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Abstract

Max-SAT-CC is the following optimization problem: Given a formula in CNF and
a bound k, find an assignment with at most k variables being set to true that maxi-
mizes the number of satisfied clauses among all such assignments. If each clause is re-
stricted to have at most ` literals, we obtain the problem Max-`SAT-CC. Sviridenko
(Algorithmica, 30(3):398–405, 2001) designed a (1− e−1)-approximation algorithm
for Max-SAT-CC. This result is tight unless P = NP (Feige, J. ACM, 45(4):634–652,
1998). Sviridenko asked if it is possible to achieve a better approximation ratio in
the case of Max-`SAT-CC. We answer this question in the affirmative by presenting
a randomized approximation algorithm whose approximation ratio is 1−(1− 1

` )
`−ε.

To do this, we develop a general technique for adding a cardinality constraint to
certain integer programs. Our algorithm can be derandomized using pairwise inde-
pendent random variables with small probability space.

Key words: approximation algorithms, randomized algorithms, satisfiability,
cardinality constraints

1 Introduction

SAT is the following well-known decision problem: Let b1, . . . , bn be Boolean
variables. A literal is either a variable bi or its negation bi. A clause is an
arbitrary finite disjunction of literals. A formula is in conjunctive normal form
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(CNF) if it is a conjunction of clauses. SAT is the problem of deciding if a
given CNF formula is satisfiable, i.e., of deciding if there exists an assignment
that satisfies all clauses.

If we try to maximize the number of satisfied clauses instead of deciding if
a formula in CNF is satisfiable, we get the optimization problem Max-SAT.
We may also associate a non-negative weight with each clause. Then we try
to maximize the sum of the weights of the satisfied clauses. Max-`SAT is the
restriction of Max-SAT to instances in which every clause consists of at most
` literals.

Since Max-SAT is NP-hard, we cannot find an optimum assignment in polyno-
mial time unless P = NP. One possible way out of this dilemma is to look for
approximate solutions. An algorithm is called an α-approximation algorithm
for Max-SAT if, given a set of clauses, it always produces an assignment to
the Boolean variables that satisfies a subset of the clauses whose total weight
is at least α times the total weight of the clauses satisfied by an optimum
assignment. The number α is called the approximation ratio.

In this work, we are interested in Max-SAT and Max-`SAT with an additional
constraint: We get an additional integer k as input. The cardinality constraint
k restricts the number of Boolean variables that are allowed to be set to true.
Max-SAT-CC and Max-`SAT-CC are the problems of finding an assignment
that maximizes the number (or the sum of the weights) of satisfied clauses
among all assignments that assign true to at most k variables.

1.1 Known and Related Results

For Max-SAT (without cardinality constraint), the currently best known ap-
proximation algorithm achieves an approximation ratio of 0.7846 and was
presented by Asano and Williamson [2]. H̊astad [8] proved that Max-3-SAT
cannot be approximated with a ratio of 7

8
+ ε (for arbitrarily small ε > 0),

which clearly holds for Max-SAT as well.

Feige and Goemans [6] presented a 0.931-approximation algorithm for Max-
2SAT. This was slightly improved by Matuura and Matsui to an approximation
ratio of 0.935 [11]. The inapproximability bound of 21

22
+ ε ≈ 0.954 for this

problem was shown by H̊astad [8]. For Max-3SAT, there is an approximation
algorithm with a potential approximation ratio of 7

8
by Karloff and Zwick [10].

This, however, is based on strong evidence but unproved yet.

Max-SAT-CC generalizes the Maximum Coverage Problem (MCP), a close
relative of the set cover problem. An instance of MCP is a collection of subsets
S1, . . . , Sm of some universe U and a number k. The goal is to find k sets that
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cover as many elements of U as possible. Any MCP instance can be reduced to
a Max-SAT-CC instance with only positive literals: For each set Si, there is a
variable xi, and for every element u ∈ U , there is a clause that is a disjunction
of all variables xj for which u ∈ Sj.

