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Abstract

The notion of quantum weakest precondition
was introduced by D’Hondt and P. Panan-
gaden (Mathematical Structures in Com-
puter Science 16(2006)429-451), and they
presented a representation of weakest precon-
dition of a quantum program in the operator-
sum form. In this letter, we give an intrin-
sic characterization of the weakest precondi-
tion of a quantum program given in a system-
environment model. Furthermore, some suf-
ficient conditions for commutativity of quan-
tum weakest preconditions are presented.
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1 Introduction

In the middle of 1990’s Shor [14] and
Grover [5] discovered, respectively, the fa-
mous quantum factoring and searching algo-
rithms. These indicate that quantum com-
putation offers a way to accomplish certain
computational tasks much more efficiently
than classical computation. Since then a sub-
stantial effort has been made to develop the
theory of quantum computation, to find new
quantum algorithms and to exploit the tech-
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niques needed in building functional quan-
tum computers.

Currently, quantum algorithms are ex-
pressed at the very low level of quantum
circuits. Recently, however, some authors
[1, 2, 7, 10, 12, 13] begun to study the de-
sign and semantics of quantum programming
languages. In particular, a notion of quan-
tum weakest precondition is introduced and a
Stone-type duality between the state transi-
tion semantics and the predicate transformer
semantics for quantum programs is estab-
lished by D’Hondt and Panangaden [3].

Following Selinger [13], quantum programs
may be represented by super-operators. In
D’Hondt and Panangaden’s approach [3], a
quantum predicate is then defined to be an
observable, namely, a Hermitian operator on
the state space. This is a natural generaliza-
tion of Kozen’s probabilistic predicate as a
measurable function [8].

Quantum predicate transformer semantics
is not a simple generalization of predicate
transformer semantics for classical and prob-
abilistic programs. It has to answer some im-
portant problems that would not arise in the
realm of classical and probabilistic program-
ming. One of such problems is commutativ-
ity of quantum weakest preconditions. The
significance of this problem comes from the
following two observations. First, quantum
weakest preconditions are quantum predi-
cates and in turn they are observables on the
state space. Thus, their physical simultane-
ous verifiability depends on commutativity
between them according to the Heisenberg
uncertainty principle (see [9], page 89). Sec-
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ond, various logical operations of quantum
weakest preconditions such as conjunction
and disjunction will be needed in reasoning
about complicated quantum programs, but
defining these operations requires commuta-
tivity between the involved quantum predi-
cates (see [6], Section 3.6).

The aim of this letter is to find some condi-
tions under which quantum weakest precon-
ditions commute. This letter is organized as
follows: Some basic notions of quantum pro-
grams and quantum weakest preconditions
are reviewed in Section 2. At the end of Sec-
tion 2, a characterization of quantum weak-
est precondition is presented for the case that
quantum programs are given in a system-
environment model. In Section 3, we give
some sufficient conditions under which quan-
tum weakest preconditions commute. We
then consider the problem of commutativity
of weakest preconditions for quantum pro-
grams written in a fragment of Selinger’s
quantum programming language QPL in Sec-
tion 4. A short conclusion is drawn in Section
5.

2 Quantum Weakest Pre-
conditions

We first recall from [3] some basic notions
needed in the sequel. Let H be a Hilbert
space. Two vectors |ϕ〉 and |ψ〉 in H are
said to be orthogonal and we write |ϕ〉⊥|ψ〉
if 〈ϕ|ψ〉 = 0. The set of linear operators on
H is denoted by L(H). An operator A on
H is said to be Hermitian if M† = M , and
an operator A is positive if 〈x|A|x〉 ≥ 0 for
all states |x〉 ∈ H. The trace tr(A) of A is
defined to be

tr(A) =
∑
i

〈i|A|i〉,

where {|i〉} is an orthonormal basis of H. A
density matrix ρ on a Hilbert space H is a
positive operator with tr(ρ) ≤ 1. Here, fol-
lowing [13], the trace of a density operator
is allowed to be smaller than 1 so that non-
normalized quantum states can be dealt with

in a convenient way. The set of density op-
erators on H is denoted D(H). Let A and
B be two operators on H. Then the Löwner
ordering between them is defined as follows:
A v B if B −A is a positive operator.

