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Abstract

Given a metric graph G, we are concerned with finding a spanning tree of G where the maximum weighted degree of its
vertices is minimum. In a metric graph (or its spanning tree), the weighted degree of a vertex is defined as the sum of the weights
of its incident edges. In this paper, we propose a 4.5-approximation algorithm for this problem. We also prove it is NP-hard to
approximate this problem within a 2 − ε factor.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we study the problem of finding the
Minimum Weighted Degree Spanning Trees (MWDST)
in metric graphs. In a weighted undirected graph G, the
weighted degree of a vertex v, is defined as the sum
of the weights of the edges incident to v in G. The
wd-cost of a tree T (or wd(T )) is also defined as the
maximum weighted degree of its vertices. We are inter-
ested in finding a minimum wd-cost spanning tree in a
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metric graph. A graph is said to be metric iff the weights
of its edges hold the triangle inequality. Note that a met-
ric graph is complete. We propose a 4.5-approximation
algorithm for MWDST and prove that this problem can-
not be approximated within a 2− ε factor in polynomial
time unless NP = P .

This theoretical result can be used in several appli-
cations: In communication networks, for example, the
weights of edges can represent the link bandwidths. It
would be desirable to construct a broadcast subnetwork
whose maximum amount of its nodes’ bandwidth is
minimized. This is an extension of a similar application
discussed in [11] which minimizes the maximum degree
of a network. Similarly, in sensor networks where nodes
have limited powers, such spanning trees can be used to
save energy in aggregate operations [13,10]. Similar re-
sults have been obtained for minimum degree Steiner
trees in graphs [9].
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Various problems of computing spanning trees which
satisfy given constraints have been studied before [3,
4,6,14]. One of these problems which is to find the
minimum cost spanning trees with bounded maximum
degree has been studied in [1,2,5,7,12,16]. In these so-
lutions, the weighted degrees are not considered. The
problem of finding the minimum degree spanning tree
has also been studied before in simple and weighted
graphs. For example, it is shown in [9] that there is a
polynomial-time algorithm that approximates this prob-
lem within one from the optimal solution.

Our problem has been studied in the general weight-
ed graphs in [15] where the author has designed an
O(logn)-approximation algorithm for finding MWDST.
In [8], the authors propose a polynomial O(logn)-
approximation algorithm which finds the minimum de-
gree spanning tree in directed non-weighted graphs.

In this paper, we consider weighted metric graphs
and, in Section 2, propose a 4.5-approximation algo-
rithm for finding MWDST. In Section 3, we will prove
that it is NP-hard to approximate this problem within a
2 − ε factor.

2. 4.5-Approximation for MWDST

In this section, we develop a 4.5-approximation al-
gorithm for MWDST problem. Initially, we propose
a 5-approximation algorithm which specially creates a
Hamiltonian path which is then used in the 4.5-approx-
imation algorithm.

Lemma 1. Given a metric graph G and a spanning tree
T of G rooted at r , there is a polynomial-time algorithm
for finding a Hamiltonian path h(T , r) in G with wd-
cost at most 5M , where

M = max
e∈E(T )

{
w(e)

}
.

h(T , r) is of the form v1, v2, . . . , vn and its edge se-
quence is e1, e2, . . . , en−1. Hamiltonian path h(T , r)

has also the following properties:

• v1 = r and vn is one of r’s children in T ,
• w(e1) and w(en−1) do not exceed 2M , and
• for each i ∈ {1,2, . . . , n − 2},

min
{
w(ei),w(ei+1)

}
� 2M, and

max
{
w(ei),w(ei+1)

}
� 3M.

Proof. We propose a recursive algorithm and prove it
by induction on n. The solution is trivial for n � 2.
Fig. 1. Construction of h(T , r) from the spanning tree T .

Let r1, r2, . . . , rm be r’s children in T , and T1, T2,

. . . , Tm be subtrees of T rooted at ri ’s, respectively. So-
lutions h(Ti, ri) can be found recursively in polynomial
time. The solution is created as:

h(T , r) = r, h(T1, r1)
R,h(T2, r2)

R, . . . , h(Tm, rm)R,

(1)

where XR is the reverse of sequence X. This is shown
in Fig. 1.