Sviridenko [12] designed a (1 − e−1)-approximation algorithm for Max-SAT-
CC (1− e−1 ≈ 0.6321). This is optimal since even the special case MCP does
not allow for an approximation ratio of 1 − e−1 + ε unless P = NP [5]. The
proof of this statement requires instances of MCP with unbounded frequency,
i.e., elements can appear in arbitrarily many sets. Translated to Max-SAT-
CC, this means that the clause length is unbounded. Ageev and Sviridenko [1]

presented a
(
1− (1− 1

`
)`

)
-approximation algorithm for the restricted version

of MCP, where each element occurs in at most ` sets. Sviridenko [12] raised
the question whether there are approximation algorithms for the more general
problem Max-`SAT-CC that achieve an approximation ratio that is better
than 1 − e−1 for fixed `. A first answer for ` = 2 was given by Bläser and
Manthey [3] by developing an approximation algorithm with a performance
ratio of 0.6603. Hofmeister [9] improves this by presenting a deterministic
algorithm for Max-2SAT-CC with an approximation ratio of 0.75. Although
this matches our bound for ` = 2, it is unclear how to generalize his algorithm
to larger values of `.

1.2 New Results

We give a positive answer to Sviridenko’s question. For every ε > 0 and
every ` ≥ 2, we design a simple randomized approximation algorithm that
achieves an approximation ratio of 1 − (1 − 1

`
)` − ε, i.e., it (almost) matches

the ratio for the special case MCP. To do this, we present a general technique
for adding a cardinality constraint to any approximation algorithm that is
based on a certain kind of integer programming approach. We also show how
to derandomize our algorithm.

2 Randomized Rounding with Cardinality Constraint

For a vector y ∈ [0, 1]n, let #(y) =
∑n

i=1 yi. In particular, if y is an integer
vector, #(y) denotes the number of ones in y.

Let F be a collection of functions of the form f : [0, 1]n → R+ for n ∈ N.
We call F an α-nice class for some α ∈ [0, 1) if the following properties are
fulfilled for all f : [0, 1]n → R+ in F :
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• The function f can be evaluated in time polynomial in n.
• Given an arbitrary y ∈ [0, 1]n, randomized rounding (set xi = 1 with

probability yi, otherwise set xi = 0) yields a vector x ∈ {0, 1}n with
E[f(x)] ≥ α · f(y).

• For every x ∈ {0, 1}n with #(x) = κ ≥ 1, there exists a position i with
xi = 1 and the following property: Let x′ be the vector obtained from x by
flipping xi from 1 to 0. Then f(x′) ≥

(
1− 1

κ

)
· f(x).

The class F is called nice if there is some α ∈ [0, 1) such that F is α-nice.

The following auxiliary lemma describes how to flip values in a vector x that
violates the cardinality constraint. We will use this lemma to prove the main
theorem of this section (Theorem 2).

Lemma 1 Let F be a nice class of functions. Let f : [0, 1]n → R+ be in F
and x ∈ {0, 1}n with #(x) = κ. For every j with 0 ≤ j ≤ κ, there is an

x(j) ∈ {0, 1}n with #(x(j)) = κ− j and f(x(j)) ≥
(
1− j

κ

)
· f(x).

PROOF. The proof is by induction on j up to j = κ. For j = 0, the lemma
is trivial. Let j > 0, and assume that the lemma holds for j − 1. Since F is
a nice class, there is an index i such that xi = 1 and if we set xi to 0, then
the resulting vector x′ fulfills f(x′) ≥

(
1− 1

κ

)
· f(x). The new vector x′ fulfills

#(x′) = κ−1. By the induction hypothesis, we can obtain a vector x(j) from x′

with #(x(j)) = κ−1−(j−1) = κ−j and f(x(j)) ≥
(
1− j−1

κ−1

)
·
(
1− 1

κ

)
·f(x) =(

1− j
κ

)
· f(x). 2

Theorem 2 Let F be an α-nice class of functions. Fix 0 < ε < 1, and let
kε,α be a sufficiently large constant that depends only on ε and α.

Then there exists a polynomial-time algorithm that does the following for all
n ∈ N and k > kε,α: Given a function f : [0, 1]n → R+ of F and a vector y ∈
[0, 1]n with #(y) ≤ k that maximizes f among all such vectors, the algorithm
computes with high probability a vector x ∈ {0, 1}n with #(x) ≤ k and f(x) ≥
(1− ε) · αf(y).

