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Abstract

In this paper we show that there exist classes of functions which can be learnt by
a finite learner which reflects on its capability, but not learnable by a consistent
learner which optimistically reflects on its capability. This solves the two mentioned
open problems from [Gri08].
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1 Introduction

A function learning criterion can be described as follows. A learning machine
M (a computable device) receives growing segments σ0, σ1, . . . of the graph
of a function f . During this process, the learner M outputs a sequence of
conjectures p0, p1, . . .. The learner is said to identify f if the sequence of con-
jectures, as above, converges to a program for f . This is essentially the notion
of learning in the limit, also called Ex learning, as introduced by Gold [Gol67].
Note that in the above process, the learner does not know if and when it has
converged to its final hypothesis. If we impose this additional requirement,
then the model is equivalent to requiring that the learner in the above process
output only one conjecture (which is a correct program for the input function).
This model of learning is known as finite learning (Fin-learning) [Gol67].

The intermediate programs output by the learner in the Ex-learning model
may not be consistent with the input data. Consistency is the requirement
that each hypothesis conjectured by the learner, after seeing input σ, must
contain the data in σ [Bār74,BB75,WL76,JB81]. It is known that consistency
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is a restriction, that is, some Ex-learnable class of functions cannot be learnt
by a consistent learner [Bār74].

The above models of learning, and various modifications, have been extensively
studied in the literature (see for example, [AS83,JORS99,Wie78,WZ95,ZZ08]).
In this paper we will restrict ourselves to the above mentioned criteria. Formal
definitions of the above learning models, as well as of the models of reflection
considered below, are given in Section 2.

The criteria considered above specify how the learner behaves on the functions
in the class to be learnt, but specify nothing about learner’s ability to indicate
potential non-learnability of functions outside the class being learnt. This may
be considered as a weakness from a user’s point of view: the learner may
lead the user into believing that learning is taking place, even though the
conjectures of the learner may be completely wrong.

There have been several proposals in the literature about how a learner may
recognize its own limitations. For the following fix a criterion of learning. Re-
liable learning [BB75,Min76] requires that the learner does not converge to a
final conjecture on sequences for functions not learnt by the learner (that is,
the learner signals incorrectness of its hypothesis by making a mind change).
Mukouchi and Arikawa [MA93] consider the model in which a learner is re-
quired to refute sequences for functions which are not learnt by the learner.

Jantke [Jan95] and later Grieser [Gri08] considered learners that can reflect on
their own capabilities. Such learners are equipped with a reflection function
that indicates, in the limit, whether the input data represents a function in the
class being learnt. Let R be a reflection function belonging to some learner. For
each finite piece of input data σ, the learner is said to accept σ if R(σ) = 1;
the learner is said to reject σ if R(σ) = 0. Grieser [Gri08] considered three
different models of reflection, constraining the behaviour of R on finite pieces
σ of input data.

(1) Exact reflection: If the learner accepts σ, then σ belongs to some function
in the class being learnt; if the learner rejects σ, then σ does not belong
to any function in the class being learnt.

(2) Pessimistic Reflection: If the learner accepts σ, then σ belongs to some
function in the class being learnt; however, nothing can be said about σ
if σ is rejected.

(3) Optimistic Reflection: If the learner rejects σ, then σ does not belong to
any function in the class being learnt; however, nothing can be said about
σ if σ is accepted.

Grieser showed several interesting relationships between the above models of
learning with reflection by considering how they affect Ex, Fin and consistent
learning. In his study, Grieser left open several problems, including whether
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there exists a class of functions which can be finitely identified by a reflecting
machine (without any constraints on when the input data is rejected), but
which cannot be identified by a consistent learner that optimistically reflects
on the input data. In this note we solve the above problem (and others) by
constructing such a class of functions.

2 Notation and Preliminaries

Let N denote the set of natural numbers, {0, 1, 2, . . .}. Let f , with or without
decorations, range over total functions. Let R denote the class of all recursive
functions, i.e., total computable functions with arguments and values from N .
Let C, with or without decorations, range over subsets of R.

Let ϕ0, ϕ1, . . . be a fixed acceptable numbering for all the partial recursive
functions [Rog67]. Let Φ denote a standard Blum complexity measure [Blu67]
for ϕ. By η(x)↓ we denote that the partial function η is defined on input x.

