
Bounded Regular Path Queries in

View-Based Data Integration⋆

Gösta Grahne1 and Alex Thomo2

1 Concordia University, Montreal, Canada, grahne@cs.concordia.ca
2 University of Victoria, Victoria, Canada, thomo@cs.uvic.ca

Abstract. In this paper we study the problem of deciding boundedness of (recursive) reg-
ular path queries over views in data integration systems, that is, whether a query can be
re-expressed without recursion. This problem becomes challenging when the views contain
recursion, thereby potentially making recursion in the query uncessary. We define and solve
two related problems of boundedness of regular path queries. One of the problems asks for the
existence of a bound, and the other, more restricted one, asks if the query is bounded within a
given parameter. For the more restricted version we show it PSPACE complete, and obtain a
constructive method for optimizing the queries. For the existential version of boundedness, we
show it PTIME reducible to the notorious problem of limitedness in distance automata. This
problem has received a lot attention in the formal language community, but only exponential
time algorithms are currently known.

1 Introduction

The compile-time query optimization is one of the key factors for the enormous success of database
systems today. Notably, the majority of the influential work on query optimizers dealt with SQL
queries, for which the negation free ones correspond to datalog queries without recursion.

Nevertheless, in the research community from the mid 1980’s to the mid 1990’s, another theme
was the study of (recursive) datalog (see e. g. [27]). Unfortunately, most decision problems related
to query optimization turned out to be undecidable. One of the undecidable problems was the
boundedness of datalog, which is to decide whether a given recursive datalog query is equivalent to
one without recursion. The importance of this is that should we be able to re-express a recursive
datalog query as another query without recursion, then we could use the optimization machinery
for non-recursive queries, which over the years has been proven to be very efficient and successful in
commercial systems.

Notably, a well-behaved fragment of datalog, which is both natural and quite general, did emerge
in the mid 1990’s, in the context of semistructured data (graph data) (see [27]). This fragment is
the class of regular queries, whose basic element is that of regular path queries.

The semi-structured data model [1] is now widely used as a foundation for reasoning about a
multitude of applications, where the data is best formalized in terms of labeled graphs. Such data is
usually found in Web information systems, XML data repositories, digital libraries, communication
networks, and so on.

Regarding the query languages for semi-structured data, virtually all of them provide the pos-
sibility for the user to query the database through regular expressions. The boundedness problem
for regular path queries is decidable. Simply, one has to build a finite automaton and check whether
there is a cycle on a path between an initial and a final state.

This simplicity is not true anymore when the regular path queries are on an alphabet where
the symbols represent views, which can in turn can have recursive definitions. Such queries are
prominent today in information integration systems, where the data-sources are represented as a

⋆ A preliminary version of this paper appeared at IDEAS’07.



set of views over a global schema. The data is described by the local schema, which in the semi-
structured context is the set of view names. By using the view definitions, the user query (expressed
on the global schema) is rewritten by the integration engine in terms of the local schema. Finally,
the obtained view-based rewriting is used to extract the answer from the data on the local schema.
This is commonly referred in the literature as the local-as-view (LAV) approach for data integration
(see [18]).

Thus, in practice, we have to deal with machine generated regular path queries (rewritings) on
view names, and the above-mentioned simple check for recursion is not sufficient.

A classical example given in [3] is the following. Suppose that we have a single view V = R∗ and
the view-based rewriting is V ∗. Clearly, this is equivalent with just V , which is more efficient than
V ∗ to be answered on the data source.

We note here that, the view-based rewritings, generated by the method proposed in [3] always
contain all the recursion possible, as long as the containment of the rewriting to the original query
is preserved. The problem of “minimizing” a rewriting was first proposed in that same paper ([3])
but it has been open since then.

In general, the problem is more complicated than the example above, which only illustrates a case
where the non-recursive rewriting reduces to a single-letter word. As a more elaborated example,
consider the view V = R+. Now, for any given (natural) number k, take the query Q = R∗.Rk. The
rewriting computed by [3] and [8] will be (V k)+, and clearly we need to have a way to infer that in
fact the only word needed from this language is the word V k, which has length k.

