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Abstract

Solovay [5] has proved that the minimal length of a program enumer-
ating a set A is upper bounded by 3 times the negative logarithm of
the probability that a random program will enumerate A. It is unknown
whether one can replace the constant 3 by a smaller constant. In this
paper, we show that the constant 3 can be replaced by the constant 2 for
finite sets A.

We recall first two complexity measures (“information content”) of com-
putably enumerable sets attributed by Solovay in [5] to G. Chaitin (wee keep
Solovay’s notations).

Let M be a machine with one infinite input tape and one infinite output
tape. At the start the input tape contains an infinite binary string ω called the
input to M . The output tape is empty at the start. We say that a program p
enumerates a set A ⊂ N = {1, 2, . . .} if in the run on every input ω extending
p machine M prints all the elements of A in some order and no other elements,
and does not move the head on input tape beyond p. We do not require M to
halt in the case when A is finite.1 Let IM (A) denote the minimal length of a
program enumerating A. There is a machine M0 (called a universal machine)
such that for every other machine M there is a constant c such that

IM0
(A) 6 IM (A) + c

for all A ⊂ N. Fix any such M0 and call I(A)
def
= IM0

(A) the complexity of

enumeration of A. This complexity thus depends on the choice of the universal
machine but this dependence is rather weak: for any other universal machine
M1 the difference |IM0

(A) − IM1
(A)| is bounded by a constant not depending

on A.
The second complexity measure is related to the a priori probability distri-

bution on enumerable sets. The definitions are as follows. Let M be a machine
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with one infinite input tape and one infinite output tape as described above.
For every infinite 0-1-sequence ω let M(ω) denote the set enumerated by M
when ω is written on its input tape. For every A ⊂ N consider the probability

mM (A) = Pr[M(ω) = A].

A theorem of de Leeuw, Moore, Shannon and Shapiro [2] states that if mM (A) >
0 then A is enumerable.

The class of distributions of such form has a maximal one up to a multi-
plicative constant. In other words, there is a machine M1 (called optimal) such
that for every machine M there is a constant c such that

c · mM1
(A) > mM (A)

for all A ⊂ N. Fix any such M1 and call m(A)
def
= mM1

(A) the a priori

probability of enumerating A. The a priori distribution thus depends on the
choice of the optimal machine but this dependence is also weak: for any other
optimal machine M2 both ratios mM1

(A)/mM2
(A) and mM2

(A)/mM1
(A) are

bounded by a constant not depending on A. Let H(A) denote the negative
binary logarithm of the a-priori probability of A: H(A) = ⌈− logm(A)⌉.

Comparing M0, the machine defining I(A), with M1, the machine defining
m(A), we see that

H(A) = ⌈− logmM1
(A)⌉ 6 IM1

(A) 6 IM0
(A) + O(1) = I(A) + O(1)

for all A. Solovay [5] has proved that conversely I(A) 6 3H(A) + O(log H(A))
for all A, which can be viewed as a sharpening of de Leeuw et al.’s result.

Theorem 1 (Solovay). There is a constant c such that for every set A ⊂ N we

have I(A) 6 3H(A) + 2 logH(A) + c.

It is unknown whether we can replace the constant 3 in this inequality by a
smaller constant. In this paper, we show that the constant 3 can be replaced
by the constant 2 for finite sets A.

Theorem 2. There is a constant c such that for every finite set A we have

I(A) 6 2H(A) + 2 logH(A) + c.

The proof of Theorem 2 is basically a simplification of that of Theorem 1.
Thus we first sketch the latter one and then present the former one, explaining
the main difference between two proofs. Our proof of Theorem 1 keeps the main
ideas of Solovay’s proof but differs from it in many technical details.

First we introduce some terminology and notation. Let Ω stand for the set
of all infinite binary sequences. We write x 6 ω if x is a finite prefix of an
infinite 0-1-sequence ω. Let Ωx denote the set of all ω ∈ Ω with x 6 ω.

