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Improved Bounds on the Average Distance to the Fermat-Weber Center of
a Convex Object
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Abstract

We show that for any convex object Q in the plane,
the average distance between the Fermat-Weber center
of Q and the points in Q is at least 4∆(Q)/25, and at
most 2∆(Q)/(3

√
3), where ∆(Q) is the diameter of Q.

We use the former bound to improve the approximation
ratio of a load-balancing algorithm of Aronov et al. [1].

1 Introduction

The Fermat-Weber center of an object Q in the plane is
a point in the plane, such that the average distance from
it to the points in Q is minimal. For an object Q and a
point y, let µQ(y) be the average distance between y and
the points in Q, that is, µQ(y) =

∫
x∈Q

‖xy‖ dx/area(Q),
where ‖xy‖ is the Euclidean distance between x and y.
Let FWQ be a point for which this average distance
is minimal, that is, µQ(FWQ) = miny µQ(y), and put
µ∗Q = µQ(FWQ). The point FWQ is a Fermat-Weber
center of Q.

It is easy to verify, for example, that the Fermat-
Weber center of a disk D coincides with the center o
of D, and that the average distance between o and the
points in D is ∆(D)/3, where ∆(D) is the diameter of
D. Carmi, Har-Peled, and Katz [3] studied the rela-
tion between µ∗Q and the diameter of Q, denoted ∆(Q).
They proved that there exists a constant c1, such that,
for any convex object Q, the average distance between
a Fermat-Weber center of Q and the points in Q is at
least c1∆(Q), and that the largest such constant c∗1 lies
in the range [1/7..1/6].

In this paper, we both improve the above bound on
c∗1, and tightly bound a new constant c∗2; see below.
More precisely, we first significantly narrow the range
in which c∗1 must lie, by proving (in Section 2) that
4/25 ≤ c∗1 ≤ 1/6. Next, we consider the question what
is the smallest constant c∗2, such that, for any convex
object Q, µ∗Q ≤ c∗2∆(Q). We prove (in Section 3) that
1/3 ≤ c∗2 ≤ 2/(3

√
3). A useful corollary obtained from

these results is that the average distance to the center
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of the smallest enclosing circle of a convex n-gon P is
less than 2.41 times µ∗P .

The Fermat-Weber center of an object Q is a very
significant point. The classical Fermat-Weber problem
is: Find a point in a set F of feasible facility locations,
that minimizes the average distance to the points in a
set D of (possibly weighted) demand locations. If D is a
finite set of points, F is the entire plane, and distances
are measured using the L2 metric, then it is known that
the solution is algebraic [2]. See Wesolowsky [8] for a
survey of the Fermat-Weber problem.

Only a few papers deal with the continuous version
of the Fermat-Weber problem, where the set of demand
locations is continuous. Fekete, Mitchell and Wein-
brecht [4] presented algorithms for computing an opti-
mal solution for D = F = P where P is a simple polygon
or a polygon with holes, and the distance between two
points in P is the L1 geodesic distance between them.
Carmi, Har-Peled and Katz [3] presented a linear-time
approximation scheme for the case where P is a convex
polygon.

Aronov et al. [1] considered the following load bal-
ancing problem. Let D be a convex region and let
P = {p1, . . . , pm} be a set of m points representing m
facilities. One would like to divide D into m equal-area
subregions R1, . . . , Rm, so that region Ri is associated
with point pi, and the total cost of the subdivision is
minimized. Given a subdivision, the cost κ(pi) associ-
ated with facility pi is the average distance between pi

and the points in Ri, and the total cost of the subdivi-
sion is

∑
i κ(pi).

Aronov, et al. discussed the structure of an op-
timal subdivision, and also presented an (8 +

√
2π)-

approximation algorithm, under the assumption that
the regions R1, . . . , Rm must be convex and that D is
a rectangle. Our improved bound on the constant c∗1,
allows us (in Section 4) to improve the above approxi-
mation ratio.

2 4/25 ≤ c∗1 ≤ 1/6

Carmi, Har-Peled and Katz [3] showed that there exists
a convex polygon P such that µ∗P ≤ ∆(P )/6. This
immediately implies that c∗1 ≤ 1/6. We prove below
that c∗1 ≥ 4/25. Our proof is similar in its structure to
the proof of [3].
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Theorem 2.1. Let P be a convex object. Then µ∗P ≥
4∆(P )/25.

Proof: Let FWP be a Fermat-Weber center of P . We
need to show that

∫
x∈P

‖xFWP ‖ dx ≥ 4∆(P )
25 area(P ).