In this paper, by solving the boundedness problem for regular path queries over views, we show
that for the exact view-based assumption in data integration, it is sometimes possible to replace
a view-based rewriting with a not necessarily (purely) algebraically equivalent non-recursive one,
without loosing any answers. The exact view assumption is usually the implicit assumption in a
multitude of applications such as datawarehouses and enterprise data integration applications (see
e.g. [9]), and has received considerable attention in the research community (see e.g. [6, 2]).

Furthermore, we obtain an optimal algorithm, which takes as input a view-based expression and
a number k, and returns an equivalent expression without recursion (if such exists), in which the
length of the longest word does not exceed k.

Depending on the application, we might be interested only in the existence of the above number k.
Namely, we would like to know, for a given expression (query) on the view definitions, whether there
exists a number k, such that the sub-language of the words of length not more than k is equivalent
with the language captured by the original expression. Clearly, this amounts to deciding whether
a query can be equivalently re-expressed without recursion. We show that our existential problem
is polynomial time reducible to the intricate limitedness problem for distance automata, intensely
investigated by Hashiguchi and others [11, 13, 14, 19, 25, 23].

The rest of the paper is organized as follows. In Section 2, we give the necessary background on
regular path queries and views in LAV data integration. In Section 3, we present a characterization
theorem for the regular path query equivalence with respect to a set of views. In the same section,
we define two notions of boundedness, the k-boundedness and finite boundedness. In Section 4, we
present our results for the k-boundedness. In Section 5, we solve the finite boundedness problem by
giving a reduction to the limitedness problem in distance automata. Finally, Section 6 concludes the
paper.

2 Basic Definitions

We consider a database to be an edge-labeled graph. This graph model is typical in semistructured
data, where the nodes of the database graph represent the objects and the edges represent the
attributes of the objects, or relationships between the objects.

Formally, let ∆ be a finite alphabet. We shall call ∆ the database alphabet. Elements of ∆ will be
denoted R,S, . . .. As usual, ∆∗ denotes the set of all finite words over ∆. Words will be denoted by

2



u,w, . . .. We also assume that we have a universe of objects, and objects will be denoted a, b, c, . . ..
A database D over ∆ is a is a subset of N ×∆×N , where N is a finite set of objects, that we usually
will call nodes. We view a database as a directed labeled graph, and interpret a triple (a,R, b) as a
directed edge from a to object b, labeled with R. If there is a path labeled R1, R2, . . . , Rk from a

node a to a node b we write a
R1R2...Rk−→ b.

A (user) query Q is a regular language over ∆. For the ease of notation, we will blur the distinction
between regular languages and regular expressions that represent them. Let Q be a query and D a
database. Then, the answer to Q on D is defined as

ans(Q,D) = {(a, b) : a
w

−→ b in D for some w ∈ Q}.

Let V1, . . . , Vn be languages (queries) on alphabet ∆. We will call them views and associate with
each Vi a view name vi.

We call the set Ω = {v1, . . . , vn} the outer alphabet, or view alphabet. For each vi ∈ Ω, we set

h(vi) = Vi. The substitution h associates with each view name vi in the Ω alphabet the language
Vi. The substitution h is applied to words, languages, and regular expressions in the usual way (see
e.g. [15]).

A view graph is database V over Ω. In other words, a view graph is a database where the edges
are labeled with symbols from Ω. View graphs can also be queried by regular path queries over Ω.
However, as explained below these are not queries given by the user, but rather rewritings computed
by the system.

In a LAV (“local-as-view”) information integration system [18], we have the “global schema” ∆,
the “source schema” Ω, and the “assertion” h : Ω → 2∆∗

. The only extensional data available is a
view graph V over Ω (see also [20, 26, 7, 5]3).