PROOF. To prove the theorem, we analyze Algorithm 1. First, we deal with
the special case that f(y) = 0. Then we have f(x) = 0 for all x, and thus we
can pick any x with #(x) ≤ k to get an optimum solution. We have E[f(x)] ≥
αf(y) since F is α-nice. Thus, E[f(x̃)] ≥ (1 − ε

2
) · αf(y) by Lemma 1. The

probability that #(x) >
(
1+ ε

2

)
·k is at most exp(−ε2k/16) ≤ exp(−ε2kε,α/16)

for k > kε,α by the Chernoff bound [13]. We will choose kε,α later on to make
this probability sufficiently small.
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Algorithm 1 Randomized Rounding with Cardinality Constraint

Input: f : [0, 1]n → R+ from a nice class of functions, ε > 0, k > kε,α,
y ∈ [0, 1]n with #(y) ≤ k that maximizes f among all such vectors

Output: x ∈ {0, 1}n with #(x) ≤ k
1: for i = 1 to n do
2: set xi = 1 with probability yi, and set xi = 0 with probability 1− yi

3: let x = (x1, . . . , xn)
4: if #(x) ≤ k then
5: set x̃ = x
6: else if k < #(x) ≤ k + εk/2 then
7: set at most εk/2 entries to zero as in Lemma 1, call the vector thus

obtained x̃
8: else
9: failure

10: return x̃

We obtain the high probability statement of the theorem as follows: X = f(x)
is a random variable, where x is drawn according to the distribution induced
by Algorithm 1. Let Y = f(y) − X. We have E[X] = f(y) − E[Y ]. The
random variable Y attains only non-negative values by the maximality of
f(y). If E[Y ] = E[X], then X is always f(y), we obtain an optimal solution.
Otherwise, we can apply Markov’s inequality: For any δ > 0, we have

Pr
[
Y ≥ (1 + δ) · E[Y ]

]
≤ 1

1 + δ
< 1.

Now Y ≥ (1 + δ) · E[Y ] is equivalent to X ≤ (1 + δ) · E[X]− δf(y). We have

E[X] ≥ αf(y). Thus, X ≤
(
1− δ · ( 1

α
− 1)

)
· E[X] implies Y ≥ (1 + δ) · E[Y ].

Hence, the probability of the event f(x) ≤
(
1− ε

2

)
· αf(y) is at most 1

1+δ
< 1

for δ = εα
2−2α

. By the union bound, the probability that f(x) ≤
(
1− ε

2

)
·αf(y)

or #(x) >
(
1 + ε

2

)
· k is at most p = exp(−ε2kε,α/16) + 1

1+δ
. We choose kε,α

sufficiently large to assure that p < 1. Thus, f(x) ≥
(
1 − ε

2

)
· αf(y) and

#(x) − k ≤ εk/2 happen with at least a constant probability 1 − p > 0. In

this case, the vector x̃ satisfies f(x̃) ≥
(
1 − ε

2

)2
· αf(y) ≥ (1 − ε) · αf(y) by

Lemma 1.

By iterating Algorithm 1, we can increase the success probability to 1 −
exp(poly(−n)) and maintain polynomial running-time. 2

5



Algorithm 2 Approximating 0/1 Programming Problems with Cardinality
Constraint
Input: f : [0, 1]n → R+ from a nice class of functions, ε > 0, k ≤ n
Output: x ∈ {0, 1}n with #(x) ≤ k
1: if k > kε,α then
2: compute y ∈ [0, 1]n that maximizes f(y) subject to #(y) ≤ k
3: run Algorithm 1 to obtain x̃ ∈ {0, 1}n

4: else
5: find x̃ ∈ {0, 1}n that maximizes f(x̃) subject to #(x̃) ≤ k by exhaus-

tive search
6: return x̃

3 An Approximation Algorithm for Max-`SAT-CC

Now we apply Algorithm 1 to obtain a randomized approximation algorithm
for 0/1 programming problems corresponding to α-nice classes of functions.
This requires that the relaxed problem of finding a vector y ∈ [0, 1]n that
maximizes f(y) subject to #(y) ≤ k can be solved in polynomial time. (At
least in time polynomial in the description of f . If f is described by a linear
program, an algorithm with running-time polynomial in n would in general
require a strongly polynomial-time algorithm for linear programming, which
is not known to exist.) The approximation ratio our algorithm achieves is
(1−ε) ·α for an arbitrarily small ε > 0. We proceed as follows: If the cardinal-
ity constraint k is too small, i.e., k ≤ kε,α, then we can enumerate all vectors
in {0, 1}n with at most k ones in polynomial time, thus finding an optimum
solution. Otherwise, we compute an optimum solution y ∈ [0, 1]n to the re-
laxed problem and use Algorithm 1 to obtain a 0/1-solution x̃ that obeys the
cardinality constraint and fulfills f(x̃) ≥ (1 − ε) · αf(y). This is summarized
in Algorithm 2.

