player II against a sequence of moves of player I.
Step t. At the beginning of step t conditions (7), (8) and (9) are true for $t-1$. Obviously, condition (7) remains valid for t in place of $t-1$, and we need to restore condition (8).

First we find all sets A_{1}, \ldots, A_{s} with

$$
m^{t}\left(A_{i}\right) \geqslant 2^{-k-1}
$$

Then we play $Y_{1}=S^{t}\left(A_{1}\right)$ for the player I in Martin's game. Let Z_{i} be the move of the computable winning strategy of player II. As Z_{i} intersects Y, there is $\omega \in Z_{i}$ with $A_{1}=M^{t}(\omega)$. By condition (7) we have

$$
C_{i} \subset M^{t}(\omega)=A_{1}
$$

We update C_{i} be letting $C_{i}=A_{1}$ and replace Z_{i} by Y_{1}. These changes enforce condition (8) for $A=A_{1}$ and do not break condition (7).

Then we repeat the procedure for A_{2}, \ldots, A_{s} in place of A_{1}. Note that $S^{t}\left(A_{1}\right), \ldots, S^{t}\left(A_{s}\right)$ are pairwise disjoint. Therefore, the condition (8) for A_{1}, \ldots, A_{i-1} will not be broken when we perform the procedure for A_{i}. End of Algorithm.

The correctness of the Algorithm is based on the following
Lemma 2. $m(A)=\lim _{t \rightarrow \infty} m^{t}(A)$ for every finite $A \subset \mathbb{N}$.
The proof of this lemma is an easy exercise in measure theory and is given in the Appendix.

If A is finite and $m(A) \geqslant 2^{-k}$ then by Lemma 2 for almost all t we have $m^{t}(A) \geqslant 2^{-k-1}$. Therefore there is i such that on infinitely many steps we have $C_{i}=A$. Since C_{i} can only increase on each step, A coincides with C_{i} starting from some step.

Acknowledgments. The author is sincerely grateful to Sergei Salnikov for writing down a preliminary version of the proof and for the anonymous referees for helpful suggestions.

References

[1] M. Ageev, Martin's game: a lower bound for the number of sets, Theor. Comput. Sci. 289(1): 871-876 (2002)
[2] K. de Leeuw, E. F. Moore, C. E. Shannon, and N. Shapiro, Computability by probabilistic machines, In: C. E. Shannon and J. McCarthey (Eds.), Automata Studies, Princeton University Press, Princeton, New Jersey, 1956, 183-212.
[3] M. Li and P.M.B. Vitányi, An Introduction to Kolmogorov Complexity and its Applications, Springer-Verlag, New York, 2nd Edition, 1997.
[4] D.A. Martin, Borel indeterminacy, Ann. Math. 102 (1978) 363-371.
[5] R.M.Solovay, On Random R.E. Sets, In: A.I. Arruda, N.C.A. da Costa, R. Chaqui (Eds.), Non-Classical Logics, Model Theory and Computability, North-Holland, Amsterdam, 1977, pp. 283-307.

Appendix.

Proof of Lemma 2. The set $S^{t}(A)$ is the difference of two sets: $S_{1}^{t}=\{\omega \mid M(\omega)$ prints in at most t steps all the elements of $A\}$ and $S_{2}^{t}=\left\{\omega \mid M_{1}(\omega)\right.$ prints in at most t steps all the elements of A and an element of $\mathbb{N} \backslash A\}$. Let S_{1}^{∞} be the union of all S_{1}^{t} and S_{2}^{∞} the union of all S_{2}^{t}. As the uniform measure is continuous we have

$$
\mu\left(S_{1}^{\infty}\right)=\lim _{t \rightarrow \infty} \mu\left(S_{1}^{t}\right), \quad \mu\left(S_{2}^{\infty}\right)=\lim _{t \rightarrow \infty} \mu\left(S_{2}^{t}\right)
$$