The user queries are expressed on the global schema ∆, and the system has to answer based solely
on the information provided by the views. In order to do this, the system has to reason with respect
to the set of possible databases over ∆ that V could represent. Under the exact view assumption, a
view graph V defines a set poss(V) of databases as follows:

poss(V) = {D : V =
⋃

i∈{1,...,n}

{(a, vi, b) : (a, b) ∈ ans(Vi,D)}}.

(Recall that Vi = h(vi).) The above definition reflects the intuition that a database D is possible
with respect to a view graph V if the computation of the Vi views on D gives precisely the set of
objects (a, b) which when connected by the appropriate vi edges yield graph V.

The meaning of querying a view graph through the global schema in a LAV information integra-
tions system is defined as follows. Let Q be a query over ∆. Then

ans(Q,V) =
⋂

D∈poss(V)

ans(Q,D).

This is also called the certain answer of Q with respect to the given views (cf. [18]).
Henceforth, we will consider only view graphs which are valid, that is, the view graphs for which

the set of possible databases is not empty. Under the exact view assumption, not all view graphs are
valid. As an example, consider a single view V = R∗, and the view graph V = {(a, v, b), (b, v, c)}. It
is easy to see that poss(V) = ∅. The reason is that V “misses” a v-edge from a to c.

There are two approaches for computing ans(Q,V). The first one is to use an exponential proce-
dure in the size of the data in order to completely compute ans(Q,V) (see [4]). There is little that
one can better hope for, since in the same paper it has been proven that to decide whether a tuple
belongs to ans(Q,V) is co-NP complete with respect to the size of data.

3 Regarding corresponding LAV scenarios for relational data.

3



The second approach is to first compute a view-based rewriting Q′ for Q, as in [3]. For example,
if Q = (R + S)∗(T + U) and V1 = (R + S)∗, V2 = T , then the computed rewriting is Q′ = v∗

1v2.
Such rewritings are regular path queries on Ω. We can approximate ans(Q,V) by ans(Q′,V),

which can be computed in polynomial time with respect to the size of data. In general, for a view-
based rewriting Q′ computed by the algorithm of [3], we have that

ans(Q′,V) ⊆ ans(Q,V),

with equality when the rewriting is exact ([4]). In the rest of the paper, we will assume that the
data-integration system follows the second approach.

3 Query Equivalence and Boundedness

Consider two queries (rewritings), Q1 and Q2 over an alphabet Σ ∈ {∆,Ω}. We say that a query
Q1 is Σ-contained in a query Q2 denoted Q1 ⊆Σ Q2 iff the answer to Q1 is contained to the answer
to Q2, on all databases over Σ. We say that Q1 is Σ-equivalent to Q2 and write Q1 ≡Σ Q2, when
Q1 ⊆Σ Q2 and Q2 ⊆Σ Q1. It is easy to see that the above query containment coincides with the
(regular) language containment of Q1 and Q2, and that the query equivalence coincides with the
language equality, i.e. Q1 ⊆Σ Q2 iff Q1 ⊆ Q2 and Q1 ≡Σ Q2 iff Q1 = Q2.

Let Q1 and Q2 be queries over Ω. We say that Q1 is Ω/∆-contained in Q2, denoted Q1 ⊆Ω/∆ Q2,
iff h(Q1) ⊆∆ h(Q2). Likewise, Q1 is Ω/∆-equivalent to Q2 denoted Q1 ≡Ω/∆ Q2, when Q1 ⊆Ω/∆ Q2

and Q2 ⊆Ω/∆ Q1. It is easy to see that Ω-containment Q1 ⊆Ω Q2, implies Ω/∆-containment
Q1 ⊆Ω/∆ Q2 but not vice-versa. As an example, if Q1 = v, Q2 = v∗ (where v ∈ Ω), and h(v) = R∗,
then Q1 is Ω/∆-equivalent with Q2, although they are not Ω-equivalent.

We now have the following theorem.

Theorem 1. Let Q1 and Q2 be queries over Ω. Under the exact view assumption, Q1 ⊆Ω/∆ Q2 iff
for each valid view graph V over Ω, ans(Q1,V) ⊆ ans(Q2,V).

