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Abstract

Dutta and Mukhopadhyay have recently proposed some very efficient self-
healing key distribution schemes with revocation. The parameters of these
schemes contradict some results (lower bounds) presented by Blundo et al. In
this paper different attacks against the schemes of Dutta and Mukhopadhyay
are explained: one of them can be easily avoided with a slight modification in
the schemes, but the other one is really serious.
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1 Introduction

Self-healing key distribution schemes enable large and dynamic groups of users of
an unreliable network to establish group keys for secure communication in different
sessions. Every session group of users is established by a group manager, by joining
or revoking users from the initial group. The common key of the group is provided
by the group manager using broadcast packets, which must be combined by the
group members with some private information that they have received in the setup
phase of the scheme. The goal of this kind of schemes is well captured by the self-
healing property: if during a certain session a user loses some broadcast packet, he
is still able to recover the group key of the session simply by using a packet received
during a previous session and a packet received in a subsequent one, without having
to request any additional transmission to the group manager. Thanks to the self-
healing property, these key distribution schemes are very useful in several Internet-
related and wireless settings.
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Different parameters are considered to evaluate the efficiency of self-healing
schemes. With respect to the length of the secret information that each user re-
ceives from the group manager in the setup phase, Dutta and Mukhopadhyay [1, 2]
have recently proposed the most efficient self-healing key distribution schemes up
to date. After looking at their proposals, we observed that the schemes were too
efficient in terms of the length of the secret information of each user, because the
achieved efficiency contradicts some theoretical results that have been proved by
Blundo et al. [3, 4]. For this reason, we studied the proposals of [1, 2] in more detail
and we found some explicit attacks against their security. The conclusion is that
the schemes of Dutta and Mukhopadhyay are not secure at all, and that previous
proposals already achieved the optimal efficiency in terms of the length of the secret
information that each user must store.

Organization. In Section 2 we review the notion of a self-healing key distri-
bution scheme, the required properties and one of the specific proposals of Dutta
and Mukhopadhyay (the other ones are very similar). In Section 3 we argue why
the security of this proposal would contradict some theoretical results, and then we
explain our explicit attacks against the security of the scheme. The conclusions of
our work are given in Section 4.

2 Self-Healing Key Distribution with Revocation

Self-healing key distribution schemes were introduced by Staddon et al. [5]. After
that, many papers have appeared which generalize and/or modify the original defi-
nitions, give lower bounds to the resources required for such schemes, and propose
some efficient constructions. See [6, 3, 7, 4] for some relevant papers on self-healing
key distribution schemes. Typically a self-healing key distribution scheme consists
of the following algorithms.

In the Setup phase, the group manager gives to every user Ui in the first session
group G0 his secret information Si.

In the Broadcast phase, for session j ∈ {1, . . . ,m}, the group manager makes
public some information Bj , which usually depends on the set Rj ⊂ Gj−1 of revoked
users in session j.

In a Join action, the group manager gives to a new user Ui, who joins the group
in session j, his secret information Si which allows him to compute session keys from
session j on. The group Gj is formed by the users in Gj−1 that are not in Rj , along
with these new users who have joined the group in session j.

The Computation of the session key Kj by a user Ui /∈ Rj is performed by
using his own secret information Si and the broadcast packet Bj . The self-healing
property of these schemes gives an alternative way to compute the key Kj , by means

of the broadcast messages Bj1 , Bj2 , where 1 ≤ j1 < j < j2 ≤ m and Ui /∈
j2⋃
j=j1

Rj .

These schemes usually support t-revocation for some threshold t, meaning that
the maximum number of users who may have been revoked at some time is t; this
is ensured, in particular, if condition

∑m
j=1 |Rj | ≤ t holds. With respect to security,
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forward and backward secrecy are properties required to a self-healing scheme with
t-revocation. Forward secrecy means that a set R with |R| ≤ t users who have been
revoked at session j (or before) cannot obtain any information about the session
keys Kj ,Kj+1, . . . ,Km from their secret information {Si}Ui∈R and all the broadcast
messages B1, . . . , Bm. Backward secrecy means that a set J with |J | ≤ t users who
join the group after session j cannot obtain any information about the session keys
K1, . . . ,Kj from their secret information {Si}Ui∈J and all the broadcast messages
B1, . . . , Bm.