A sequence is a mapping from N or an initial segment of N to N × N . The
content of a sequence σ, denoted content(σ), is the set of pairs appearing in
the range of σ. Let SEQ denote the set of all finite sequences σ such that if
(x, y) and (x, z) belong to content(σ), then y = z. (In this paper, we are only
interested in sequences whose content represents part of a function. Further-
more we are only interested in the learning of total recursive functions.) If
the sequence σ contains at least n elements, then we let σ[n] denote the first
n elements of the sequence σ. The canonical sequence for a function f is the
infinite sequence σ such that σ(n) = (n, f(n)).

Concatenation of two finite sequences σ and τ is denoted by σ � τ .

A learning machine (also called a learner) is a (possibly partial) computable
mapping from SEQ to N ∪{?}. We let M , with or without decorations, range
over learning machines. We say that a learner M converges on an infinite
sequence σ to i iff for all but finitely many n, M(σ[n]) = i.

We now formally define the criteria of learning considered in the introduction.

Definition 1 [Gol67]

(a) M Ex-identifies a function f (written: f ∈ Ex(M)) iff for all infinite
sequences σ such that content(σ) = {(x, f(x)) : x ∈ N}:

(i) M(σ[n])↓, for all n ∈ N , and
(ii) there exists an i such that ϕi = f and, for all but finitely many n,
M(σ[n]) = i.
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(b) M Ex-identifies a class C of functions (written: C ⊆ Ex(M)) iff M Ex-
identifies each f ∈ C.

(c) Ex = {C : (∃M)[M Ex-identifies C]}.

Definition 2 [Gol67] (a) M Fin-identifies a function f (written: f ∈ Fin(M))
iff for all infinite sequences σ such that content(σ) = {(x, f(x)) : x ∈ N}:

(i) M(σ[n])↓, for all n ∈ N , and
(ii) there exist i, n ∈ N such that ϕi = f , M(σ[m]) =? for m < n, and
M(σ[m]) = i for m ≥ n.

(b) M Fin-identifies a class C of functions (written: C ⊆ Fin(M)) iff M Fin-
identifies each f ∈ C.

(c) Fin = {C : (∃M)[M Fin-identifies C]}.

For Ex and Fin criteria of learning, one may assume without loss of generality
that the learner is total. However, for consistent learning this is not the case.

Definition 3 [Bār74] (a) M is said to be consistent on f iff, for all σ ∈ SEQ
such that content(σ) ⊆ f , M(σ)↓ and for all (x, y) ∈ content(σ), ϕM(σ)(x) = y.

(b) M Cons-identifies f (written: f ∈ Cons(M)) iff M Ex-identifies f and
M is consistent on f .

(c) M Cons-identifies C (written: C ⊆ Cons(M)) iff M Ex-identifies C and
M is consistent on each f ∈ C.

(d) Cons = {C : (∃M)[M Cons-identifies C]}.

There are other notions of consistency considered in the literature (a) [BB75,WL76]
T Cons, in which the learner is required to be consistent on all the total func-
tions and (b) [JB81] RCons, in which the learner is required to be total
(however, here the learner is required to be consistent only on functions in the
class being learnt).

Definition 4 [Gri08] Fix a learner M and a criterion of learning I.

(a) A finite sequence σ is acceptable (for M with respect to I) if content(σ) ⊆ f
for some f ∈ I(M). A finite sequence σ is unacceptable (for M with respect to
I) if content(σ) 6⊆ f for all f ∈ I(M).

(b) An infinite sequence σ is acceptable (for M with respect to I) if content(σ) =
{(x, f(x)) : x ∈ N}, for some function f ∈ I(M). An infinite sequence σ is
unacceptable (for M with respect to I) if it has an initial segment which is
unacceptable.
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Note that an infinite sequence may be neither acceptable nor unacceptable.

Definition 5 [Gri08,Jan95,MA93] Fix a learner M and a criterion of learning
I.

(a) A reflection function R is a total computable function from SEQ to {0, 1}.

(b) R is said to be a reflection function of M with respect to the learning
criterion I iff

(i) for all infinite acceptable sequences σ (for M with respect to I), R con-
verges on σ to 1.