Proof. “If.” Assume that Q1 6⊆Ω/∆ Q2. Then, there exists a word w = R1 . . . Rm, such that w ∈

h(Q1), but w 6∈ h(Q2). Let a, b, c1, . . . , cm−1 be objects from the universe of objects. We construct the
database D = {(a,R1, c1) , . . . , (cm−1, Rm, b)}. From D we construct a view graph V, by computing
ans(Vi,D), for all i ∈ [1, n].

The view graph V is not empty since it is computed on the database D, which has a path that
spells w, which in turn is in h(Q1) ⊆ h(Ω∗). So, there exist a word on Ω, whose “∆-expansion”
(applying h on it) contains w. Clearly, this Ω-word has to be spelled by some path in V. Furthermore,
V is valid since D ∈ poss(V).

It is easy to verify that (a, b) ∈ ans(Q1,V) but (a, b) 6∈ ans(Q2,V) (which is a contradic-
tion). To see this, let us assume that (a, b) ∈ ans(Q2,V), i.e. there exists a word vi1 . . . vik

∈ Q2,
which is spelled by a path connecting a with b in V. By the construction of V, this means that
w = R1 . . . Rm ∈ h(vi1 . . . vik

), and since h(vi1 . . . vik
) ⊆ h(Q2), we get that w ∈ h(Q2), which is a

contradiction.
“Only if.” Assume that there exists a valid view graph V for which ans(Q1,V) 6⊆ ans(Q2,V). Then,

there exists a tuple (a, b) ∈ ans(Q1,V) and (a, b) 6∈ ans(Q2,V). Since (a, b) ∈ ans(Q1,V), there is
a path from a to b in V spelling a word (of Q1), say vi1 . . . vik

(on Ω). Now, let D be an arbitrary
database in poss(V). Since D is a possible database with respect to V, the objects a and b will be
in D, and furthermore there will be a ∆-path from a to b spelling a word, say wi1 . . . wik

, where
wi1 ∈ h(vi1), . . . , wik

∈ h(vik
). From the fact that Q1 ≡Ω/∆ Q2, we have {vi1 . . . vik

} ⊆Ω/∆ Q2,
which implies that the word wi1 . . . wik

∈ h(Q2). Thus, there exists a word vj1 . . . vjm
∈ Q2, such

that wi1 . . . wik
∈ h(vj1 . . . vjm

). This means that, we can find a word wj1 . . . wjm
, where wj1 ∈ h(vj1),

. . . , wjm
∈ h(vjm

), and such that wj1 . . . wjm
= wi1 . . . wik

. This amounts to saying that, the path
spelling wi1 . . . wik

in D, can be seen to spell wj1 . . . wjm
as well, i.e. there exist objects c1, . . . , cm−1

4



in D, and the (on focus) path can written as awj1c1 . . . cm−1wjm
b. Clearly, (a, c1) ∈ ans(h(vj1),D),

. . . , (cm−1, b) ∈ ans(h(vjm
),D).

Finally, because of the exactness assumption for the views, we have that (a, vj1 , c1) ∈ V, . . . ,
(cm−1, vjm

, b) ∈ V, which implies in turn that (a, b) ∈ ans({vj1 . . . vjm
},V), i.e. (a, b) ∈ ans(Q2,V),

which is a contradiction. ⊓⊔

Corollary 1. Let Q1 and Q2 be queries over Ω. Under the exact view assumption, Q1 ≡Ω/∆ Q2 iff
for each valid view graph V over Ω, ans(Q1,V) = ans(Q2,V).

The importance of the above corollary and theorem is that it allows us to minimize as much
as possible a query on Ω (i.e. a view-based rewriting) without loosing query-power as long as we
preserve Ω/∆-equivalence, which is algebraically weaker than Ω-equivalence.