Most of the existing papers on self-healing key distribution are mainly focused
on unconditionally secure schemes: the schemes must achieve forward and back-
ward secrecy even under the attack of an adversary with unlimited computational
resources.

2.1 A Scheme of Dutta and Mukhopadhyay

In [1, 2], Dutta and Mukhopadhyay have proposed the most efficient self-healing
key distribution schemes with revocation up to date, with respect to the length of
the secret information Si that users must store. We quickly review the protocols of
one of these schemes, in [1] (the schemes in [2] are very similar). For simplicity of
notation, a user who is revoked at some session j is assumed to remain revoked for
the following sessions; in other words, Rj ⊂ Rj+1, for j = 1, . . . ,m− 1.

Setup. The group manager, GM, chooses a finite field Fq (for some prime
number q) and a random bivariate t-degree polynomial Ψ(x, y) = a0,0 + a1,0x +
a0,1y + . . .+ at,tx

tyt in Fq[x, y]. This polynomial Ψ(x, y) is kept secret by GM. GM
also chooses a one-way permutation f : Fq → Fq, which is made public, and an
initial value α0 ∈ Fq. Each user Ui ∈ G0 receives as secret information the value α0

and the polynomial Si(y) = Ψ(i, y) (i.e., the total information that each user must
secretly store consists of (t + 2) log q bits). The group manager finally chooses at
random a secret value K0 ∈ Fq.

Broadcast. In the j-th session, for j = 1, . . . ,m, the group manager computes
αj = f(αj−1), stores αj and erases αj−1. Then the group manager GM chooses at
random βj ∈ Fq and computes Kj = εβj

(Kj−1), where εβj
(·) denotes a secret-keyed

permutation over Fq, with secret key βj . Let Rj = {U`1 , . . . , U`wj
} be the set of

revoked users at session j, satisfying |Rj | = wj ≤ t. The group manager broadcasts
Bj = {Rj , φj(x), εKj (β1), εKj (β2), . . . , εKj (βj)}, where φj(x) = Λj(x)Kj + Ψ(x, αj)
and Λj(x) = (x− `1) · . . . · (x− `wj ).

Join. When a new user Uk joins the group at some session j, the group manager
GM privately sends to him the polynomial Sk(y) = Ψ(k, y) and the value αj .

Computation of the session key. If a non-revoked user Ui /∈ Rj correctly
receives the broadcast message Bj for session j, he can compute Kj by first comput-
ing αj (as αj = f(αj−1) if Ui was already in the group at session j − 1), and then
evaluating Si(αj) = Ψ(i, αj), φj(i) and Λj(i) 6= 0. Finally, Ui computes

Kj =
φj(i)−Ψ(i, αj)

Λj(i)
.
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Intuitively, the revoked users U`s ∈ Rj cannot compute Kj because Λj(`s) = 0, for
all s = 1, . . . , wj .

Alternatively, a user Ui who correctly receives Bj1 and Bj2 , where 1 ≤ j1 < j2 ≤
m and Ui is not revoked in session j2, can still recover the secret session key Kj , for
all j ∈ {j1, . . . , j2}, as follows. From Bj2 , the user Ui can recover Kj2 (as explained
just above) and from this key Kj2 and the last values in B2, he can also recover the
values β1, β2, . . . , βj2 . From Bj1 , the user can recover Kj1 . After that, the user just
computes Kj = εβj

(Kj−1), for j = j1 + 1, . . . , j2 − 1, obtaining in this way all the
intermediate keys, between sessions j1 and j2.

Dutta and Mukhopadhyay claim that this scheme is an unconditionally secure
self-healing key distribution scheme with t-revocation, in particular achieving both
forward and backward secrecy (see Theorem 4.2 of [1]).

3 Flaws in the Scheme(s) of Dutta and Mukhopadhyay

In this section we show that the schemes of Dutta and Mukhopadhyay [1, 2, 8], do not
satisfy some of the security requirements for self-healing key distribution schemes.
For simplicity, we concentrate on the scheme of [1], described in the previous section;
but all the attacks that we explain can also be applied to the (similar) schemes in
[2], and one of the attacks can be applied to the scheme in [8].

The schemes of Dutta and Mukhopadhyay are surprisingly efficient, in the sense
that the length of the secret information Si received by any user is quite smaller
than in previous proposals of self-healing key distribution schemes. Actually, this
length contradicts the lower bound that Blundo et al. [3, 4] have given for the length
of secret information to be stored in a secure self-healing key distribution scheme
with t-revocation.

