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Abstract
In this paper, we study several interesting intensity map splitting (IMSp) problems that arise in
Intensity-Modulated Radiation Therapy (IMRT), a state-of-the-art radiation therapy technique for
cancer treatments. In current clinical practice, a multi-leaf collimator (MLC) with a maximum leaf
spread is used to deliver the prescribed intensity maps (IMs). However, the maximum leaf spread of
an MLC may require that a large intensity map be split into several abutting sub-IMs each being
delivered separately, which results in prolonged treatment time. Few IM splitting techniques reported
in the literature have addressed the issue of treatment delivery efficiency for large IMs. We develop
a unified approach for solving the IMSp problems while minimizing the total beam-on time in various
settings. Our basic idea is to formulate the IMSp problem as computing a k-link shortest path in a
directed acyclic graph. We carefully characterize the intrinsic structures of the graph, yielding
efficient algorithms for the IMSp problems.
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1 Introduction
The intensity map splitting (IMSp) problems that we study in this paper arise in Intensity-
Modulated Radiation Therapy (IMRT) [24], a state-of-the-art radiation therapy technique for
cancer treatments. IMRT aims to deliver a highly conformal radiation dose to a target tumor
while sparing the surrounding normal tissues. The quality of IMRT crucially depends on the
ability to accurately and efficiently deliver the prescribed dose distributions of radiation,
commonly called intensity maps (IMs). An intensity map is specified by a set of nonnegative
integers on a 2-D grid (see Figure 1(a)). The number in a grid cell indicates the amount (in
unit) of radiation to be delivered to the body region corresponding to that cell.

One of the most advanced tools today for delivering IMs is the multileaf collimator (MLC)
[24]. An MLC has multiple pairs of tungsten leaves of the same rectangular shape and size (see
Figure 1(b)). The two opposite leaves of each pair are aligned to each other. The leaves can
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move left and right to form (say) an y-monotone rectilinear region (i.e., monotone to the y-
axis), called an MLC-aperture. The cross-section of a cylindrical radiation beam (generated
by a radiotherapy machine) is shaped by this MLC-aperture to deliver certain units of radiation
to (a portion of) an IM. We associate that MLC-aperture with an integer representing the
amount of radiation delivered by it. The mechanical constraints of the MLC limit what kinds
of aperture shapes are allowed to be used [24]. One such constraint is called the no-interleaf
collision: The distance between two opposite leaves of the neighboring pairs must be ≥ a given
separation value δ (e.g., δ = 1cm). For example, the Elekta MLC is subject to the no-interleaf
collision constraint, while the Varian MLC allows interleaf collision. Another common
constraint is called the maximum leaf spread: The two leaves of the same pair have an opening
≤ a given threshold Δ (e.g., Δ = 14.5cm). Geometrically, the maximum leaf spread means the
rectilinear y-monotone polygon corresponding to each MLC-aperture has a maximum
horizontal “width” ≤ Δ.

One of the most popular IMRT approaches for delivering IMs using an MLC is the “step-and-
shoot” technique [7,24,25]. Mathematically, the “step-and-shoot” delivery planning can be
viewed as the following segmentation problem: Given an intensity map A defined on a 2-D

m × n grid, decompose A into the form of , where Sk is a special 0-1 matrix
specifying an MLC-aperture, αk is the amount of radiation delivered through Sk (called the
height of Sk), and κ is the number of MLC-apertures used to deliver A (see Figure 2). (The
reader is referred to [25,2,9,5] for more details on the step-and-shoot IMRT technique.)
Intuitively, one may view the SLS problem as playing the following game: An IM is a 3-D
“mountain” made of unit cubes (Figure 1(a)). Delivering an MLC-aperture can be viewed as
creating a plateau whose height is the amount of radiation delivered. Then, one likes to “build”
this mountain by stacking up the minimum number of plateaus with minimum total height
(Figure 2). It is important to note that each plateau, like the 3-D IM mountain, is not one whole
“rigid” object, i.e., it is made of unit cubes as well.

There are two major measures for the quality of the step-and-shoot delivery: (1) the beam-on

time which is given by , and (2) the number κ of the MLC-apertures used in the delivery
plan. The beam-on time is the actual time that the patient is exposed under the radiation beams.
Minimizing beam-on time is crucial to reduce the patient’s risk under irradiation and to reduce
the delivery error caused by tumor motion [2]. On the other hand, minimizing the number of
MLC-apertures (hence, reducing the treatment time of each IM) is also important because it
not only lowers the treatment cost for each patient but also enables hospitals to treat more
patients [5].