We do this in two stages. In the first stage we show
that for a certain subset P ′ of P ,

∫
x∈P ′ ‖xFWP ‖ dx ≥

4∆(P )
27 area(P ). This implies that for any convex object

Q, µ∗Q ≥ 4∆(Q)/27. In the second stage we apply this
intermediate result to a collection of convex subsets of
P − P ′ that are pairwise disjoint to obtain the claimed
result. This latter stage is essentially identical to the
second stage in the proof of [3]; it is included here for
the reader’s convenience.

We now describe the first stage. Let s be a line seg-
ment of length ∆(P ) connecting two points p and q on
the boundary of P . We may assume that s is horizon-
tal and that p is its left endpoint, since one can always
rotate P around, say, p until this is the case.
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Figure 1: Proof of intermediate result.

Let Pα be the polygon obtained from P by shrinking
it by a factor of α, that is, by applying the transforma-
tion f(a, b) = (a/α, b/α) to the points (a, b) in P . We
place a copy R1 of P 3/2, such that R1 is contained in P
and has a common tangent with P at q. Similarly, we
place a copy R′1 of P 3/2, such that R′1 is contained in
P and has a common tangent with P at p; see Figure
1(a). Clearly, area(R1) = area(R′1) = 4

9area(P ).
Let R2 = R1 ∩ R′1. We place a copy R3 of R2, such

that R3 is contained in R1 and has a common tangent
with R1 at q. Similarly, we place a copy R′3 of R2,
such that R′3 is contained in R′1 and has a common
tangent with R′1 at p. Let R4 = R1 − (R2 ∪ R3) and
R′4 = R′1 − (R2 ∪R′3); see Figure 1(b).

We know that, regardless of the exact location of
FWP , the distance between FWP and the points in
R3 plus the distance between FWP and the points in
R′3 is greater than 2∆(P )

3 area(R3), and the distance be-
tween FWP and the points in R4 plus the distance
between FWP and the points in R′4 is greater than
∆(P )

3 area(R4). More precisely,

∫

x∈R3

‖xFWP ‖ dx +
∫

x∈R′3

‖xFWP ‖ dx ≥ 2∆(P )
3

area(R3)

and
∫

x∈R4

‖xFWP ‖ dx +
∫

x∈R′4

‖xFWP ‖ dx ≥ ∆(P )
3

area(R4) .

Since area(R4) = area(R1) − (area(R2) ∪ area(R3)) =
4
9area(P )−2area(R3), we obtain our intermediate result

∫

x∈P

‖xFWP ‖ dx ≥
∫

x∈R3

‖xFWP ‖ dx+

+
∫

x∈R′3

‖xFWP ‖ dx +
∫

x∈R4

‖xFWP ‖ dx+

+
∫

x∈R′4

‖xFWP ‖ dx ≥ 2∆(P )
3

area(R3)+

+
∆(P )

3

(
4
9
area(P )− 2area(R3)

)
=

4∆(P )
27

area(P ) .

This intermediate result immediately implies that for
any convex object Q, µ∗Q ≥ 4∆(Q)/27. In the second
stage we show that the 27 in the denominator can be
replaced by 25.
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Figure 2: Proof of improved result.

Consider Figure 2. We draw the axis-aligned bound-
ing box of P . The line segment s (whose length is ∆(P ))
divides the bounding box of P into two rectangles, abqp
above s and pqdc below s. We divide each of these rect-
angles into two parts (a lower part and an upper part),
by drawing the two horizontal lines l and l′. Let R5

denote the intersection of P with the upper part of the
upper rectangle, and let R′5 denote the intersection of
P with the lower part of the lower rectangle.

Let e be any point on the segment ab that also lies on
the boundary of R5. We mention several facts concern-
ing R5 and R′5. R5∩R′5 = φ, R5∩R1 = φ, R5∩R′1 = φ,
R′5∩R1 = φ, and R′5∩R′1 = φ. Notice also that ∆(R5),
∆(R′5) ≥ ∆(P )/3, since, e.g., the line segment l ∩ R5

contains the base of the triangle that is obtained by in-
tersecting the triangle peq with R5, and the length of
this base is ∆(P )/3.