We will consider Cantor topology on Ω. Its base open sets are all sets of the
form Ωx. We call a subset of Ω finitely based if it is a finite union of sets of the
form Ωx.
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There is a natural one-to one correspondence between the family of all sub-
sets of N and Ω. Each subset A of N corresponds to its characteristic sequence,
whose nth bit is 1 iff n ∈ A. In what follows we will identify subsets of Ω with
its characteristic sequences. In particular, we will write A ∈ Ωx and x 6 A
to indicate that x is a prefix of the characteristic sequence of A. The notation
A ⊂ B will be used for the inclusion relation.

Fix and optimal machine M defining the a priori distribution m. Let M t(ω)
stand for the set enumerated by M in t steps on input ω. For each A ⊂ N and
t let

St(A) = {ω | M t(ω) = A}.

The set St(A) is finitely based and a code of St(A) (a finite list of respective
x’s) can by computed given t and A. (For all infinite A and all t the set St(A)
is empty.) Let µ denote the uniform measure on Ω and mt(A) = µ(St(A)). Ac-
cording to our agreement to identify sets with their characteristic sequences, we
denote by mt(Ωx) the total mt-measure of all sets whose characteristic sequence
begins with x.

Note that mt(A) can both increase and decrease as t increases (if A is finite).
Indeed, assume that M t−1(ω) = A and on step t of the run on input ω the
machine M writes a new element b on the output tape. Let x be the length-t
prefix of ω. Then S(A) is decremented by Ωx, while S(A ∪ {b}) is incremented
by Ωx on step t.

Proof of Theorem 1 (a sketch). Let T be a subset of {0, 1}∗. A limit point
of T is an infinite 0-1-sequence ω having the following property: Every its prefix
is a prefix of some string in T . By T n we denote the set of all strings of length
n in T . We say that an algorithm constructs a set T of binary strings if for any
given n it prints the list of strings in T n and then halts.

An essential part of the proof is an algorithm that for every k constructs a
set of strings Tk and computes a sequence of natural numbers

t0 < t1 < t2 < . . .

having the following properties:

mtn(Ωx) > 2−k−1 for all n and all x ∈ T n
k , (1)

if m(A) > 2−k then A is a limit point of Tk. (2)

Lemma 1. There is an algorithm that given k and an auxiliary binary string

λk of length k + 1 constructs a set Tk and computes an increasing sequence

t0, t1, . . . having the properties (1) and (2).

For the goal of this paper, we do not need the proof of this lemma. However,
for the seek of completeness we present its proof in the Appendix.

So, assume Lemma 1. We are going to construct an algorithm that on input
λk enumerates certain subsets C1, . . . , CN of N, where N = O(22k), having
the following property: Every limit point A of Tk (the tree constructed by the
algorithm of Lemma 1) is among C1, . . . , CN .
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To this end we need a computable strategy to win an infinite two person game
defined in Martin’s paper [4]. Let N, K be natural numbers. A configuration
in this game is an N -tuple of finitely based subsets of Ω: 〈Z1, . . . , ZN 〉. The
initial configuration is 〈Ω, . . . , Ω〉. Player I on his turn plays a finitely based set
Y with µ(Y ) > 1/K. If Y is disjoint with Zi for all i = 1, . . . , N , player I wins.
If not, player II chooses a Zi intersecting Y and replaces Zi by Y , and the game
continues. Player II wins if he can prevent I to win as described above for the
entire, infinitely long game.

Martin [4] has proved that if N = K(K + 1)/2 then player II has a com-
putable winning strategy (uniformly in K). We use Martin’s result for K =
2k+1. (We present its proof in the Appendix.)

Algorithm. We make steps n = 1, 2, . . . . At the end of step n we will
have a configuration 〈Z1, . . . , ZN〉 in Martin’s game and the sets C1, . . . , CN

enumerated so far. They will satisfy the following conditions:

Ci ⊂ {1, . . . , n} for all i 6 N ; (3)

Ci ⊂ M tn(ω) for all ω ∈ Zi and all i 6 N ; (4)

every x ∈ T n
k is a prefix of Ci for some i 6 N ; (5)

the configuration 〈Z1, . . . , ZN 〉 was obtained by applying a computable

winning strategy of player II against a sequence of moves of player I.
(6)

At the start n = 0, Ci = ∅ and Zi = Ω, and conditions (3), (4), (5) and (6)
are straightforward.