In current clinical radiation therapy, large intensity maps frequently occur [10,8,20]. Due to
the maximum leaf spread constraint of the MLC design, a large IM needs to be split into several
abutting sub-IMs each being delivered separately using the step-and-shoot delivery technique.
This results in prolonged treatment times (longer beam-on times and more MLC-apertures).
Although the step-and-shoot delivery has received a great deal of attention from several
research communities, such as medical physics [3,7,18,19,22,23,25], computer science [4,5,
12,13], and operations research [1,2,9], few IM splitting techniques reported in the literature
has addressed the issue of treatment delivery efficiency for large IMs. To our best knowledge,
Kamath et al. [14] first gave a quadratic time algorithm to split a large IM into at most three
sub-IMs (thus restricting the maximum size of a large IM) while minimizing the total beam-
on time. They used straight lines to do the splitting, yielding abutting sub-IMs. One drawback
associated with that field splitting method is the field mismatching problem that occurs in the
field junction region due to the uncertainties in patient setup and organ motion [20,15]. If the
borders of two abutting sub-IMs do not precisely align each other, it may result in hotspots or
codespots. To alleviate the field mismatching problem, Kamath et al. recently studied the field

Wu Page 2

Inf Process Lett. Author manuscript; available in PMC 2008 November 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



splitting problem in which the overlapping of the resulting sub-IMs was allowed [15].
However, their algorithm again works only for the case that the width of the IM is ≤ 3Δ. Chen
and Wang [6] developed an O(mn + mΔd−2) time algorithm for optimally splitting an IM of
size m × n allowing overlapping of the sub-IMs, where d is the number of resulting sub-IMs.
In their algorithm, they optimized the total minimum beam-on time of the resulting sub-IMs
and assumed that the MLC allows leaf collision. More recently, Wu et al. [21] gave a linear
time algorithm for field splitting allowing overlapping, while minimizing the total complexity
of the resulting sub-IMs.

In this paper, we study the following intensity map splitting (IMSp) problem: Given an m ×
n IM A and an integral maximum leaf spread Δ > 0, split A into a set of abutting sub-IMs

 each Ai with size of , such that: (1) ni ≤ Δ,(2)

; and (3) the total beam-on time for delivering those sub-IMs is minimized. Note
that no overlapping of the resulting sub-IMs is allowed in this IMSp problem and  is the
minimum number of sub-IMs needed for delivering A subject to the maximum leaf spread
constraint. We call such a set of κ sub-IMs a κ-splitting of A. More sub-IMs may be used to
achieve less total beam-on time to delivery IM A. But, that could significantly increase the
number of MLC-apertures (i.e., the total treatment time), which is undesirable. It is also worth
of noting that no more than 3 sub-IMs seem required in current medical practice (i.e., κ ≤ 3),
but we believe that the IMSp problem is of its own interest and may find other applications.

We develop a unified approach for solving the IMSp problem in various settings. In our
solution, the IMSp problem is formulated as computing a κ-link shortest path in a directed
acyclic graph (DAG) [17] transformed from the given IM. By judiciously characterizing the
intrinsic structures, we compute the κ-link shortest path without explicitly constructing the
graph and integrate the computation of the beam-on times for sub-IMs into our κ-link shortest
path computation, which yields an improvement of the running time by at least an order of
magnitude. Our main results in this paper are summarized as follows.

• an optimal O(n) time algorithm for solving the IMSp problem with m = 1 (i.e., using
only one MLC leaf pair for the IM delivery).

• an O(mnΔ) time algorithm for solving the IMSp problem in which the interleaf
collisions are allowed.

• an O(m2nΔ) time algorithm for solving the IMSp problem subject to the no-interleaf
collision constraint.

2 Reformulation of the IMSp problem
Given an instance of the IMSp problem, an m × n IM A and an integer Δ > 0 (the maximum
leaf spread), we define a weighted directed acyclic graph G = (V, E) for A, as follows.

