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1. Introduction

Conditional functional dependencies (CFDs) have re-
cently been studied for detecting inconsistencies in rela-
tional data [14]. These dependencies are an extension of
functional dependencies (FDs) by enforcing patterns of se-
mantically related data values. In contrast to traditional
FDs that were developed for improving the quality of
schema, CFDs aim to improve the quality of the data. That
is, CFDs are to be used as data-quality rules such that er-
rors and inconsistencies in the data can be detected as
violations of these dependencies.

While CFDs are capable of capturing more errors than
traditional FDs, they are not powerful enough to detect cer-
tain inconsistencies commonly found in real-life data. To
illustrate this, let us consider an example.

Example 1.1. Consider a relation schema:

sale(FN: string, LN: string, street: string,

* Corresponding author.
E-mail address: wenfei@inf.ed.ac.uk (W. Fan).

city: string, state: string, country: string,

zip: string, item: string, type: string),

where each tuple specifies an item of a certain type pur-
chased by a customer. Each customer is specified by her
name (FN,LN) and address (street, city, state, country, zip).
An instance D0 of the sale schema is shown in Fig. 1.

CFDs on sale data include the following:

φ1:
([country, zip] → street, t1

p

)
, and t1

p = (uk, _ ‖ _)

φ2:
(
country → state, t2

p

)
, where t2

p = (uk ‖ n/a).

Here φ1 asserts that for customers in the UK, zip code
uniquely determines street. It uses a tuple t1

p to specify
a pattern: country = UK, zip = ‘_’ and street = ‘_’, where
‘_’ can take an arbitrary value. It is an “FD” that is to
hold on the subset of tuples that satisfies the pattern, e.g.,
{t1, t3} in D0, rather than on the entire D0 (in the US, for
example, zip does not determine street). It is not a tra-
ditional FD since it is defined with constants. Similarly,
φ2 assures that for any address in the UK, state must be
N/A (non-applicable); this is enforced by pattern tuple t2

p :
country = UK and state = N/A.

When these CFDs are used as data quality rules, one
can see that either t1 or t3 is “dirty”: they violate the

0020-0190/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
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FN LN street city state country zip item type

t1: Joe Brady Mayfield EDI N/A UK EH4 8LE CD1 regular
t2: Mark Webber Crichton EDI NY United Kingdom EH4 8LE CD2 sale
t3: John Hull Queen EDI N/A UK EH4 8LE CD3 regular
t4: William Smith 5th Ave NYC NY US 10016 book1 sale
t5: Bill Smith 5th Ave NYC NY US 10016 book2 sale
t6: Bill Smith 5th Ave NYC NY US 10016 book3 sale

Fig. 1. An instance of the sale relation schema.

rule φ1. Indeed, t1 and t3 are about customers in the UK
and they have the same zip; however, they have different
streets.

A closer examination of D0 reveals that tuple t2 is not
error-free either. Indeed, t2 is about a transaction for a
UK customer, but (a) its state is NY rather than N/A, and
(b) while its zip is the same as that of t1 and t3, it has
a street not found in t1 or t3. However, these violations
cannot be detected by φ1 and φ2. Indeed, these CFDs are
specified with the pattern country = UK, and do not apply
to tuples with country = “United Kingdom”. Although UK
and United Kingdom refer to the same country, they are
not treated as equal by the equality operator adopted by
CFDs and FDs. In other words, CFDs and FDs do not ob-
serve domain-specific abbreviations and conventions.

Another issue concerns cardinality constraints commonly
found in practice, which require that the number of tuples
with a certain pattern does not exceed a predefined bound.
An example is that each customer is allowed to purchase
at most two distinct items on sale (with type = sale). As
another example, on a school database, one may want
to specify that a CS student can register for at most six
courses each semester. These constraints can be expressed
as neither FDs nor CFDs.

These practical concerns highlight the following ques-
tions. Can one extend CFDs to express cardinality con-
straints and synonym rules (domains-specific abbreviations
and conventions)? Can we find an extension such that it
does not increase the complexity for reasoning about these
dependencies? Indeed, we want a balance between the ex-
pressive power needed to deal with these issues, and the
complexity for static analyses of the dependencies.

Contributions. We answer these questions in this paper,
by providing the following.

(1) We propose an extension of CFDs, denoted by CFDcs,
that is able to express cardinality constraints, synonym
rules and patterns of semantically related values of
CFDs in a uniform constraint formalism. For example,
all constraints we have seen so far can be expressed
as CFDcs.

(2) We establish complexity bounds for the satisfiabil-
ity problem and the implication problem associated
with CFDcs. The satisfiability problem is to determine
whether a set Σ of CFDcs has a nonempty model, i.e.,
whether the data quality rules in Σ make sense. The
implication problem is to decide whether a set Σ of
CFDcs entails another CFDc ϕ , i.e., whether the rule ϕ
is redundant given the rules in Σ .

We show that despite the increased expressive power
of CFDcs, their satisfiability and implication problems
are NP-complete and coNP-complete, respectively, the
same as their counterparts for CFDs [14].

(3) We identify special cases where the satisfiability and
implication analyses of CFDcs are in PTIME. That is, in
these practical settings we are able to reason about
CFDcs efficiently.

We contend that CFDcs yield a better tool than CFDs
for detecting errors, without increasing the complexity of
static analyses.