We observe that area(R5) + area(R′5) ≥ area(P )/9
by showing that area(R5) ≥ area(P ∩abqp)/9 (and that
area(R′5) ≥ area(P∩pqdc)/9). Let g, h be the two points
on the line l that also lie on the boundary of R5. Let
l(s) be the line containing s, and let T be the triangle
defined by l(s) and the two line segments connecting e to
l(s) and passing through g and through h, respectively.
Let T2 denote the triangle geh.
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Clearly T2 ⊆ R5. Put Q = R5−T2. Then, area(R5) =
area(T2) + area(Q) = area(T )/9 + area(Q). Therefore,
area(R5) ≥ (area(T ) + area(Q))/9 ≥ area(P ∩ abqp)/9.
We show that area(R′5) ≥ area(P ∩ pqdc)/9 using the
“symmetric” construction. Since (P ∩ abqp) ∪ (P ∩
pqdc) = P we obtain that area(R5) + area(R′5) ≥
area(P )/9.

It is also easy to see that ∆(R2) = ∆(P )/3 and
area(R2) ≥ area(P )/9. This is because P 3 ⊆ R2 and
area(P 3) = area(P )/9, where P 3 is the polygon ob-
tained from P by shrinking it by a factor of 3.

Now using the implication of our intermediate result
we have
∫

x∈R5

‖xFWP ‖ dx +
∫

x∈R′5

‖xFWP ‖ dx+

+
∫

x∈R2

‖xFWP ‖ dx ≥ 4∆(R5)
27

area(R5)+

+
4∆(R′5)

27
area(R′5) +

4∆(R2)
27

area(R2) ≥

≥ 4∆(P )
81

(area(R5) + area(R′5) + area(R2)) ≥

≥ 8∆(P )
729

area(P ) .

Therefore
∫

x∈P

‖xFWP ‖ dx ≥
∫

x∈R3

‖xFWP ‖ dx+

+
∫

x∈R′3

‖xFWP ‖ dx +
∫

x∈R4

‖xFWP ‖ dx+

+
∫

x∈R′4

‖xFWP ‖ dx +
∫

x∈R5

‖xFWP ‖ dx+

+
∫

x∈R′5

‖xFWP ‖ dx +
∫

x∈R2

‖xFWP ‖ dx ≥

≥ 4∆(P )
27

area(P ) +
8∆(P )

729
area(P ) =

=
116∆(P )

729
area(P ) .

At this point we may conclude that for any convex
object Q, µ∗Q ≥ 116∆(Q)/729. So we repeat the cal-
culation above using this result for the regions R5, R′5
and R2 (instead of using the slightly weaker result, i.e.,
µ∗Q ≥ 4∆(Q)/27). This calculation will yield a slightly
stronger result, etc. In general, the result after the k-th
iteration is µ∗Q ≥ ck∆(Q), where ck = 4/27 + 2ck−1/27
and c0 = 4/27. It is easy to verify that this sequence of
results converges to µ∗Q ≥ 4∆(Q)/25.

Corollary 2.2. Let P be a non-convex simple polygon,
such that the ratio between the area of a minimum-area
enclosing ellipse of P and the area of a maximum-area
enclosed ellipse is at most β, for some constant β ≥ 1.
Then µ∗P ≥ 4∆(P )/(25β2).

Proof: As in [3], except that we apply the improved
bound of Theorem 2.1.

3 1/3 ≤ c∗2 ≤ 2/(3
√

3)

As mentioned in the introduction, the average distance
between the Fermat-Weber center of a disk D (i.e., D’s
center) and the points in D is ∆(D)/3, where ∆(D)
is the diameter of D. This immediately implies that
c∗2 ≥ 1/3. We prove below that c∗2 ≤ 2/(3

√
3).

We first state a simple lemma and a theorem of Jung
that are needed for our proof.

Lemma 3.1. Let R,Q be two (not-necessarily convex)
disjoint objects, and let p be a point in the plane. Then,
µ(R∪Q)(p) ≤ max {µR(p), µQ(p)}.
Proof:

µ(R∪Q)(p) =

∫
x∈R∪Q

‖px‖ dx

area(R ∪Q)
=

=

∫
x∈R

‖px‖ dx +
∫

x∈Q
‖px‖ dx

area(R) + area(Q)
=

=
area(R) · µR(p) + area(Q) · µQ(p)

area(R) + area(Q)
≤

≤ (area(R) + area(Q))max {µR(p), µQ(p)}
area(R) + area(Q)

≤

≤ max {µR(p), µQ(p)} .

Theorem 3.2 (Jung’s Theorem [5, 6]). Every set of
diameter d in Rn is contained in a closed ball of radius
r ≤ d

√
n

2(n+1) . In particular, if R is a convex object

in the plane, then the radius of the smallest enclosing
circle C of R is at most ∆(R)/

√
3, where ∆(R) is the

diameter of R.

Theorem 3.3. For any convex object R, µ∗R ≤
2∆(R)/(3

√
3).