The above does not hold when we drop the exactness assumption for the views and consider
them sound only.4 As an example, consider a view V , which is ∆-equivalent with V ∗, and a view
graph V = {(a, v, b), (b, v, c)}. For this V, we have that ans(v∗,V) 6= ans(v,V). Clearly, the answer
of V will be equal to the answer of V ∗ on each database on ∆, but because the view is assumed to
be sound we cannot enforce V to have an additional v-edge from a to c.

Now, let us denote with Q(k) the set of all words in Q, which have length of not more than k.
Obviously, Q(0) ⊆ Q(1) ⊆ . . . ⊆ Q(k) ⊆ . . . ⊆ Q.

In the following, we formally define two boundedness problems.

Problem 1. k-Boundedness
Instance. A query Q on Ω, a set of views V = {V1, . . . , Vn} on ∆, and a k ∈ N.
Answer. “Yes” if and only if Q(k) ≡Ω/∆ Q.

If the answer to this problem is “Yes,” we say that the query Q is k-bounded.

Problem 2. Finite Boundedness
Instance. A query Q on Ω, and a set of views V = {V1, . . . , Vn} on ∆.
Answer. “Yes” if and only if there exists k ∈ N such that Q is k-bounded.

If the answer to this problem is “Yes,” we say that the query Q is finitely bounded.

4 k-Boundedness

As a first observation, the problem of k-boundedness is decidable. For this,

1. Construct an automaton (NFA) for Q.
2. Construct an automaton for Ωk. This automaton will have k + 1 states, {s0, s1 . . . , sk} (all of

them final and s0 initial) and transitions (si, v, si+1), for each v ∈ Ω, and 0 ≤ i ≤ k − 1.
3. Compute the intersection I = Q ∩ Ωk by constructing the Cartesian product of the above two

automata.
4. Check I ≡Ω/∆ Q by checking the regular language equivalence h(I) ≡∆ h(Q).

Language Ωk is the set of all words (on Ω) of length not more than k. Constructing an automaton
for Ωk is pseudo-polynomial in k (if a binary representation for k is assumed).5 Intersecting Q with
Ωk extracts all the words of Q having a length not more than k. This gives Q(k), i.e. I = Q(k).
Step 4 is a regular language equivalence check which can be done in PSPACE.

We turn now on the lower bound for deciding the k-boundedness.

4 Under the sound view assumption, we have

poss(V) = {D : V ⊆
⋃

i∈{1,...,n}

{(a, vi, b) : (a, b) ∈ ans(Vi,D)}}.

5 Constructing Ωk can be done in O(k) time, but since k is assumed to be represented in binary (having a
log

2
k size), this construction takes in fact a time which is exponential in the representation size of k.

5



Theorem 2. The problem of deciding k-boundedness is PSPACE-hard.

Proof. We will reduce the NFA universality problem to the k-boundedness problem. The univer-
sality problem says: given an NFA A, is ∆∗ ⊆ L(A)? The universality problem is PSPACE-complete
[16]. Without loss of generality, we can restrict the problem to the class of NFA’s which accept the
empty word ǫ, and all the single-letter words on ∆, as well.

Let A be an arbitrary NFA on ∆. We consider a single view V = L(A), and the corresponding
view alphabet Ω = {v}. We show that ∆∗ ⊆ L(A) iff v∗ is 1-bounded.

The only if direction is obvious. For the if direction, suppose v ≡Ω/∆ v∗. From this, we have that
V = V · V . Now, using also the fact that ∆ ⊂ V , we have that

V · ∆ ⊆ V · V = V, V · ∆2 ⊆ V · ∆ = V, . . . , V · ∆n ⊆ V · ∆ = V, . . .

from which we can conclude that V · ∆∗ ⊆ V. Since we assumed that ǫ ∈ L(A) = V , we get
{ǫ} · ∆∗ ⊆ V , which is ∆∗ ⊆ V , thereby proving our claim. ⊓⊔

If parameter k is fixed, then from all the above, we have

Corollary 1 The problem of k-boundedness is PSPACE-complete.

5 Finite Boundedness

5.1 Upper bound

In this section, we will polynomially reduce the finite boundedness problem to the problem of limit-
edness in distance automata. As a consequence, we obtain an exponential time upper bound for the
finite boundedness problem.