A super-operator on H is a linear opera-
tor E from the space L(H) into itself which
satisfies the following two conditions:

(i) tr[E(ρ)] ≤ tr(ρ) for each ρ ∈ D(H);

(ii) Complete positivity: for any extra
Hilbert space HR, (IR ⊗ E)(A) is positive
provided A is a positive operator on HR⊗H,
where IR is the identity operation on HR.

We write CP(H) for the set of super-
operators on H. Super-operators are used
to represent quantum programs (see [13, 3]
for details). The following theorem gives two
representations of super-operators, which are
needed in the sequel.

Theorem 2.1 ([9], Section 8.2.3; Theorem
8.1) The following statements are equivalent:

(1) E is a super-operator on H;

(2) (System-environment model) There are
an environment system E with state space
HE, and a unitary transformation U and a
projector P on H⊗HE such that

E(ρ) = trE [PU(ρ⊗ |e0〉〈e0|)U†P ] (1)

for any ρ ∈ D(H), where |e0〉 is a fixed state
in HE;

(3) (Kraus operator-sum representation)
There exists a set of operators {Ei} on H
such that

∑
iE
†
iEi v I and

E(ρ) =
∑
i

EiρE
†
i (2)

for all density operators ρ ∈ D(H). We of-
ten say that E is represented by the set {Ei}
of operators, or {Ei} are operation elements
giving rise to E when E is given by Eq.(2).

A (quantum) predicate on H is defined to
be a Hermitian operator M with 0 vM v I.
The set of predicates on H is denoted P(H).

Definition 2.1 ([3], Definition 3.1) For any
quantum predicates M,N ∈ P(H), and for
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any quantum program E ∈ CP(H), M is
called a precondition of N with respect to E,
written M{E}N , if

tr(Mρ) ≤ tr(NE(ρ))

for all density operator ρ ∈ D(H).

Definition 2.2 ([3], Definition 3.2) Let
M ∈ P(H) be a quantum predicate and E ∈
CP(H) a quantum program. Then the weak-
est precondition of M with respect to E is a
quantum predicate wp(E)(M) satisfying the
following conditions:

(i) wp(E)(M){E}M ;

(ii) for all quantum predicates N , N{E}M
implies N v wp(E)(M).

An operator-sum representation of wp(E)
was found in [3] by exploiting a Stone-type
duality when E is given in the form of
operator-sum.

Proposition 2.1 ([3], Proposition 3.3)
Suppose that E ∈ CP(H) is represented by
the set {Ei} of operators. Then for each
M ∈ D(H), we have:

wp(E)(M) =
∑
i

E†iMEi.

We can also give an intrinsic characteriza-
tion of wp(E) in the case that E is given by
a system-environment model.

Proposition 2.2 If E is given by Eq. 1, then
we have:

wp(E)(M) = 〈e0|U†P (M ⊗ IE)PU |e0〉

for each M ∈ P(H), where IE is the identity
operator in the environment system.

Proof. Let {|ek〉} be an orthonormal basis
of HE . Then

E(ρ) =
∑
k

〈ek|PU |e0〉ρ〈e0|U†P |ek〉,

and using Proposition 2.2 we obtain:

wp(E)(M) =
∑
k

〈e0|U†P |ek〉M〈ek|PU |e0〉

= 〈e0|U†P (
∑
k

|ek〉M〈ek|)PU |e0〉.

Note that
∑

k |ek〉M〈ek| = M ⊗ IE because
{|ek〉} is an orthonormal basis of Hk. This
completes the proof. �

3 Commutativity

Recall that for any two operators A and B
on H, it is said that A and B commute if
AB = BA. What concerns us in this paper
is the following:

Question 1: Given a quantum program
E ∈ CP(H). When do wp(E)(M) and
wp(E)(N) commute?

We first see a simple example.

Example 3.1 (Bit flip and phase flip) Bit
flip and phase flip are quantum operations
on single qubits, and they are widely used in
the theory of quantum error-correction. We
write the Pauli matrices:

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
,

Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

Then the bit flip is given by

E(ρ) = E0ρE
†
0 + E1ρE

†
1, (3)

where E0 =
√
pI,E1 =

√
1− pX. It is easy

to see that E(M) and E(N) commute when
MN = NM and MXN = NXM .