Proof: Let R be a convex polygon. Let C be the small-
est enclosing circle of R, and let o and r denote R’s cen-
ter point and radius, respectively. Notice that o ∈ R,
since R is convex. We divide R into 8 regions R1, . . . , R8

by drawing four line segments through o, such that each
of the 8 angles formed around o is of 45◦; see Figure 3(a).
Clearly, for each Ri, o ∈ Ri and ∆(Ri) ≤ r.

We first prove that for each region Ri, µRi(o) ≤
2∆(Ri)/3. (This is done by adapting the proof of
Lemma 3.1 of Aronov et al. [1].) Consider Figure 3(b).
Let p ∈ Ri be the farthest point from o. Draw the cir-
cular sector ocd centered at o of radius ‖op‖. Let a and
b be as in Figure 3(b). Let f be the point on the arc cd,
such that the regions Q1 and Q2 obtained by drawing
the segment of are of equal area. (Q1 is the region oxb
and Q2 is the difference between the sector opf and the
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Figure 3: Illustrating the proof of Theorem 3.3.

region opx, where x is the intersection point between of
and the boundary piece pb.) Similarly, let e be the point
on the arc cd, such that the regions Q3 and Q4 obtained
by drawing the segment oe are of equal area. (Q3 is the
region oay and Q4 is the difference between the sector
oep and the region oyp, where y is the intersection point
between oe and the boundary piece ap.)

Now, on the one hand, since opb is convex, x is the
farthest point from o in Q1, and, on the other hand, x
is the closest point to o in Q2. Hence, any point in Q2

is farther from o than any point in Q1. Thus we get
that µopb(o) = µ(Q′1∪Q1)(o) ≤ µ(Q′1∪Q2)(o) = µopf (o) =
2 ‖op‖ /3 = 2∆Ri/3. We show that µoap(o) ≤ 2∆Ri/3
using the “symmetric” analysis. Since opb and oap are
disjoint convex objects, then, by Lemma 3.1, µRi(o) =
µ(opb∪oap)(o) ≤ 2∆Ri/3.

We now show that µR(o) ≤ 2∆(R)/(3
√

3), imme-
diately implying that µ∗R ≤ 2∆(R)/(3

√
3). By The-

orem 3.2, we know that r ≤ ∆(R)/
√

3. We also
know that for each Ri, ∆(Ri) ≤ r. Thus, µRi(o) ≤
2∆(Ri)/3 ≤ 2r/3 ≤ 2∆(R)/(3

√
3).

We now apply Lemma 3.1 to obtain that

µR(o) ≤ max
{
µ(R1∪R2∪R3∪R4)(o), µ(R5∪R6∪R7∪R8)(o)

} ≤
≤ max

{
max

{
µ(R1∪R2)(o), µ(R3∪R4)(o)

}
,

max
{
µ(R5∪R6)(o), µ(R7∪R8)(o)

}} ≤
...

≤ max {µR1(o), µR2(o), µR3(o), µR4(o) ,

µR5(o), µR6(o), µR7(o), µR8(o)} ≤
≤ 2∆(R)/(3

√
3) .

Corollary 3.4. Let P be a convex n-gon. Then one
can compute in linear time a point p, such that µP (p) ≤
25

6
√

3
µ∗P .

Proof: We apply Megiddo’s linear-time algorithm for
computing the smallest enclosing circle C of P [7]. Let
p denote the center of C, then, by Theorem 2.1

µP (p)
µ∗P

≤ 2∆(P )/(3
√

3)
4∆(P )/25

=
25

6
√

3
.

Corollary 3.4 gives us a very simple linear-time
constant-factor approximation algorithm for finding an

approximate Fermat-Weber center in a convex polygon.
A less practical linear approximation scheme for finding
such a point was presented by Carmi et al. [3].

4 Application

We consider the load balancing problem studied by
Aronov et al. [1]. Let D be a convex region and let
P = {p1, . . . , pm} be a set of m points representing m
facilities. The goal is to divide D into m equal-area con-
vex regions R1, . . . , Rm, so that region Ri is associated
with point pi, and the total cost of the subdivision is
minimized. The cost κ(pi) associated with facility pi is
the average distance between pi and the points in Ri,
and the total cost of the subdivision is

∑
i κ(pi).

Assuming D is a rectangle that can be divided into m
squares of equal size, Aronov et al. present an O(m3)-
time algorithm for computing a subdivision of cost at
most (8+

√
2π) times the cost of an optimal subdivision.

By applying Theorem 2.1 in the analysis of their algo-
rithm, we obtain a better approximation ratio, namely,
( 29

4 +
√

2π). For further details, see the full version of
this paper.
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