A distance automaton A consists of a finite set of states P , an alphabet ∆, a starting state s,
a set of final states F , and a transition relation τ ⊆ P × ∆ × {0, 1} × P . (Observe that a distance
automaton is ǫ-free.) Intuitively, a distance automaton is an automaton with transitions weighted
by 1 or 0.

Let p and q be two states of a distance automaton A (as above), and let π be a path between
them, spelling a word w. Note that there can be more than one path from p to q spelling w. Let

dA (p,w, q) = inf{weight(π) : π is a path spelling w, from p to q in A },

where the weight of a path is the sum of the weights of the edges along it.
Also, for a state p and a subset of states M ⊆ P , we define

dA (p,w,M) = inf{dA (p,w, q) : q ∈ M}.

Let A be the (classical) automaton obtained from A by removing the transition weights. We define
L(A ) to be L(A). Now, the distance of A is defined as

d(A ) = sup{dA (s, w, F ) : w ∈ L(A )}.

We say that a distance automaton A is limited if d(A ) < ∞.

Our reduction. Given a query Q, and a set of view definitions V = {V1, V2, . . . , Vn}, we shall
construct a distance automaton AQ,V, such that Q is finitely bounded w.r.t. V if and only if AQ,V

is limited in distance.
First, we construct in polynomial time an ǫ-free automaton (NFA) AQ for Q. Let this automaton

be AQ = (P,Ω, τ, s, F ) consisting of a finite set of states P , alphabet Ω, a starting state s, a set of
final states F , and a transition relation τ ⊆ P × ∆ × P .

6



Also for each view Vi, where 1 ≤ i ≤ n, we construct a zero-weighted distance automaton
AVi

= (Pi,∆, τi, si, Fi) which is obtained from an ǫ-free automaton (NFA) for Vi by “weighting” the
transitions with 0.

Now, from the query automaton AQ and the view automata we construct a distance automaton
AQ,V on alphabet ∆. Namely, using the states of AQ to initialize, the construction of AQ,V proceeds
as follows: For each transition (p, vi, q) in AQ:

1. create a copy of distance automaton AVi
which for simplicity is denoted with the same signature

(Pi,∆, τi, si, Fi)
2. add the following set of transitions

(a) {(p,R, 0, r) : (si, R, 0, r) ∈ τi}
(b) {(r,R, 1, q) : (r,R, 0, t) ∈ τi and t ∈ Fi}
(c) {(p,R, 1, q) : (si, R, 0, r) ∈ τi and r ∈ Fi}.

Transitions in the first set are for “jumping” from state p to all the states of (copy) automaton AVi
,

that are reachable in one step from the initial state si of AVi
. These transitions are weighted by 0.

Once the “control” is transferred to AVi
, the only way to “escape” from it and go to state q is by

scanning a word in language Vi. Scanning of such words (except their last symbol) is done at zero
cost through the transitions of AVi

. Their last symbol causes a “jump” to state q and it is marked by
“paying” a price of one unit. This is handled by the transitions of the second set. Finally, transitions
of the third set are for handling the special case of single symbol words accepted by AVi

.
Further, we set s as the initial state and F as the set of final states in A . From the above

descriptions, it is clear that

Proposition 1. L(AQ,V) = h(Q).

We now show that

Theorem 3. Q is finitely bounded with respect to V if and only if AQ,V is limited.

Proof.