If E1 in Eq. 3 is replaced by
√

1− pZ (resp.√
1− pY ), then E is the phase flip (resp. bit-

phase flip), and E(M) and E(N) commute
when MN = NM and MZN = NZM (resp.
MYN = NYM).

Now we consider the simplest super-
operators: unitary transformations and
quantum measurements.

Proposition 3.1 (1) Let E ∈ CP(H) be a
unitary transformation, i.e., E(ρ) = UρU†

for any ρ ∈ D(H), where UU† = U†U = I.
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Then wp(E)(M) and wp(E)(N) commute if
and only if M and N commute.

(2) Let {Pk} be a projective measurement,
i.e., Pk1Pk2 = δk1k2Pk1 and

∑
k Pk = I,

where δk1k2 =

{
1, if k1 = k2,

0, otherwise.
. If E is given

by this measurement, with the result of the
measurement unknown, i.e.,

E(ρ) =
∑
k

PkρPk

for each ρ ∈ D(H), then wp(E)(M) and
wp(E)(N) commute if and only if PkMPk

and PkNPk commute for all k.

In particular, let {|i〉} be an orthonormal
basis of H. If E is given by the measurement
in the basis {|i〉}, i.e.,

E(ρ) =
∑
i

PiρPi,

where Pi = |i〉〈i| for each i, then wp(E)(M)
and wp(E)(N) commute for any M,N ∈
P(H).

Proof. (1) From Proposition 2.1 we obtain:

wp(E)(M)wp(E)(N) = U†MUU†NU

= U†MNU.

Then MN = Uwp(E)(M)wp(E)(N)U†, and
the conclusion follows.

(2) We obtain:

wp(E)(M)wp(E)(N) =
∑
k,l

PkMPkPlNPl

=
∑
k

PkMPkNPk.

Similarly, it holds that
wp(E)(N)wp(E)(M) =

∑
k PkNPkMPk.

It is clear that wp(E)(M)wp(E)(N) =
wp(E)(N)wp(E)(M) if PkMPk and
PkNPk commute. Conversely, if
wp(E)(M)wp(E)(N) = wp(E)(N)wp(E)(M),
then by multiplying Pk in the both sides we
obtain:

PkMPkNPk = Pk(
∑
l

PlMPlNPl)

= Pk(
∑
l

PlNPlMPl) = PkNPkMPk.

For the case of Pi = |i〉〈i| for each i,
PiMPiNPi = |i〉〈i|M |i〉〈i|N |i〉〈i|. Note that
〈i|M |i〉 and 〈i|M |i〉 are complex numbers,
and they commute. Thus, PiMPiNPi =
PiNPiMPi always holds. �

The question about commutativity of
wp(E)(M) and wp(E)(N) seems very diffi-
cult to answer for a general super-operator.
We are only able to give some sufficient con-
ditions for such a commutativity. We first
consider the operator-sum form of super-
operator.

Proposition 3.2 Let M,N ∈ P(H) and
they commute, i.e., there exists an orthonor-
mal basis {|ψi〉} of H such that

M =
∑
i

λi|ψi〉〈ψi| and N =
∑
i

µi|ψi〉〈ψi|

where λi, µi are reals for each i ([9], Theorem
2.2), and let E ∈ CP(H) be represented by the
set {Ei} of operators. If for any i, j, k, l, we
have either λkµl = λlµk or∑

m

〈ψk|Ei|ψm〉〈ψl|Ej |ψm〉 = 0,

then wp(E)(M) and wp(E)(N) commute.

Proof. We consider the matrix representa-
tions of the involved operators with respect
to the basis {|ψi〉}. For any i, j, a routine

calculation leads to MEiE
†
jN = (λkµlekl)k,l

and NEiE
†
jM = (µkλlekl)k,l where

ekl =
∑
m

〈ψk|Ei|ψm〉〈ψm|E†j |ψl〉

for all k, l. Then the condition given in this
proposition implies MEiE

†
jN = NEiE

†
jM .

It follows from Proposition 2.1 that

wp(E)(M) · wp(E)(N)

= (
∑
i

E†iMEi)(
∑
i

E†iNEi)

=
∑
i,j

E†iMEiE
†
jNEj ,

(4)

and

wp(E)(M)wp(E)(N) = wp(E)(N)wp(E)(M).�
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Definition 3.1 Let E ∈ CP(H) be repre-
sented by the set {Ei} of operators, and let
M ∈ P(H). Then we say that quantum pred-
icate M and quantum program E commute if
M and Ei commute for each i.