Specifically, Theorem 5.2 of [3] (and similarly, Theorem 4.1 of [4]) states that,
for any user Ui belonging to the group since session j, it holds H(Si) ≥ (m −
j + 1) log q, where operator H is the Shannon entropy and Si denotes the random
variable representing the secret information of user Ui. In other words, a user Ui
has to store at least as many bits of secret information as the sum of the bits of all
the session keys that Ui might compute as member of the group. However, in the
considered scheme of Dutta and Mukhopadhyay [1], each user receives (t + 2) log q
bits of secret information, independently of the number of session keys (up to m)
that this user may want to compute. According to the result in [3], a user who wants
to recover all the session keys Kj ∈ Fq, 1 ≤ j ≤ m, in the scheme of [1] should store
a secret information of at least m log q bits.

Summing up, we have a contradiction between Theorem 5.2 of [3] and the se-
curity of the scheme of Dutta and Mukhopadhyay (Theorem 4.2 of [1]). A first
justification of this contradiction is easily detectable, because there is a clear mis-
take in the statement of the security results in [1]. They assert that the security of
their schemes is unconditional, meaning that the schemes resist attacks even from
computationally unlimited adversaries. However, since the schemes involve the use
of a one-way permutation f : Fq → Fq, it is easy to find an attack against the
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backward secrecy property, executed by an unlimited adversary who can invert the
permutation f . This adversary controls a user Ui who joins the group at some ses-
sion j > 1. In the Join phase, he receives αj along with his secret information Si.
If he has unlimited computational resources, he can invert the one-way permutation
f and obtain αj−1 = f−1(αj), αj−2 = f−1(αj−1) and so on, until he obtains all
the values α0, α1, . . . , αj . Combining these values with his secret information Si
and the previous broadcast messages B1, . . . , Bj−1, this user can easily compute all
the previous session keys K1, . . . ,Kj−1. Therefore, the security (in particular, the
backward secrecy) of the schemes can, at most, be computational.

But, in the following sections, we show that the considered schemes are not
even computationally secure. We provide explicit attacks against the backward and
forward secrecy properties of the scheme of Dutta and Mukhopadhyay.

3.1 A (Fixed) Attack against Backward Secrecy

Actually, the scheme does not achieve even computational backward secrecy, because
of the following simple attack. The adversary controls a user Ui who joins the group
at some session j > 1. Once he has Si and αj , he can compute the session key
Kj from the broadcast packet Bj . Now, he can obtain the values β1, . . . , βj by
combining Kj with the last elements in the broadcast packet; he must apply the
inverse permutation of εKj (·).

From this point on, and due to the fact that Kj = εβj
(Kj−1), it is clear that Ui

can recover Kj−1 by inverting εβj
, and also the other previous keys Kj−2, . . . ,K1,

by iterating this process. Note that this same attack also applies to another scheme,
in [8], proposed by (essentially) the same authors.

This flaw can be fixed, in the following way. The group manager GM chooses
values β1, . . . , βm and γ1, . . . , γm at the same time, in the Setup phase. Later, in the
Broadcast phase of the j-th session, he defines Kj = εβj+γj

(Kj−1) and defines the
last elements of the broadcastBj to be {εKj (β`)}`=j+1,...,m and {εKj (γ`)}`=1,...,j−1. It
is quite easy to see that the self-healing scheme resulting from this slight modification
resists the above-mentioned attack, and that it satisfies the self-healing and backward
secrecy properties, of course in a computational (not in an unconditional) way,
because of the aforementioned argument.

3.2 A (Serious) Attack against Forward Secrecy

Finally, we present a more serious attack against the forward secrecy property of the
scheme of Dutta and Mukhopadhyay. Let us assume t+ 1 < m and let us consider a
user Ui ∈ G0 who remains non-revoked during r sessions, where t < r < m. Without
loss of generality, we can assume the r sessions are the t+ 1 first ones.

Then, he knows the keys K1, . . . ,Kt+1 and the values α1, . . . , αt+1 for the first
t + 1 sessions. In particular, Ui can use the key Kj and the broadcast information
φj(x), Rj in Bj to compute ψ(x, αj) = φj(x)− Λj(x)Kj , for every j = 1, . . . , t+ 1.