In particular, we can use Algorithm 2 to approximate Max-`SAT-CC. Consider
a set C = {c1, . . . , cm} of clauses over the variables b1, . . . , bn, each consisting
of at most ` literals. Each clause cj has a non-negative weight wj. For each
clause cj, we define sets of indices I+

j , I−j ⊆ {1, . . . , n} as follows: i ∈ I+
j if bi

occurs in cj and i ∈ I−j if bi occurs in cj. The following program is a well-known
integer linear program for Max-SAT and Max-`SAT:

maximize
m∑

j=1

wj · zj

subject to
∑
i∈I+

j

yi +
∑
i∈I−j

(1− yi) ≥ zj for j = 1, . . . ,m,

0 ≤ zj ≤ 1 for j = 1, . . . ,m, and

yi ∈ {0, 1} for i = 1, . . . , n.
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Each variable yi corresponds to the Boolean variable bi and each variable zj

to the clause cj. We associate yi = 1 with bi being set to true, yi = 0 with
bi being set to false, zj = 1 with clause cj being satisfied and zj = 0 with cj

being unsatisfied.

Now we relax yi ∈ {0, 1} to 0 ≤ yi ≤ 1. Given values for y1, . . . , yn, we can

set zj = min
{
1,

∑
i∈I+

j
yi +

∑
i∈I−j

(1− yi)
}

to maximize the objective function,

and we set f(y) =
∑m

j=1 wj · zj for these z1, . . . , zm.

Goemans and Williamson [7] proved that if we solve this linear program and set

xi = 1 with probability yi and xi = 0 otherwise, then we get a
(
1− (1− 1

`
)`

)
-

approximation algorithm for Max-`SAT. In particular, we have E[f(x)] ≥(
1− (1− 1

`
)`

)
· f(y).

The functions f obtained from the linear programs for instances for Max-`SAT
form a

(
1− (1− 1

`
)`

)
-nice class of functions: If we have an assignment x with

κ ones, then the weight of the clauses satisfied by the κ variables that are set
to one is at most f(x). (It could be less, since some clauses can be satisfied
solely by variables that are set to false.) Hence there must be one of these
κ variables such that the weight of the clauses that are satisfied when this
variable is set to false is at least

(
1− 1

κ

)
· f(x).

Since linear programs can be solved in polynomial time, we can add the car-
dinality constraint

∑n
i=1 yi ≤ k as an additional inequality and compute an

initial vector y as required. Overall, we have proved the following result.

Theorem 3 There is a randomized polynomial-time approximation algorithm
for Max-`SAT-CC that achieves an approximation ratio of 1 − (1 − 1

`
)` − ε,

where ε > 0 is an arbitrarily small constant.

4 Derandomization

The algorithm can be derandomized using pairwise independent random vari-
ables with small probability space. We create pairwise independent {0, 1}-
valued random variables Z1, . . . , Zn such that |Pr[Zi = 1] − yi| ≤ β for all
i and a appropriately chosen β > 0 [4]. The size of the probability space of
(Z1, . . . , Zn) is polynomial in log n and 1/β, which is polynomial if 1/β is
polynomial. If the weights wj of the linear program above are polynomially
bounded (which holds in particular if the clauses are unweighted), then we can
choose 1/β larger than this bound and get an arbitrarily small additive error.
Otherwise, we first have to scale the weights. This gives an arbitrarily small
multiplicative error, which is still fine. Instead of using randomized rounding
to create x, we can now enumerate the whole probability space.
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What remains is to estimate the probability that #(x) ≤ (1 + ε/2) · k. We
cannot use the Chernoff bound any longer since it requires independence.
Instead, we use Chebycheff’s bound and get

Pr
[
|#(x)− k| ≥ εk/2

]
≤ 4 Var[#(x)]

ε2k2
. (1)

For this, we need Var[#(x)] > 0, which requires that y is not the all-zeros
vector. But if y = 0, then choosing x = y yields an optimal solution. The
variance Var[#(x)] remains to be estimated. We have Var[Zi] = Pr[Zi =
1] · Pr[Zi = 0] ≤ Pr[Zi = 1]. By pairwise independence, we have Var[#(x)] =∑n

i=1 Var[Zi]. Thus, Var[#(x)] ≤ k + βn and the probability in (1) can be
made arbitrarily small by choosing kε,α large enough.
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