(ii) for all infinite unacceptable sequences σ (for M with respect to I), R
converges on σ to 0.

(c) R is said to be a pessimistic reflection function (or p-reflection function)
of M with respect to the learning criterion I iff R is a reflection function of
M with respect to the learning criterion I and for all σ ∈ SEQ such that
R(σ) = 1, σ is acceptable.

(d) R is said to be an optimistic reflection function (or o-reflection function)
of M with respect to the learning criterion I iff R is a reflection function of
M with respect to the learning criterion I and for all σ ∈ SEQ such that
R(σ) = 0, σ is unacceptable.

(e) R is said to be an exact reflection function (or e-reflection function) of
M with respect to the learning criterion I iff R is a reflection function of M
with respect to the learning criterion I and for all σ ∈ SEQ, R(σ) = 1 iff σ is
acceptable.

(f) M , along with reflection function R, I-Refl (respectively, I-pRefl, I-oRefl,
I-eRefl) identifies C if M I-identifies C and R is a reflection function (re-
spectively, pessimistic reflection function, optimistic reflection function, exact
reflection function) of M with respect to the learning criterion I.

(g) I-Refl (respectively, I-pRefl, I-oRefl, I-eRefl) denotes the set of classes
of functions C which can be I-Refl (respectively, I-pRefl, I-oRefl, I-eRefl)
identified by some learner M , along with a corresponding reflection function
R.

Note that the acceptable and reflection notions are with respect to the class
learnt by the learner M , and not with respect to the target class C.

Note that the notion of learning considered in the above definitions allow the
input to be an arbitrary ordering of the graph of the function being learnt.
Researchers have considered the situation in which only canonical sequences
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are given to the learner. For Ex and Fin criteria this does not make a differ-
ence, though it does make a difference for consistent learning (see for example,
[BB75,WZ95,Gri08]). Moreover, for optimistic, pessimistic or exact reflection
(for any of the criteria of learning considered in this paper), considering only
canonical sequences does make a difference (see [Gri08]). We would not go
into details of this, except mentioning that the results obtained hold in the
strongest form: for the positive side, the learning can be done for arbitrary
input sequences, whereas for the negative side, learning cannot be done even
on canonical sequences.

3 Main Result

Theorem 6 Fin-Refl−Cons-oRefl 6= ∅.

Proof. Let C1 = {f : f(0) > 0, ϕf(0) = f and (∀y > 0)(∀x < y)[Φf(0)(x) <
f(y)]}

and

C2 = {f : f(0) > 0, ϕf(0) = f and (∃n > 0)[(∀x < n)[f(x) > 0] and f(n) = 0
and (∀y > n)(∀x < y)[Φf(0)(x) < f(y)]]}.

Let C = C1 ∪ C2.

Using Kleene’s parameterized recursion theorem [Soa87] we will define a re-
cursive function p (of two variables) below. It will be the case that, for all i
and j, ϕp(i,j)(0) = p(i, j), and, whenever ϕp(i,j) is total, ϕp(i,j) ∈ C.

The class witnessing the theorem will be C ′ = {ϕp(i,j) : ϕp(i,j) is total }. Note
that C ′ ⊆ C.

It is easy to verify that C ′ ∈ Fin-Refl. For any finite input sequence σ ∈ SEQ,
the learner outputs p(i, j), if i+j ≤ |σ| and (0, p(i, j)) ∈ content(σ); the learner
outputs ‘?’ on input σ if there exist no such i, j. Note that the above learner
finitely learns exactly the class C ′.

Furthermore, given as input an infinite sequence σ such that, for some total f ,
content(σ) = {(x, f(x)) : x ∈ N}, one can effectively determine in the limit (a)
whether f is in C = C1∪C2 and (b) whether f(0) = p(i, j), for some i, j. Clause
(b) is easy to verify in the limit. To see (a), note that f 6∈ C1 iff f(0) = 0,
or for some x, y: x < y and Φf(0)(x) ≥ f(y). Thus, one can determine, in the
limit, whether f ∈ C1. Similar reasoning can be used to show that one can
determine, in the limit, whether f ∈ C2.
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Thus, in the limit one can determine if a function f belongs to C ′. It follows
that one can build the reflection function for the learner.