Note that in the above definition commu-
tativity between quantum predicate M and
quantum program E depends on the oper-
ators Ei in the Kraus representation of E .
Thus, one may wonder if this definition is in-
trinsic because the choice of such operators
is not unique. To address this problem, we
need the following:

Lemma 3.1 (Unitary freedom in the
operator-sum representation; [9], Theo-
rem 8.2) Suppose that {E1, ....Em} and
{F1, ..., Fn} are operation elements giving
rise to quantum operations E and F , respec-
tively. By appending zero operators to the
shortest list of operation elements we may
ensure that m = n. Then E = F if and only
if there exist complex numbers uij such that
Ei =

∑
j uijFj, and (uij)m×m is a unitary

matrix.

As a simple corollary, we can see that com-
mutativity between M and E is irrelevant to
the choice of the Kraus representation oper-
ators of E .

Lemma 3.2 The notion of commutativity
between observables and quantum operations
is well-defined. Suppose that E is represented
by both {E1, ....Em} and {F1, ..., Fn}. Then
M and Ei commute for all i = 1, 2, ...,m
if and only if M and Fj commute for all
j = 1, 2, ..., n.

Proof. Immediate from Lemma 3.1. �

Commutativity between observables and
quantum operations is preserved by compo-
sition of quantum operations.

Proposition 3.3 Let M ∈ P(H) be a quan-
tum predicate, and let E1, E2 ∈ CP(H) be two
quantum programs. If M and Ei commute for
i = 1, 2, then M and E1; E2 commute.

Proof. Suppose that E1 is represented by
{Ei} and E2 is represented by {Fj}. Then
for any ρ ∈ D(H) we have:

(E1; E2)(ρ) = E2(E1(ρ)) =
∑
i,j

FjEiρE
†
iF
†
j .

With Lemma 3.2 it suffices to note that
M(FjEi) = FjMEi = (FjEi)M for all i, j. �

The following proposition gives another
sufficient condition for commutativity of
wp(E)(M) and wp(E)(N).

Proposition 3.4 Let M,N ∈ P(H) be two
quantum predicates, and let E ∈ CP(H) be
a quantum program. If M and N commute,
M and E commute, and N and E commute,
then wp(E)(M) and wp(E)(N) commute.

Proof. Since M and Ei commute, N and
Ej commute for all i, j, and N is Hermitian,
i.e. N† = N , we have:

MEiE
†
jN = EiME†jN

† = EiM(NEj)
†

= EiM(EjN)† = EiMN†E†j = EiMNE†j

and from Eq. 4 we obtain:

wp(E)(M) · wp(E)(N) =
∑
i,j

E†iEiMNE†jEj .

Similarly, it holds that

wp(E)(N) · wp(E)(M) =
∑
i,j

E†iEiNME†jEj .

Then commutativity between M and N im-
plies

wp(E)(M)·wp(E)(N) = wp(E)(M)·wp(E)(N).�

It is easy to see from Proposition 3.1
that the condition for commutativity of
wp(E)(M) and wp(E)(N) given in Proposi-
tion 3.4 is not necessary.

We now turn to consider the system-
environment model of super-operator. To
this end, we need a generalization of com-
mutativity between linear operators.
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Definition 3.2 Let M,N,A,B,C ∈ L(H).

(1) If AMBNC = ANBMC, then we
say that M and N (A,B,C)−commute.
In particular, it is simply said that M
and N A−commute when M and N
(A,A,A)−commute;

(2) If AB† = BA†, then we say that A and
B conjugate-commute.

Obviously, commutativity is exactly
IH−commutativity.

Proposition 3.5 Let E be given by Eq. 1,
and we write A = PU |e0〉.

(1) wp(E)(M) and wp(E)(N) commute
if and only if M ⊗ IE and N ⊗ IE
(A†, AA†, A)−commute;

(2) If (M⊗IE)A and (N⊗IE)A conjugate-
commute, then wp(E)(M) and wp(E)(N)
commute.