and

$$
\begin{aligned}
m(A) & =\mu\left(S_{1}^{\infty} \backslash S_{2}^{\infty}\right) \\
& =\mu\left(S_{1}^{\infty}\right)-\mu\left(S_{2}^{\infty}\right) \\
& =\lim _{t \rightarrow \infty} \mu\left(S_{1}^{t}\right)-\lim _{t \rightarrow \infty} \mu\left(S_{2}^{t}\right) \\
& =\lim _{t \rightarrow \infty}\left(\mu\left(S_{1}^{t}\right)-\mu\left(S_{2}^{t}\right)\right) \\
& =\lim _{t \rightarrow \infty} \mu\left(S_{1}^{t} \backslash S_{2}^{t}\right)=\lim _{t \rightarrow \infty} \mu\left(S^{t}(A)\right)=\lim _{t \rightarrow \infty} m^{t}(A) .
\end{aligned}
$$

Proof of Lemma 1. Let A_{1}, \ldots, A_{r} be all sets with $m\left(A_{i}\right) \geqslant 2^{-k}$ and let $\lambda=$ $\sum_{i=1}^{r} m\left(A_{i}\right)$. Let λ_{k} be the rational number consisting of $k+1$ first binary digits of the number $\lambda-2^{-k-1}$.

The number t_{n} and the list T_{k}^{n} of all strings of length n in T_{k} are defined recursively. Let t_{n} be the first $t>t_{n-1}$ such that

$$
m^{t}\left(\Omega_{x_{1}} \cup \cdots \cup \Omega_{x_{s}}\right) \geqslant \lambda_{k}
$$

where x_{1}, \ldots, x_{s} are all binary strings of length n with

$$
m^{t}\left(\Omega_{x_{i}}\right) \geqslant \max \left\{2^{-k-1}, 2^{-k}-1 / n\right\} .
$$

Let $T_{k}^{n}=\left\{x_{1}, \ldots, x_{s}\right\}$.
We have to prove first that such t exists. Let $x_{1}^{n}, \ldots, x_{r}^{n}$ stand for prefixes of length n of characteristic functions of A_{1}, \ldots, A_{r} (some of them may coincide). For any finitely based set $S \subset \Omega$ we have

$$
m(S)=\lim _{t \rightarrow \infty} m^{t}(S)
$$

(This can be proved just as Lemma 2.) This implies that for all large enough t we have

$$
m^{t}\left(\Omega_{x_{1}^{n}} \cup \cdots \cup \Omega_{x_{r}^{n}}\right) \geqslant \lambda_{k}
$$

We can pick t so large that we additionally have

$$
m^{t}\left(\Omega_{x_{i}^{n}}\right) \geqslant \max \left\{2^{-k-1}, 2^{-k}-1 / n\right\} .
$$

for all $i=1, \ldots, r$. Indeed, $m^{t}\left(\Omega_{x_{i}^{n}}\right)$ tends to $m\left(\Omega_{x_{i}^{n}}\right)$, which is at least $m\left(\Omega_{A_{i}}\right) \geqslant 2^{-k}$. Any such t qualifies all the requirements.

It remains to prove that every A with $m(A) \geqslant 2^{-k}$ is a limit point of T_{k}. Let B_{1}, \ldots, B_{m} be all different limit points of T_{k}. It suffices to show that

$$
m\left(\left\{B_{1}, \ldots, B_{m}\right\}\right) \geqslant \lambda_{k} \quad \text { and } \quad m\left(B_{i}\right) \geqslant 2^{-k}
$$

for all $i \leqslant m$. (Indeed, if A was not among B_{1}, \ldots, B_{m}, then the m-measure of the set of all B 's with $m(B) \geqslant 2^{-k}$ would be at least $\lambda_{k}+2^{-k}>\lambda$.)