The first property of the h(T , r) is obvious from its
construction. Clearly, w(e1) � 2M is true due to the tri-
angle inequality, and w(en−1) � 2M comes from the
induction hypothesis as it was already in h(Tm, rm).

It is now sufficient to prove the last property in order
to show that the wd-cost of h(T , r) is at most 5M . The
condition holds true for the internal nodes of h(Ti, ri)

(where 1 � i � m) by the induction hypothesis. The first
node of h(Ti, ri), ri (i ∈ {1,2, . . . ,m − 1}),2 is adja-
cent to two other vertices in h(T , r) through edges ej

and ej+1 (for some j ). The induction hypothesis gives
us the result w(ej ) � 2M and we have w(ej+1) � 3M

as a consequence of the triangle inequality. Now, con-
sider the last node of h(Ti, ri) (i ∈ {1,2, . . . ,m}) and
its two incident edges ej and ej+1 in h(T , r). Again,
w(ej+1) � 2M is a result of the induction hypothesis,
and w(ej ) � 3M comes from the triangle inequality.
Note that in case of i = 1 the stronger result w(ej ) �
2M holds. �
Lemma 2. Assume that the metric graph G has a span-
ning tree of wd-cost at most R. We can find a spanning
tree T of G with wd-cost at most 4.5R in polynomial
time.

2 Case i = m should not be considered, because it is the last vertex
of h(T , r).
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Proof. Construct the graph G′ by deleting each edge of
G that is heavier than R

2 in weight. Assume that G′ has
connected components C1,C2, . . . ,Ck , and Gi is the in-
duced subgraph of G by vertex set Ci . We know that
each Gi has a spanning tree with total edge weights no
more than R

2 . According to Lemma 1, Gi has a Hamil-
tonian path Pi with wd-cost at most 5R

2 .
Let E1 be the set of G edges that go from Gi to Gj

(for each i �= j ) each having weight of at most R. It is
clear that the weights in E1 are greater than R

2 . Edge set
E2 is defined as the union of E1 and edges of Hamil-
tonian paths Pi , 1 � i � k.

We also know that G has a spanning tree TR with
wd-cost no more than R. As we know that the weight
of each edge in E1 is at least R

2 . Therefore, each vertex
in TR is incident to at most one edge of E1. Define G′′
as a simple non-weighted graph with edge set E2. Con-
sider spanning subgraph of G′′ whose edge set is the
union of E1 ∩E(TR) and edges of Hamiltonian paths Pi

where E(TR) is the edge set of TR and 1 � i � k. We as-
sert that this subgraph is connected. This is because the
vertices inside each Gi are connected through Pi and
two different components Gi and Gj are connected via
edge set E1 ∩E(TR). Therefore, G′′ has a spanning tree
with maximum degree at most 3, since each of its ver-
tices uses at most one edge of E1 ∩E(TR) and two edges
of Pi ’s. We conclude that a spanning tree T of G′′ with
maximum degree of at most 4 can be found in polyno-
mial time using the algorithm of [9]. Considering T as
a spanning tree of G, we now prove that the maximum
weighted degree of each vertex in T is at most 4.5R.
Each vertex v in T is incident to at most 4 edges and
there are three possible cases:

• Two edges are from E1 and two from Pi (for some
1 � i � k). In this case, the weighted degree of v in
T ∩Pi is at most 5R/2. So its weighted degree in T

is at most 2 × R + 5R/2 = 4.5R.
• Three edges are from E1 and one from Pi (for

some 1 � i � k). In this case, the weight of any
edge from Pi is at most 3R/2 using Lemma 1. So
the weighted degree of v in T is at most 3 × R +
3R/2 = 4.5R.

• All edges are from E1. So, the weighted degree of v

in T is at most 4R.