Proof. Immediate from Proposition 2.2. �

Proposition 3.6 Let E be given by Eq. 1,
and let M,N ∈ P(H) and they commute,
i.e., there exists an orthonormal basis {|ψi〉}
of H such that

M =
∑
i

λi|ψi〉〈ψi| and N =
∑
i

µi|ψi〉〈ψi|

where λi, µi are reals for each i. If for any
i, j, k, l, we have λiµj = λjµi or

〈e0|U†P |ψiek〉⊥〈e0|U†P |ψjel〉,

then wp(E)(M) and wp(E)(N) commute.

Proof. For any i, j, k, l, it holds that

〈ψiek|(M ⊗ IE)PU |e0〉〈e0|U†P (N ⊗ IE)|ψjel〉
= λiµj〈ψiek|PU |e0〉〈e0|U†P |ψjel〉.

If λiµj = λjµi or

〈e0|U†P |ψiek〉⊥〈e0|U†P |ψjel〉,

i.e., 〈ψiei|UP |e0〉〈e0|U†P |ψjel〉 = 0, then

〈ψiek|(M ⊗ IE)PU |e0〉〈e0|U†P (N ⊗ IE)|ψjel〉
= 〈ψiek|(N ⊗ IE)PU |e0〉〈e0|

U†P (M ⊗ IE)|ψjel〉.

This means that

(M ⊗ IE)PU |e0〉〈e0|U†P (N ⊗ IE) =

(N ⊗ IE)PU |e0〉〈e0|U†P (M ⊗ IE).

Then the conclusion follows immediately
from Proposition 3.6. �

4 Commutativity in a
Fragment of Quantum
Programming Language

In this section, we consider the problem of
commutativity of quantum weakest precon-
ditions in the purely quantum fragment of
Selinger’s quantum programming language
QPL. The syntax of this fragment is given
by

S :: = abort|skip|q := 0|q∗ = U |S;S|
measure q then S else S|while q do S

For simplicity, we identify a quantum pro-
gram written in QPL and its denotation in
CP(H). D’Hondt and Panangaden’s quan-
tum weakest precondition calculus was used
by Feng et al. [4] in reasoning about (to-
tal and partial) correctness of quantum pro-
grams written in the above fragment of QPL.
In particular, they gave the following:

Lemma 4.1 ([4], Figure 2) For any M ∈
M(H), we have:

wp(abort)(M) = 0,

wp(skip)(M) = M,

wp(q := 0)(M) = |0〉q〈0|M |0〉q〈0|
+ |1〉q〈0|M |0〉q〈1|,

wp(q∗ = U)(M) = U†qMUq,

wp(S1;S2)(M) = wp(S1)(wp(S2)(M)),

wp(measure q then S1 else S0)(M)

= |0〉q〈0|wp(S0)(M)|0〉q〈0|
+ |1〉q〈1|wp(S1)(M)|1〉q〈1|,

wp(while q do S)(M) = µX.(|0〉q〈0|M |0〉q〈0|
+ |1〉q〈1|wp(S)(X)|1〉q〈1|),
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where |i〉q〈j| denotes the operator which ap-
plies |i〉〈j| on qubit q, leaving other qubits un-
changed, i.e., |i〉q〈j| = IH1

⊗ |i〉〈j| ⊗ IH2
for

some appropriate Hilbert spaces H1 and H2,
and µX.F(X) stands for the least fixed point
of F(X).

To present the main result of this sec-
tion, we introduce a notion of commutativity-
reflectance.

Definition 4.1 Let A,B,C ∈ L(H) and
E ∈ CP(H). We say that E reflects
(A,B,C)−commutativity if wp(E)(M) and
wp(E)(N) (A,B,C)−commute whenever M
and N (A,B,C)−commute. In particular,
it is said that E reflects A−commutativity if
it reflects (A,A,A)−commutativity, and we
simply say that E reflects commutativity if it
reflects IH−commutativity, where IH is the
identity operator on H.

Proposition 4.1 (1) For any M,N ∈
P(H), wp(abort)(M) and wp(abort)(N)
commute.

(2) wp(skip)(M) and wp(skip)(N) com-
mute if and only if M and N commute.

(3) wp(q := 0)(M) and wp(q :=
0)(N) commute if and only if
M and N |0〉q〈0|−commute and
(|1〉q〈0|, |0〉q〈0|, |0〉q〈1|)−commute.

(4) wp(q∗ = U)(M) and wp(q∗ = U)(N)
commute if and only if M and N commute.