Let us prove first that $m\left(B_{i}\right) \geqslant 2^{-k}$ for every $i \leqslant m$. Fix i and let z_{i}^{n} denote length- n prefix of B_{i}. As m is a continuous measure, we have

$$
m\left(B_{i}\right)=\lim _{n \rightarrow \infty} m\left(\Omega_{z_{i}^{n}}\right)
$$

Thus it suffices to prove that $m\left(\Omega_{z_{i}^{n}}\right) \geqslant 2^{-k}$ for all n. Fix n. As B_{i} is a limit point of T_{k}, for every $j \geqslant n$ there exists $l \geqslant j$ such that z_{i}^{j} is a prefix of some $x \in T_{k}^{l}$. This implies that

$$
m^{t_{l}}\left(\Omega_{z_{i}^{n}}\right) \geqslant m^{t_{l}}\left(\Omega_{z_{i}^{j}}\right) \geqslant m^{t_{l}}\left(\Omega_{x}\right) \geqslant 2^{-k}-1 / l .
$$

Thus for every $j \geqslant n$ there is $l \geqslant j$ with

$$
m^{t_{l}}\left(\Omega_{z_{i}^{n}}\right) \geqslant 2^{-k}-1 / l,
$$

which implies that $m\left(\Omega_{z_{i}^{n}}\right) \geqslant 2^{-k}$.
The inequality $m\left(\left\{B_{1}, \ldots, B_{m}\right\}\right) \geqslant \lambda_{k}$ is proved in a similar way. Let S_{n} stand for the set of all ω whose length- n prefix is among of $z_{1}^{n}, \ldots, z_{m}^{n}$:

$$
S_{n}=\Omega_{z_{1}^{n}} \cup \cdots \cup \Omega_{z_{m}^{n}} .
$$

The m-measure of S_{n} tends to $m\left(\left\{B_{1}, \ldots, B_{m}\right\}\right)$, thus it suffices to show that

$$
m\left(S_{n}\right) \geqslant \lambda_{k}
$$

for all n.
Fix any n. For all large enough l every string x of length l in T_{k} is an extension of some string among $z_{1}^{n}, \ldots, z_{m}^{n}$. (Otherwise, compactness arguments show that T_{k} has a limit point outside S_{n}, hence different from B_{1}, \ldots, B_{m}). Fix any such l and let x_{1}, \ldots, x_{s} denote all strings of length l in T_{k}. By construction we have

$$
m^{t_{l}}\left(\Omega_{x_{1}} \cup \cdots \cup \Omega_{x_{s}}\right) \geqslant \lambda_{k}
$$

and therefore

$$
m^{t_{l}}\left(S_{n}\right) \geqslant m^{t_{l}}\left(\Omega_{x_{1}} \cup \cdots \cup \Omega_{x_{s}}\right) \geqslant \lambda_{k} .
$$

Since this inequality holds for all large enough l and $m\left(S_{n}\right)=\lim _{t \rightarrow \infty} m^{t}\left(S_{n}\right)$, we are done.

How to win Martin's game? Without loss of generality we may assume that the measure of every move Y of player I is exactly $1 / K$ and thus at any moment of the game the measure of all sets Z_{1}, \ldots, Z_{N} is exactly $1 / K$. (At the start of the game we will reduce Z_{1}, \ldots, Z_{N}; if we win the game with reduced Z_{1}, \ldots, Z_{N} then we certainly win with original Z_{1}, \ldots, Z_{N}.)

We assign to every set Z_{i} a natural number in the range $1, \ldots, K$, called the rank, so that (1) for every $r \leqslant K$ there are exaclty r sets of rank r and (2) all sets of the same rank are pair wise disjoint (thus sets of rank K form a partition of Ω).

The condition (2) implies that each move Y of player II intersects some set of rank K. On our next move we choose a set Z_{i} of lowest rank r that intersects Y, replace it by Y and assign the rank $r-1$ to Y. The condition (2) is thus satisfied. Note that now there are r (pair wise disjoint sets) of rank $r-1$ and $r-1$ sets of rank r. Thus swapping sets of rank r and $r-1$ restores the condition (1).

[^0]: *Moscow State University, Leninskie Gory 1, Moscow 119992, Email: ver@mccme.ru. Work was done while visiting Laboratoire d'Informatique Fondamentale, Université de Provence. Supported in part by the RFBR grant 06-01-00122-a
 ${ }^{1}$ In the case of finite sets any such program is called an implicit description of A, as opposed to explicit description of A when M is required to halt after having printed the last element of A.