Step n. At the beginning of step n the conditions (3), (4), (5) and (6) are
true for n − 1. The conditions (3) and (4) for n − 1 imply conditions (3) and
(4) for n. Thus all the conditions except (5) are true at the beginning of step n.
The condition (5) however may become false for any of x ∈ T n

k , as T n
k and T n−1

k

can be unrelated.
How to restore condition (5)? First, using the algorithm of Lemma 1, find

the list of T n
k . Then pick any x from T n

k , call it x1. Play Y1 = Stn(Ωx1
) for

player I in Martin’s game. By condition (1) this is a legal move. Assume that
the winning strategy of player II plays Zi.

We want to add some elements to Ci to ensure x1 6 Ci. To this end we
need to show that Ci is a subset of the set X1 = {j | jth bit of x1 is 1}. We are
given that there is ω ∈ Zi which is in Y1, that is,

x1 6 M tn(ω).

By condition (4) we have
Ci ⊂ M tn(ω).

Thus Ci is a subset of a set whose charactersitic sequence begins with x1, there-
fore Ci ∩ {1, . . . , n} ⊂ X1. By conditon (3) this implies that thus Ci ⊂ X1.

Update Ci by letting Ci = X1. Thus condition (5) is fulfilled for x = x1.
Replace Zi by Y1. This replacement restores conditon (4) (that might be-

come false after changing Ci). Indeed, x1 6 M tn(ω) for all ω ∈ Y1 and Ci has
just become equal to X1.
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Next we pick another element x2 from T n
k and repeat the procedure for x2

in place of x1. Note that the set Y2 is disjoint with Y1, as M tn(Y2) and M tn(Y1)
are equal to disjoint sets Ωx2

and Ωx1
. Thus the new move Zi of player II is

different from Y1 and the condition (5) remains true for x = x1. Repeating the
procedure |T n

k | times we fulfil condition (5) for all x ∈ T n
k . End of Algorithm.

We need to prove that for every limit point A of Tk there is i with Ci = A.
For every prefix x of (the characteristic sequence of) A, at the end of some step
n > |x| the string x is a prefix of Ci for some i. That i may depend on x.
However, as the number of possible i’s is finite, there is i such that every prefix
x of A is a prefix of Ci at the end of some step n > |x|.

This obviously implies that A ⊂ Ci. To prove the converse inclusion, pick
any j ∈ Ci and assume that j was included in Ci on the step m (thus m > j).
The length-m prefix of A is a prefix of Ci at the end of some step n > m. Thus
jth bit of the characteristic function of A is 1.

Consider the machine that on every input ω beginning with

p = 0log k1(binary notation of k)(λk)(binary notation of i)

scans p and then, running the Algorithm, enumerates the set Ci (and no other
sets among C1, . . . , CN ). For this machine M ′ it holds

IM ′(Ci) 6 2 log k + 1 + k + 1 + log O(22k)

and by universality

I(Ci) 6 IM ′ (Ci) + O(1) 6 3k + 2 log k + O(1)

for all i.
Let A be any enumerable subset of N and k = H(A). By condition (2) there

is i such that the set Ci enumerated by the Algorithm coincides with A. Thus
we obtain

I(A) 6 3H(A) + 2 log H(A) + O(1).

How can we improve Solovay’s bound

I(A) 6 3H(A) + 2 log H(A) + O(1)?

We could try to improve the upper bound of N in Martin’s game. However,
Ageev [1] showed that the condition N = Ω(K2) is necessary for player II to
win. Another option would be to reduce the length of the auxiliary string λk in
Lemma 1. We do not know if this is possible.