The vertices of G are defined as V = {s, t} ∪ {υj : 0 ≤ j < n}. Each column A[*, j] = {A[0, j],
A[1, j],…, A[m − 1, j]} (j = 0, 1,…, n − 1) of A corresponds to exact one vertex υj in G. For
every j ∈ {0, 1,…, n − 2}, vertex υj has a directed edge in E to each vertex in {υk : j < k ≤ min
{j + Δ, n − 1}} (i.e., υj connects to its following Δ vertices). Note that every edge e = (υj, υj′)
∈ E (j < j′) is associated with a sub-IM of A, denoted by A[*, j + 1 .. j′], which consists of all
rows of A from column j + 1 to column j′. Let Tbot(A′) denote the minimum beam-on time for
delivering the IM A′. The weight w(e) of the edge e = (υj, υj′) is Tbot(A[*, j + 1 .. j′]), which can
be computed using algorithms in [9,11]. From vertex s, we introduce a directed edge (s, υj) ∈
E to every vertex υj for 0 ≤ j < Δ and the weight of the edge equals to Tbot(A[*, 0 .. j]). Meanwhile,
each vertex υj with n − Δ = j < n − 1 has a directed edge to vertex t whose weight is the minimum
beam-on time for delivering the sub-IM A[*, j + 1 .. n − 1].
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Obviously, G = (V, E) thus constructed from A is a weighted directed acyclic graph (DAG).
We next show that a κ-link shortest path ( ) from s to t in G specifies an optimal κ-splitting
of A. Note that each κ-link s-to-t path p in G is of the form of s → υj0 →υj1 → … → υjκ−2 →
t; further, p defines a set of κ abutting sub-IMs

 used for delivering the IM A. The total

minimum beam-on time of  (i.e., ) equals to the total edge weight of
p. Hence, we have the following lemma.

Lemma 1
A κ-link shortest path from s to t in G specifies an optimal κ-splitting  of the given IM A.

The DAG G has O(n) vertices and O(Δ · n) edges. It takes O(κ · Δ n) = O(n2) time to compute
in G a κ-link shortest path [17], after G is constructed from IM A. The total time complexity
for the construction of G depends on the computations of edge weights in G, while the weight
of each edge equals the minimum beam-on time of the associated sub-IM of A. Thus, the
construction of G involves in computing the minimum beam-on times [9,11] for O(Δ ·n) sub-
IMs of A, which may become the bottleneck of our IMSp algorithm. Let T (G) denote the total
time complexity for constructing G from A. The IMSp problem is solvable in O(n2 + T (G))
time.

The κ-link s-to-t path is a straightforward model for solving the IMSp problem. Next, we further
exploit the intrinsic structures of the IMSp problem to simplify G and give a new dynamic
programming approach.

Let μ = n mod Δ and if μ = 0, set μ = Δ. Then, we partition the column index set {0, 1,…, n −
1} of A into the following consecutive segments: Ck = {j : k · Δ + μ − 1 ≤ j < min{n, (k + 1) ·
Δ}} and Uk = {j : k · Δ ≤ j < k · Δ + μ − 1} for k = 0, 1,…, κ − 2; and Cκ−1 = {n − 1} and
Uκ−1 = {j : (κ − 1) · Δ ≤ j < n − 1} (note that Uk ’s are empty when μ = 1). Figure 2(b) illustrates
the partition for the sample IM in Figure 2(a) with Δ = 5. Let

 be a feasible κ-splitting of A, simply
denoted by a set  with jκ−1 = n − 1. The following lemmas establish the
connection between a feasible κ-splitting  of A and the segments {Ck : 0 ≤ k < κ}.

Lemma 2

For any feasible κ-splitting  of A, .

Proof—If Uk’s are empty, obviously, . Otherwise, we prove this lemma by
contradiction.

Assume that there exists a feasible κ-splitting  and  such that q ∈ Ur (0 ≤ r < κ). Thus,
q ≥ r · Δ. Hence, the sub-IM A[*, 0 .. q] needs to be split into at least (r +1) sub-IMs subject
to the maximum leaf spread constraint, while A[*, q + 1 .. n − 1] needs at least (κ − r) sub-IMs.
Therefore, the total number of sub-IMs needed is at least κ + 1, which is a contradiction.

Based on Lemma 2, any  is in . Let us investigate the distribution of
 in the segments Ck’s. When κ = 2, note that  equals to n − 1 (i.e., j1

∈ C1 = {n − 1}), it is then clear that j0 ∈ C0. Next, we consider κ > 2 and claim that for each
k = 0, 1,…, κ − 1, jk ∈ Ck. We assume otherwise, that is, for any k = 0, 1,…, κ − 1, 
either equals to 0 or ≥ 2. Notice that if there exists Cr that , then there must have
an Cq such that  since . Thus, . Then, there is a sub-IM A[*, j′ .. j″]
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in  such that j′< q · Δ + μ − 1 and j″ ≥ (q + 1) · Δ, which indicates that j″ − j′> Δ. Hence,
 is not a feasible κ-splitting of A, a contradiction. Thus, the following lemma holds.