“If.” Since AQ,V is limited, there exists a k ∈ N such that d(AQ,V) ≤ k. This means that for
each word w in h(Q) = L(AQ,V) there exists a path π of transitions going from initial state s
to some final state f and weighted by some integer j ≤ k. By the construction of AQ,V, path π
“pays” a unit cost each time that it spells some word in a view language. Thus, there exist a word
vi1 . . . vij

∈ Q, such that w ∈ h(vi1 . . . vij
). Since the length of vi1 . . . vij

is not more than k, we have

that vi1 . . . vij
∈ Q(k). Hence, h(Q) ⊆ h(Q(k)), which immediately implies that Q(k) ≡Ω/∆ Q, i.e. Q

is k-bounded.
“Only if.” Since Q is finitely bounded, for each word w in h(Q) = L(AQ,V) there exists a word

vi1 . . . vij
∈ Q, where j ≤ k, such that w ∈ h(vi1 . . . vij

). By the construction of AQ,V we have that
dAQ,V

(s, w, F ) ≤ j ≤ k, where s is the initial state and F is the set of final states in AQ,V. Since, w
was an arbitrary word in h(Q) = L(AQ,V), we finally get d(AQ,V) ≤ k. ⊓⊔

Hence, the finite boundedness is reducible to the limitedness of distance automata. Since such
an automaton is constructible in polynomial time, we have that the reduction is polynomial as well.

The first solution to the limitedness of distance automata was obtained by Hashiguchi in [11]. By
now, it is known that the problem is PSPACE-complete (see [19] and [17] for the lower and upper
bound, respectively).

5.2 Lower bound

Regarding the lower complexity bound, it can be shown that the well-known problem of finite power
property (FPP) for regular languages can be reduced to our (query) finite boundedness problem.
FPP asks whether for a given regular language, say L, there exists an m ∈ N, such that

L∗ = {ǫ} ∪ L ∪ L2 ∪ . . . ∪ Lm.

7



Now, this can be reduced to the finite boundedness problem by considering a single view V = L, a
corresponding alphabet Ω = {v}, and a query v∗.

As shown by Weber in [28], the FPP problem is PSPACE-hard. From this, and the PSPACE-
completeness of the limitedness problem, we conclude that our boundedness problem is PSPACE-
complete.

5.3 Bibliographical Remark

Hashiguchi in [12] defined and solved the following representation problem.

Let L and L1, . . . , Ln be regular languages over some alphabet ∆. Is L expressible in terms
of L1, . . . , Ln by using only union and concatenation?

To solve this problem, he presented a reduction to the limitedness problem in distance automata.
The reduction works by building a distance automaton B which is exponential in the size of an
automaton A for L. Then, the above problem is answered affirmatively if and only if L(B) = L and
B is limited in distance. Checking the limitedness of B (by the most efficient algorithm) can be
done in exponential time in the size of B, i.e. in doubly-exponential time in the size of A.

Now, our problem of finite boundedness can be reduced to this representation problem, by setting
L = h(Q) and L1 = V1, . . . , Ln = Vn. However, this would give us a doubly-exponential algorithm
for deciding the finite boundedness.

Finally, we note that a reverse reduction, from Hashiguchi’s problem to the finite boundedness
problem, does not seem possible. Given L and L1, . . . , Ln, there does not always exist a Q such
that h(Q) = L. Rather, one can only compute the biggest Q such that h(Q) ⊆ L.

6 Conclusions

We have formally defined and solved two problems of boundedness for view-based query rewritings.
These problems are related to the problem of minimizing view-based rewritings, which was first
proposed by [3].

We believe that the problems we have solved are of significant importance for the optimization
of queries in LAV data integration systems. This is because should we be able to express a view-
based query rewriting without using recursion, then we could use the optimization machinery for
non-recursive queries.

Acknowledgment. We would like to thank Daniel Kirsten for pointing to us the [28] paper. Also,
we would like to thank an anonymous reviewer for constructive comments on a previous version of
this paper.

References

1. Abiteboul S., P. Buneman and D. Suciu. Data on the Web : From Relations to Semistructured Data and
XML. Morgan Kaufmann Pulishers. San Francisco, Ca., 1999.

2. Bravo L., and Bertossi L. Deductive databases for computing certain and consistent answers from me-
diated data integration systems. J. Applied Logic 3(1): 329–367, 2005.

3. Calvanese D., G. Giacomo, M. Lenzerini and M. Y. Vardi. Rewriting of Regular Expressions and Regular
Path Queries. Proc. PODS ’99, pp. 194–204.