For finite sets we can simplify the above construction as follows. If A is finite
and m(A) > 2−k then mt(A) > 2−k−1 for all large enough t (Lemma 2 below).
Thus we do not need the algorithm of Lemma 1. The algorithm that enumerates
sets C1, . . . , CN enforces, on step t, that every finite A with mt(A) > 2−k−1 be
among C1, . . . , CN . Thus we get rid of the string λk, and the enumeration
complexity of C1, . . . , CN is reduced by about k bits.
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Proof of Theorem 2. We construct an algorithm that given k enumerates
N = O(22k) sets C1, . . . , CN so that every finite set A with m(A) > 2−k coin-
cides with Ci for some i 6 N . Just as in the proof of Theorem 1 this implies

I(A) 6 2H(A) + 2 log H(A) + O(1).

Algorithm. We make steps t = 1, 2, . . . . At the end of each step t we will
have a configuration 〈Z1, . . . , ZN 〉 in Martin’s game for K = 2k+1 and the sets
C1, . . . , CN enumerated so far. They will satisfy the following conditions:

Ci ⊂ M t(ω) for all ω ∈ Zi and all i = 1, . . . , N , (7)

every finite A with mt(A) > 2−k−1 is among C1, . . . , CN , (8)

the configuration 〈Z1, . . . , ZN 〉 was obtained by applying a computable

winning strategy of player II against a sequence of moves of player I.
(9)

Step t. At the beginning of step t conditions (7), (8) and (9) are true for
t− 1. Obviously, condition (7) remains valid for t in place of t− 1, and we need
to restore condition (8).

First we find all sets A1, . . . , As with

mt(Ai) > 2−k−1.

Then we play Y1 = St(A1) for the player I in Martin’s game. Let Zi be the
move of the computable winning strategy of player II. As Zi intersects Y , there
is ω ∈ Zi with A1 = M t(ω). By condition (7) we have

Ci ⊂ M t(ω) = A1.

We update Ci be letting Ci = A1 and replace Zi by Y1. These changes enforce
condition (8) for A = A1 and do not break condition (7).

Then we repeat the procedure for A2, . . . , As in place of A1. Note that
St(A1), . . . , S

t(As) are pairwise disjoint. Therefore, the condition (8) for A1, . . . , Ai−1

will not be broken when we perform the procedure for Ai. End of Algorithm.

The correctness of the Algorithm is based on the following

Lemma 2. m(A) = limt→∞ mt(A) for every finite A ⊂ N.

The proof of this lemma is an easy exercise in measure theory and is given
in the Appendix.

If A is finite and m(A) > 2−k then by Lemma 2 for almost all t we have
mt(A) > 2−k−1. Therefore there is i such that on infinitely many steps we have
Ci = A. Since Ci can only increase on each step, A coincides with Ci starting
from some step.

Acknowledgments. The author is sincerely grateful to Sergei Salnikov for
writing down a preliminary version of the proof and for the anonymous referees
for helpful suggestions.
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Appendix.

Proof of Lemma 2. The set St(A) is the difference of two sets: St
1 = {ω | M(ω)

prints in at most t steps all the elements of A} and St
2 = {ω | M1(ω) prints

in at most t steps all the elements of A and an element of N \ A}. Let S∞

1

be the union of all St
1 and S∞

2 the union of all St
2. As the uniform measure is

continuous we have

µ(S∞

1 ) = lim
t→∞

µ(St
1), µ(S∞

2 ) = lim
t→∞

µ(St
2),

and

m(A) = µ(S∞

1 \ S∞

2 )

= µ(S∞

1 ) − µ(S∞

2 )

= lim
t→∞

µ(St
1) − lim

t→∞

µ(St
2)

= lim
t→∞

(µ(St
1) − µ(St

2))

= lim
t→∞

µ(St
1 \ St

2) = lim
t→∞

µ(St(A)) = lim
t→∞

mt(A).

Proof of Lemma 1. Let A1, . . . , Ar be all sets with m(Ai) > 2−k and let λ =∑r
i=1 m(Ai). Let λk be the rational number consisting of k + 1 first binary

digits of the number λ − 2−k−1.
The number tn and the list T n

k of all strings of length n in Tk are defined
recursively. Let tn be the first t > tn−1 such that

mt(Ωx1
∪ · · · ∪ Ωxs

) > λk,
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where x1, . . . , xs are all binary strings of length n with

mt(Ωxi
) > max{2−k−1, 2−k − 1/n}.