Therefore, Ui has t + 1 tuples of the form (α1, ψ(x, α1)), . . . , (αt+1, ψ(x, αt+1)).
Thus, since the polynomial ψ has degree t in the second variable, Ui can interpolate
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(for example, by using Lagrange interpolation) and he gets the complete bivariate
polynomial ψ(x, y). Once Ui obtains the polynomial ψ(x, y) he is able to compute
keys for future sessions, even if he is revoked for those sessions, contradicting the
forward secrecy property of the scheme, asserted by the authors in [1].

For simplicity, let us assume that user Ui is revoked in session t + 2 ≤ m
and we will show how he can compute Kt+2. The key point for that compu-
tation is that, since user Ui has been able to compute ψ(x, y), he can calculate
ψ(i∗, y) = Si∗(y) for any user Ui∗ non-revoked in the (t + 2)-th session. Further-
more, Ui can also compute αt+2 = f(αt+1) and so the value Si∗(αt+2) = ψ(i∗, αt+2).
Then, when the group manager broadcasts in the (t + 2)-th session the informa-
tion Bt+2 = {Rt+2, φt+2(x), εKt+2(β1), εKt+2(β2), . . . , εKt+2(βt+2)}, where φt+2(x) =
Λt+2(x)Kt+2 + Ψ(x, αt+2), user Ui can easily compute the key Kt+2 for the session
t+ 2 as follows:

Kt+2 =
φt+2(i∗)−Ψ(i∗, αt+2)

Λt+2(i∗)
.

Note that Λt+2(i∗) 6= 0 as we are assuming the user Ui∗ is not in the list Rt+2 of
revoked users for that session.

An Example

We add here a simple example to illustrate how this attack works. It may be useful
to see the variable x as a constant, when thinking on ψ(x, y). We can thus define the
polynomial F (y) = ψ(x, y), with t+1 unknowns. In the attack explained above, the
attacker holds t+ 1 pairs {(αj , F (αj))}j=1,...,t+1, so F (y) = ψ(x, y) can be recovered
with polynomial interpolation.

For example, consider t = 2, and suppose that the unknown polynomial ψ(x, y)
is

ψ(x, y) = 3−x+2y+xy−2x2+3y2−x2y+2xy2−3x2y2 = (3−x−2x2)+y(2+x−x2)+y2(3+2x−3x2).

Suppose that the attacker can obtain F (αj) = ψ(x, αj) for t + 1 = 3 different
values of αj , for simplicity αj = −1, 0, 1. This means that the attacker knows

• F (−1) = ψ(x,−1) = 3− x− 2x2 − (2 + x− x2) + (3 + 2x− 3x2) = 4− 4x2.

• F (0) = ψ(x, 0) = 3− x− 2x2.

• F (1) = ψ(x, 1) = 3− x− 2x2 + (2 + x− x2) + (3 + 2x− 3x2) = 8 + 2x− 6x2.

Now the attacker can use Lagrange interpolation (we define S = {−1, 0, 1}):

ψ(x, y) = F (y) =
∑
αj∈S

F (αj)
∏

αk∈S,αk 6=αj

y − αk
αj − αk

.

In our specific case, the attacker can recover F (y) = ψ(x, y) as

ψ(x, y) = (4− 4x2)
y

−1
y − 1
−2

+ (3− x− 2x2)
y + 1

1
y − 1
−1

+ (8 + 2x− 6x2)
y + 1

2
y

1
.

The result of operating this formula is exactly the initial polynomial ψ(x, y) =
3− x+ 2y + xy − 2x2 + 3y2 − x2y + 2xy2 − 3x2y2.
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4 Conclusion

The self-healing key distribution schemes by Dutta and Mukhopadhyay [1, 2] are
the most efficient ones with respect to the length of the secret information held by
each user. In this paper we have explained why this ‘short’ length contradicts some
well-known theoretical bounds on the efficiency of self-healing schemes. After that,
we have shown some explicit attacks which completely break the security of the
considered schemes. Although one of the attacks (which applies also to a different
scheme, in [8]) can be fixed, the other one cannot be avoided without decreasing the
efficiency of the scheme, due to the theoretical results in [3, 4].

Our personal conclusion is that the efficiency of previous self-healing schemes
could not be substantially (and securely) improved, in the case of unconditionally
secure schemes, because the schemes proposed up to 2006 already achieve the optimal
theoretical bounds for the efficiency parameters.
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