4. Calvanese D., G. Giacomo, M. Lenzerini and M. Y. Vardi. Answering Regular Path Queries Using Views.
Proc. ICDE ’00, pp. 389–398

5. Deutsch A., Y. Katsis and Y. Papakonstantinou. Determining Source Contribution in Information Inte-
gration Systems. Proc. PODS ’05

8



6. Flesca, S., and Greco, S. Rewriting queries using views. IEEE Trans. Knowl. Data Eng. 13(6): 980–995,
2001

7. Grahne G. and Mendelzon A. O. Tableau Techniques for Querying Information Sources through Global
Schemas. Proc. ICDT ’99, pp. 332–347

8. Grahne G., and A. Thomo. An Optimization Technique for Answering Regular Path Queries Proc.
WebDB ’00, pp. 99–104.

9. Jonson H., and Xiaoyan Q. DB2 information integrator V8.1: Under the Hood. ARISE ’04
http://www.scs.carleton.ca/∼nvillanu/Presentations/IBM.ppt

10. Hashiguchi K. A Decision Procedure for the Order of Regular Events. Theoretical Computer Science 8:
69–72, 1979

11. Hashiguchi K. Limitedness Theorem on Finite Automata with Distance Functions. J. Comp. Syst. Sci.
24(2): 233–244, 1982

12. Hashiguchi K. Representation Theorems on Regular Languages. J. Comput. Syst. Sci. 27(1): 1983,
pp. 101–115.

13. Hashiguchi K. Improved Limitedness Theorems on Finite Automata with Distance Functions. Theoretical
Computer Science 72(1): 27–38, 1990

14. Hashiguchi K. New upper bounds to the limitedness of distance automata. Theoretical Computer Science
233(1-2): 19–32, 2000

15. Hopcroft J. E., and J. D. Ullman. Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley. Reading Ma., 1979.

16. Hunt H. B. III, D. J. Rosenkrantz, and T. G. Szymanski, On the Equivalence, Containment, and Covering
Problems for the Regular and Context-Free Languages. J. Comp. Syst. Sci. 12 (2) : 222–268, 1976

17. Kirsten D. Distance desert automata and the star height problem. R.A.I.R.O. - Informatique Theorique
et Applications 39 (3) : 455–509, 2005.

18. Lenzerini M. Data Integration: A Theoretical Perspective. Proc. PODS ’02, pp. 233–246
19. Leung H. Limitedness Theorem on Finite Automata with Distance Functions: An Algebraic Proof.

Theoretical Computer Science 81 (1) : 137–145, 1991
20. Levy A. Y., Mendelzon A. O., Sagiv Y., Srivastava D. Answering Queries Using Views. Proc. PODS ’95,

pp. 95-104
21. Mendelzon A. O., and P. T. Wood, Finding Regular Simple Paths in Graph Databases. SIAM J. Comp.

24 (6) : 1235–1258, 1995.
22. Mendelzon A. O. G. A. Mihaila and T. Milo. Querying the World Wide Web. Int. J. Dig. Lib. 1 (1) :

57–67, 1997
23. Pin. J. E. Tropical Semirings, in Idempotency, J. Gunawardena (ed.) Cambridge University Press, pp.

50–69, 1998
24. Simon. I. Limited Subsets of a Free Monoid. Proc. FOCS ’78 , pp. 143–150
25. Simon. I. On Semigroups of Matrices over the Tropical Semiring. Informatique Theorique et Applications

28 (3-4) : 277–294, 1994
26. Ullman J. D. Information Integration Using Logical Views. Proc. ICDT ’97, pp. 19-40.
27. Vardi. M. Y. A Call to Regularity. Proc. PCK50 - Principles of Computing & Knowledge, Paris C.

Kanellakis Memorial Workshop ’03, pp. 11
28. Weber A. Distance Automata Having Large Finite Distance or Finite Ambiguity. Mathematical Systems

Theory 26 (2) : 169–185, 1993

9