(5) If both S1 and S2 reflects commutativ-
ity, so do S1;S2.

(6) wp(measure q then S1 else S0)(M)
and wp(measure q then S1 else S0)(N)
commute if and only if wp(Si)(M) and
wp(Si)(N) |i〉q〈i|−commute for i = 0, 1.

(7) If M and N |0〉q〈0|−commute,
and S reflects |1〉q〈1|−commutativity,
then wp(while q do S)(M) and
wp(while q do S)(N) commute. Con-
versely, if wp(while q do S)(M) and
wp(while q do S)(N) commute, then M
and N |0〉q〈0|−commute.

Proof. (1), (2) and (5) are immediate from
Lemma 4.1, and (4) from Proposition 3.1(1).

(3) From Lemma 4.1 we obtain:

wp(q := 0)(M)wp(q := 0)(N) = |0〉q〈0|M |0〉q
〈0|N |0〉q〈0|+ |1〉q〈0|M |0〉q〈0|N |0〉q〈1|,

wp(q := 0)(N)wp(q := 0)(M) = |0〉q〈0|N |0〉q
〈0|M |0〉q〈0|+ |1〉q〈0|N |0〉q〈0|M |0〉q〈1|.

If M and N |0〉q〈0|−commute and
(|1〉q〈0|, |0〉q〈0|, |0〉q〈1|)−commute, it is
clear that

wp(q := 0)(M)wp(q := 0)(N) = wp(q := 0)(N)wp(q := 0)(M).

Conversely, if wp(q := 0)(M) and wp(q :=
0)(N) commute, then

|0〉q〈0|M |0〉q〈0|N |0〉q〈0| = |0〉q〈0|wp(q := 0)(M)wp(q := 0)(N)

= |0〉q〈0|wp(q := 0)(N)wp(q := 0)(M)

= |0〉q〈0|N |0〉q〈0|M |0〉q〈0|.

Similarly, we have:

|1〉q〈0|M |0〉q〈0|N |0〉q〈1| = |1〉q〈0|N |0〉q〈0|M |0〉q〈1|.

(6) Similar to (3).

(7) We put

F (0)(M) = |0〉q〈0|M |0〉q〈0|,
F (n+1)(M) = |0〉q〈0|M |0〉q〈0|+ |1〉q〈1|wp(S)(F (n)(M))|1〉q〈1|

for all n ≥ 0. Note that

|1〉q〈1|F (0)(M)|1〉q〈1|F (0)(N)|1〉q〈1|
= |1〉q〈1|F (0)(N)|1〉q〈1|F (0)(M)|1〉q〈1| = 0.

Then it is easy to show that
F (n)(M)F (n)(N) = F (n)(N)F (n)(M) by in-
duction on n. We write qloop = while q do S
for short. It follows that

wp(qloop)(M)wp(qloop)(N)

= tn≥0F (n)(M) tn≥0 F (n)(N)

= tn≥0F (n)(M)F (n)(N)

= tn≥0F (n)(N)F (n)(M)

= wp(qloop)(N)wp(qloop)(M).

Conversely, by induction we have

|0〉q〈0|F (n)(M)F (n)(N) = |0〉q〈0|M |0〉q〈0|N |0〉q〈0|.
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Then

|0〉q〈0|wp(qloop)(M)wp(qloop)(N)

= tn≥0|0〉q〈0|F (n)(M)F (n)(N)

= |0〉q〈0|M |0〉q〈0|N |0〉q〈0|,

and

wp(qloop)(M)wp(qloop)(N)

= wp(qloop)(N)wp(qloop)(M)

implies that M and N |0〉q〈0|−commute. �

5 Conclusion

Some sufficient conditions for commutativity
of quantum weakest preconditions are pre-
sented in this letter, but the problem of find-
ing a sufficient and necessary condition for
this commutativity for a general quantum
program is still open and seems very difficult.
A general topic for further studies would be:

Question 2. How to characterize
[wp(E)(M), wp(N )(N)] in terms of [M,N ],
where for any operators X and Y , [X,Y ]
stands for their commutator, i.e., [X,Y ] =
XY − Y X?

Note that in this letter we works in finite-
dimensional Hilbert spaces. The infinite-
dimensional counterpart of the above ques-
tion might interest mathematicians working
in the area of operator algebras [11].
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