We now define the function p as follows. By implicit use of the effective version
of Kleene’s parameterized recursion theorem [Soa87] there exists a recursive
function p such that ϕp(i,j) may be defined as follows. We may assume without
loss of generality that p(i, j) > 0, for all i, j. Intuitively, we will use ϕp(i,j) to
make sure that learner M = ϕi (along with corresponding optimistic reflection
function R = ϕj) does not Cons-oRefl-identify C ′.

Fix i, j. For ease of notation below, we will use M and R for ϕi and ϕj

respectively.

Initially let ϕp(i,j)(0) = p(i, j). Let xs denote the least x such that ϕp(i,j)(x)
has not been defined before stage s. Thus x0 = 1.

Below ϕp(i,j)[x] denotes the initial segment (0, ϕp(i,j)(0)), (1, ϕp(i,j)(1)), . . . , (x−
1, ϕp(i,j)(x − 1)). Below τ ranges over finite initial segments of canonical se-
quences. Go to stage 0.

Stage s
1. Dovetail steps 2 and 3, until, if ever, one of them succeeds. If ever step 2

succeeds before step 3, then go to step 4. If ever step 3 succeeds before
step 2, then go to step 5.

2. Search for an extension τ of ϕp(i,j)[xs], such that R(τ) = 0 and y > 0 for
all (x, y) ∈ content(τ).

3. Search for a number w > max({Φp(i,j)(x) : x < xs}), such that
M(ϕp(i,j)[xs] � (xs, w))↓ 6= M(ϕp(i,j)[xs])↓.

4. (a) Let ϕp(i,j)(y) = z, for (y, z) ∈ content(τ).
(b) Let ϕp(i,j)(y) = 0, for y = |τ | (i.e., for the least number y, such that

(y, z) 6∈ content(τ), for all z).
(c) For y > |τ |, let ϕp(i,j)(y) = 1 +

∑
x<y Φp(i,j)(x).

(* In this case, when step 2 succeeds, step 4 completes the definition of
ϕp(i,j), and we do not need any further stages. Also note that ϕp(i,j) is
total in this case, as ϕp(i,j)(y) gets defined for all y < |τ |, by step 4(a);
for y = |τ |, by step 4(b); and for all y > |τ | by step 4(c). *)

5. Let ϕp(i,j)(xs) = w. Let xs+1 = xs + 1. Go to stage s + 1.
End Stage s

If there exist infinitely many stages, then clearly ϕp(i,j) is total. Also, due to
success of step 3 and execution of step 5 in all stages, ϕp(i,j) ∈ C1 and M does
not Ex-identify ϕp(i,j) (as M makes infinitely many mind changes on ϕp(i,j)).

If, in some stage s, step 2 succeeds, and thus step 4 is executed, then clearly,
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ϕp(i,j) ∈ C2. Also since R is supposed to be optimistic, R(τ) = 0 and content(τ)
is contained in ϕp(i,j), we have that M (along with R) does not Cons-oRefl
identify ϕp(i,j).

If, in some stage s, neither step 2 nor step 3 succeed, then ϕp(i,j) is not total.
Furthermore, R is not a reflection function for M . Otherwise M would need
to identify some extension of ϕp(i,j)[xs] � (xs, w), for all w > max({Φp(i,j)(x) :
x < xs}), and thus M needs to be consistent on ϕp(i,j)[xs] � (xs, w), for all
w > max({Φp(i,j)(x) : x < xs}). This would imply M(ϕp(i,j)[xs] � (xs, w)) 6=
M(ϕp(i,j)[xs]), for all but one w > max({Φp(i,j)(x) : x < xs}), leading to
success of step 3.

Thus, we have that M (along with reflection function R) does not Cons-oRefl-
identify C ′. Also note that, as claimed earlier, ϕp(i,j) ∈ C, whenever ϕp(i,j) is
total.

The theorem follows.

As Fin ⊆ RCons ⊆ Cons (this holds also for each of the reflection models)
[WZ95,Gri08], we have the following corollary.

Corollary 7 Fin-Refl−RCons-oRefl 6= ∅.

RCons-Refl−Cons-oRefl 6= ∅.

RCons-Refl−RCons-oRefl 6= ∅.

The above solves the two mentioned open problems in the paper [Gri08].
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