Let T n
k = {x1, . . . , xs}.

We have to prove first that such t exists. Let xn
1 , . . . , xn

r stand for prefixes of
length n of characteristic functions of A1, . . . , Ar (some of them may coincide).
For any finitely based set S ⊂ Ω we have

m(S) = lim
t→∞

mt(S).

(This can be proved just as Lemma 2.) This implies that for all large enough t
we have

mt(Ωxn
1
∪ · · · ∪ Ωxn

r
) > λk

We can pick t so large that we additionally have

mt(Ωxn
i
) > max{2−k−1, 2−k − 1/n}.

for all i = 1, . . . , r. Indeed, mt(Ωxn
i
) tends to m(Ωxn

i
), which is at least

m(ΩAi
) > 2−k. Any such t qualifies all the requirements.

It remains to prove that every A with m(A) > 2−k is a limit point of Tk.
Let B1, . . . , Bm be all different limit points of Tk. It suffices to show that

m({B1, . . . , Bm}) > λk and m(Bi) > 2−k

for all i 6 m. (Indeed, if A was not among B1, . . . , Bm, then the m-measure of
the set of all B’s with m(B) > 2−k would be at least λk + 2−k > λ.)

Let us prove first that m(Bi) > 2−k for every i 6 m. Fix i and let zn
i denote

length-n prefix of Bi. As m is a continuous measure, we have

m(Bi) = lim
n→∞

m(Ωzn
i
).

Thus it suffices to prove that m(Ωzn
i
) > 2−k for all n. Fix n. As Bi is a limit

point of Tk, for every j > n there exists l > j such that zj
i is a prefix of some

x ∈ T l
k. This implies that

mtl(Ωzn
i
) > mtl(Ω

z
j

i
) > mtl(Ωx) > 2−k − 1/l.

Thus for every j > n there is l > j with

mtl(Ωzn
i
) > 2−k − 1/l,

which implies that m(Ωzn
i
) > 2−k.

The inequality m({B1, . . . , Bm}) > λk is proved in a similar way. Let Sn

stand for the set of all ω whose length-n prefix is among of zn
1 , . . . , zn

m:

Sn = Ωzn
1
∪ · · · ∪ Ωzn

m
.
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The m-measure of Sn tends to m({B1, . . . , Bm}), thus it suffices to show that

m(Sn) > λk

for all n.
Fix any n. For all large enough l every string x of length l in Tk is an

extension of some string among zn
1 , . . . , zn

m. (Otherwise, compactness arguments
show that Tk has a limit point outside Sn, hence different from B1, . . . , Bm). Fix
any such l and let x1, . . . , xs denote all strings of length l in Tk. By construction
we have

mtl(Ωx1
∪ · · · ∪ Ωxs

) > λk

and therefore
mtl(Sn) > mtl(Ωx1

∪ · · · ∪ Ωxs
) > λk.

Since this inequality holds for all large enough l and m(Sn) = limt→∞ mt(Sn),
we are done.

How to win Martin’s game? Without loss of generality we may assume that
the measure of every move Y of player I is exactly 1/K and thus at any moment
of the game the measure of all sets Z1, . . . , ZN is exactly 1/K. (At the start of
the game we will reduce Z1, . . . , ZN ; if we win the game with reduced Z1, . . . , ZN

then we certainly win with original Z1, . . . , ZN .)
We assign to every set Zi a natural number in the range 1, . . . , K, called the

rank, so that (1) for every r 6 K there are exaclty r sets of rank r and (2) all
sets of the same rank are pair wise disjoint (thus sets of rank K form a partition
of Ω).

The condition (2) implies that each move Y of player II intersects some set
of rank K. On our next move we choose a set Zi of lowest rank r that intersects
Y , replace it by Y and assign the rank r − 1 to Y . The condition (2) is thus
satisfied. Note that now there are r (pair wise disjoint sets) of rank r − 1 and
r−1 sets of rank r. Thus swapping sets of rank r and r−1 restores the condition
(1).
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