Therefore, wd-cost(T ) is at most 4.5R. �
Theorem 1. MWDST problem in metric graphs can be
approximated within a 4.5 factor in polynomial time.
Proof. Let G be a metric graph with n vertices. Assume
wd-cost of MWDST in G is R. We know that R is at
least 0 and at most (n−1)W , where W is the maximum
weight of the edges in G. We use a binary search to find
an spanning tree T with wd-cost of at most 4.5R by the
following simple algorithm:

1. Set L = 0 and U = (n − 1)W which are the lower
and upper bounds for wd-cost.

2. Set M = (L + U)/2 and use Lemma 2 by assuming
that G has a spanning tree of wd-cost at most M .
We know that if M � R, then the algorithm in this
lemma will find an spanning tree with wd-cost at
most 4.5M . Therefore, get the result of Lemma 2
and check whether its wd-cost is more than 4.5M . If
we could not find such spanning tree, it means than
M is less than R. So set L = M and go to step 3. If
we find an spanning tree of wd-cost at most 4.5M ,
save the result as TM , set U = M , and go to step 3.

3. If U = L, return the best solution among saved
TM ’s. If U �= L go again to step 2.

We know if the algorithm saves an spanning tree TM

whose wd-cost is at most 4.5M . On the other hand, it
is clear that the algorithm will save a TM with M � R.
Therefore, the algorithm will find an spanning tree with
the desired properties. �
3. (2 − ε) Inapproximability for MWDST

In this section we prove that MWDST is hard to ap-
proximate.

Theorem 2. For every constant ε (0 < ε � 1), it is NP-
hard to approximate MWDST in metric graphs within a
2 − ε factor in polynomial time.

Proof. We prove that, if MWDST can be approximated
within a 2 − ε factor, then the Hamiltonian path prob-
lem can be solved in polynomial time. Let G(V,E) be
an instance of Hamiltonian path problem, where V =
v1, . . . , vn is the set of its vertices and E is its edges.

We construct a graph H from G as follows. For
each i (1 � i � n), we put two vertices ui and u′

i in
H and connect them with an edge of weight 0. For each
edge e(vi, vj ) ∈ E, we add 4 edges (ui, uj ), (ui, u

′
j ),

(u′
i , uj ), and (u′

i , u
′
j ) each with weight 1. Now, we put

an edge of weight 2 between any two vertices, if there
is no edge between them.

It is clear that H is a metric graph. We prove that
there is a Hamiltonian path in G if and only if there
is a spanning tree in H with wd-cost of 1. Consider
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a Hamiltonian path P = vπ1, vπ2 , . . . , vπn in G. The
Hamiltonian path T = uπ1 , u

′
π1

, uπ2 , u
′
π2

, uπ3 , u
′
π3

, . . . ,

uπn, u
′
πn

, is a spanning tree of H with wd-cost of 1.
Let T be a spanning tree in H with wd-cost of 1. It is

clear that T does not have any edge of weight 2. Also,
no vertex in T is incident to two edges of weight 1.
From H , we construct a spanning tree P in G as fol-
lows. Connect vi and vj in P if and only if T has at
least one of the edges (ui, uj ), (ui, u

′
j ), (u′

i , uj ), and
(u′

i , u
′
j ). If a vertex vi is incident to 3 edges in P , then

either ui or u′
i is incident to the two edges of weight 1

in T . Connectivity of T in H implies the connectivity
of P in G. So P is a Hamiltonian path or a Hamiltonian
cycle.

If MWDST has a polynomial-time α-approximation
algorithm with α < 2, we can run it on H and this will
determine whether or not H has a spanning tree with
wd-cost of 1. Therefore, we can determine in polyno-
mial time whether G has a Hamiltonian path. �

By setting ε = 1 in Theorem 2, we can conclude find-
ing MWDST in metric graphs is NP-hard.

4. Conclusion

We considered the problem of finding the minimum
weighted degree spanning tree in metric graphs. In such
a graph G, we look for a spanning tree whose maximum
weighted degree is minimized. The weighted degree of a
vertex is defined as the sum of the weights of its incident
edges. In this paper, we proposed a 4.5-approximation
algorithm for this problem. We also proved that this
problem cannot be approximated within a 2 − ε factor.
So, the problem of finding a close-to-2-approximation
for this problem remains open and seems to be chal-
lenging.
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