Lemma 3
In any feasible κ-splitting  of A, jk ∈ Ck for k = 0, 1,…, κ − 1.

Lemma 3 leads to a simple dynamic programming approach for solving the IMSp problem, as
follows. Let S(υj) denote the minimum total beam-on time for delivering the sub-IM A[*, 0 ..
j] subject to the maximum leaf spread constraint. Note that if j ∈ Ck (k = 1, 2,…, κ − 2), then
any j′ with j − Δ ≤ j′< k · Δ is in Ck−1. Thus, we have

(1)

Hence, S(υn−1) is the minimum total beam-on time for delivering A, which defines an optimal
κ-splitting . Based on Lemma 3, we can remove all the vertices vj ’s with  from
G, thus simplifying the construction of G. Figure 2(b) shows an example graph G thus
constructed from the IM in Figure 2(a) with Δ = 5. We still use G to denote the resulting graph.
The running time of this dynamic programming scheme is clearly O(Δ · n) in the worst case
after constructing the graph G, which takes T (G) time.

Lemma 4
The IMSp problem can be solved in O(Δ · n + T (G)) time.

Recall that the construction of G involves in computing the minimum beam-on times for O(Δ
· n) sub-IMs of A, which may become the bottleneck of our IMSp algorithm. In the following
sections, we integrate the computation of the beam-on time [9,11] into our dynamic
programming scheme to further improve our algorithm for the IMSp solving problem in various
settings.

3 The IMSp problem with m = 1
This section presents our optimal O(n) time algorithm for computing an optimal κ-splitting of
a given IM A with only one row of intensities (i.e., m = 1). For example, this case occurs when
using one pair of MLC leaves for delivering the intensity map. Thus, we assume that the input
IM A is a vector, i.e., A = (A[0], A[1],…, A[n − 1]). Kamath et al. [14] gave an O(n2) algorithm
for this case while n ≤ 3Δ. We consider in this section an arbitrary n and Δ.

The minimum beam-on time Tbot(B) of an IM B (m = 1) can be computed [9], as follows:

Let  with jκ−1 = n − 1 be a feasible κ-splitting of the given IM A. Then,

Note that for any 0 < j < n, A[j] = max{0, A[j] − A[j − 1]} + min{A[j − 1], A[j]}. Thus,
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We call  the bot-increase of a feasible κ-splitting  of A. Hence, the
following lemma, which generalizes the result in [14], follows.

Lemma 5
A feasible κ-splitting  that minimizes the bot-increase among all
possible feasible κ-splitting of A gives an optimal solution to the IMSp problem.

Based on Lemmas 3 and 5, the following dynamic programming scheme is used to compute
an optimal κ-splitting of A. Note that Cκ−1 has only one element υn−1. For the convenience of
computation, we assume that A[n] = 0. Let S(j) be the minimum bot-increase among all possible
feasible κ-splitting of A[0 .. j]. Then,

(2)

Thus, for each j ∈ Ck (1 ≤ k < κ), we need to compute the minimum of S(j′)’s for j − Δ ≤ j′ <
k · Δ. A straightforward way takes O(Δ) time and the total running time is O(Δ · n). However,
we can do better to achieve an optimal linear time algorithm. Note that all S(j′)’s for j′ ∈
Ck−1 are static (i.e., do not change their values during the computation). We thus can speed up
the computation of min{S(j′) : j − Δ ≤ j′ < k · Δ} by using a simplified range-minima data
structure [16] for {S(j′) : j′ ∈ Ck−1}. In our algorithm, we use an additional array L of size O
(Δ) to keep the minimum of {S(i), S(i + 1),…, S(k · Δ − 1)} for each i = [(k − 1) + μ − 1], [(k
− 1) + μ − 1] + 1,…, k · Δ − 1 (i.e., i ∈ Ck−1). It is easy to see that array L can be computed in
O(Δ). Hence, for each j ∈ Ck (1 ≤ k < κ), min{S(j′) : j − Δ ≤ j′ < k · Δ} + min{A[j], A[j + 1]}
can be obtained in O(1) time by using this array L. Therefore, S(n −1) can be computed in O
(n) time.

Theorem 1
The IMSp problem with m = 1 is solvable in an optimal O(n) time.

4 The IMSp problem allowing the interleaf collisions
In this section, we give our O(mnΔ) time algorithm for solving the IMSp problem in which the
interleaf collisions are allowed.

As shown in Section 2, the graph G constructed from the given IM A has O(Δ · n) edges. For
each edge in G, we need to compute the minimum bean-on time for its associated sub-IM of
size O(m × Δ). The minimum beam-on time Tbot(B) of an m′× n′ IM B can be computed as
shown in [9]:

which takes O(m′n′) time. Thus, the time T (G) for constructing the graph G is O(mnΔ2). Hence,
our algorithm in Section 2 for solving the IMSp problem allowing the interleaf collisions runs
in O(mnΔ2) time.
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However, by carefully characterizing the computation of the minimum beam-on time, we are
able to improve the algorithm by at least O(Δ). The value of

 is the minimum beam-on time of the i-th row B[i,
*] of B. Thus, Tbot(B) = maxi=0,1,…,m′−1 Tbot(B[i, *]). Then, consider a sub-IM A[*, j′.. j] of
A (j > j′> 0). The minimum beam-on time Tbot(A[*, j′.. j]) = maxi=0,1,…,m−1 Tbot(A[i, j′.. j]).
Note that,

Hence, for every row i of A, we compute Tbot(i, 0 .. j) for each j ∈ {0, 1,…, n − 1}, which
totally takes O(n) time. Then, Tbot(A[i, j′.. j]) can be computed in O(1) time. Thus, S(υn−1), the
minimum total beam-on time for delivering A subject to the maximum leaf spread constraint,
can be computed in O(mnΔ) time based on the recursive Equation (1).

Theorem 2
The IMSp problem allowing interleaf collisions is solvable in O(mnΔ) time for a given m ×
n IM A and the maximum leaf spread Δ.

5 The IMSp problem subject to the no-interleaf collision constraint
This section presents our O(m2nΔ) time algorithm for solving the IMSp problem, in which an
MLC subject to the no-interleaf collision constraint is used for delivering the given m × n IM
A.

Recall that S(υq) denotes the minimum total beam-on time for delivering the sub-IM A[*, 0 ..
q] subject to the maximum leaf spread constraint. From Equation (1),

if q ∈ Ck (k = 1, 2,…, κ − 1). For a given q ∈ Ck, instead of computing w(υj+1, υq) for each
possible j (i.e., q − Δ ≤ j < k · Δ) first, we compute all w(υj+1, υq)’s in one shot by formulating
it as a single-source longest path problem in a weighted directed acyclic graph. Then, clearly
S(υq) can be computed in O(Δ) time.

The DAG Hq = (Vq, Eq) for computing all w(υj+1, υq)’s is constructed in the following way.
The vertices of Hq are defined as Vq = {s} ∪ {cj: q − Δ ≤ j < k · Δ} ∪ {ui,j : 0 ≤ i < m, q − Δ
< j ≤ q} (note that q ∈ Ck). The edge set Eq contains three different types of edges, Es, Eb, and
Ec, that is, Eq = Es ∪ Eb ∪ Ec, where

Next, we define the cost w′ (e) for each edge e ∈ Eq.

(3)

Figure 5 shows an example graph Hq for the IM in Figure 2(a) with q = 7. Using similar
techniques in [11], we are able to prove that the total cost of the longest path from vertex s to
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cj (q − Δ ≤ j < k · Δ) equals to the minimum beam-on time of the sub-IM A[*, j + 1 .. q] (i.e.,
w(υj+1, υq)). Note that Hq is a DAG with O(m · Δ) and O(m2 · Δ) edges. Thus, it takes O(m2 ·
Δ) time for computing a shortest s-to-t path in Hq. Note that in the worst case, we need to
compute S(υq) for every q = 0, 1,…, n − 1. Hence, Theorem 3 follows.

Theorem 3
The IMSp problem subject to the no-interleaf collision constraint can be solved in O(m2nΔ)
time.
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Figure 1.
(a) An intensity map A (bottom) and the corresponding 3-D IM mountain (top). (b) A multileaf
collimator.
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Figure 2.
Four MLC-apertures Sk’s (bottom) and the corresponding plateaus (top) of a unit height for
building the 3-D IM mountain in Figure 1(a).
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Figure 3.
Illustrating the construction of the graph G. (a) An example IM A with size of 3 × 13 and the
maximum leaf spread Δ = 5. (b) The graph G constructed from the IM A in (a).
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Figure 4.
Illustrating the construction of the graph Hq for computing S(υq) for the IM in Figure 2(a) with
Δ = 5 and q = 7.
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