Related work. To our knowledge, no previous work has
studied extensions of CFDs to capture cardinality con-
straints and synonym rules.

Constraint-based data cleaning was introduced in [4],
which proposed to use dependencies, e.g., FDs, inclusion
dependencies (INDs) and denial constraints, to detect er-
rors in real-life data (see, e.g., [12] for a comprehensive
survey). As an extension of traditional FDs, CFDs were de-
veloped in [14], which showed that the satisfiability prob-
lem and implication problem for CFDs are NP-complete
and coNP-complete, respectively. There have been exten-
sions of CFDs to support disjunction and negation [9], and
ranges of values in pattern tuples [16]. These extensions
address issues quite different from the focus of CFDcs, and
will be further discussed in Section 5. Algorithms have
been developed for discovering CFDs [11,16] and for re-
pairing data based on CFDs [13]. There have also been a
variety of extensions of FDs [6,8,19] (see [14] for a detailed
discussion about the differences between these extensions
and CFDs). To the best of our knowledge, no previous work
has studied how to extend CFDs or FDs to express cardinal-
ity constraints, abbreviations and conventions.

Synonym rules have been studied for record match-
ing [2,3] in the form of transformation rules. However, no
previous work has studied how to express these in depen-
dencies, or their impact on the static analyses of depen-
dencies.

Cardinality constraints have been studied for rela-
tional data [18] to constrain the domains of attributes,
and for object-oriented databases to restrict the extents
of classes [10]. Numerical dependencies [17], which gen-
eralize FDs with cardinality constraints, have also been
proposed for schema design. These constraints differ from
CFDcs in that they cannot constrain tuples with a pattern
specified in terms of constants. Query answering has been
investigated for aggregate queries, FDs and denial con-
straints [5,7], which differ from this work in that neither
these dependencies can express cardinality constraints, nor
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the impact of cardinality constraints on the satisfiability
and implication analyses has been considered.

Organization. Section 2 defines CFDcs, followed by their
satisfiability and implication analyses in Sections 3 and 4,
respectively. Open issues are discussed in Section 5.

2. CFDc s: An extension of CFDs

Consider a relation schema R defined over a set of at-
tributes, denoted by attr(R). For each attribute A ∈ attr(R),
its domain is specified in R , denoted as dom(A). As will be
seen in Sections 3 and 4, the domains of attributes have
substantial impact on the complexity of satisfiability and
implication analyses of CFDcs.

CFDc s. A CFDc ϕ defined on schema R is a triple R(X → Y ,
tp , c), where (1) X → Y is a standard FD, referred to as the
FD embedded in ϕ; (2) tp is a tuple with attributes in X
and Y , referred to as the pattern tuple of ϕ , where for each
A in X ∪ Y , tp[A] is either a constant ‘a’ in dom(A), or an
unnamed (yet marked) variable ‘_’ that draws values from
dom(A); and (3) c is a positive integer. We refer to ϕ also
as a conditional functional dependency.

Intuitively, tp specifies a pattern of semantically related
values for X and Y attributes: for any tuple t in an in-
stance of R , if t[X] has the pattern tp[X], then t[Y ] must
observe the pattern tp[Y ]. Furthermore, for all those tuples
t such that t[X] has pattern tp[X], if we group t[Y ] values
by t[X], then the number of distinct values in (i.e., the car-
dinality of) each group is not allowed to exceed the bound
c. In particular, when c = 1, t[X] uniquely determines t[Y ],
i.e., the FD embedded in ϕ is enforced on those tuples
having a tp[X] pattern.

If A occurs in both X and Y , we use tp[AL] and tp[AR ]
to indicate its occurrence in X and Y , respectively. We sep-
arate the X and Y attributes in tp with ‘‖’, and denote X
as LHS(ϕ) and Y as RHS(ϕ). We write ϕ as (X → Y , tp, c)
when R is clear from the context.

Example 2.1. CFDs φ1 and φ2 of Example 1.1 can be ex-
pressed as CFDcs below, in which t1

p and t2
p are pattern

tuples given in Example 1.1:

ϕ1 := ([country, zip] → street, t1
p,1

)
,

ϕ2:
(
country → state, t2

p,1
)
.

The cardinality constraint described in Example 1.1 can
also be written as a CFDc ϕ3: (fd, t3

p,2), where FD fd and

pattern tuple t3
p are:

fd : fn, ln, street, city, state, country, zip, type → item,

t3
p = (_, _, _, _, _, _, _, sale ‖ _),

assuring that no customer may purchase more than two
distinct items with type = sale.

Semantics of CFDc s. To give the semantics of CFDcs, we
first extend the equality relation and revise the match op-
erator of [14].

An extension of equality. We use a finite binary relation Rc

to capture synonym rules. For values a and b, Rc(a,b) in-
dicates that a and b refer to the same real-world entity.
For example, Rc(“William”, “Bill”) and Rc(“United King-
dom”, “UK”). We assume without loss of generality that Rc

is symmetric: if Rc(a,b) then Rc(b,a). However, Rc may
not be transitive: from Rc(“New York State”, “NY”) and
Rc(“NY”, “New York City”) it does not follow that Rc(“New
York State”, “New York City”).

In the sequel we assume that Rc is predefined, as com-
monly found in practice.

We define a binary operator
.= on constants such that

for any values a and b, a
.= b iff (1) Rc(a,b) or a = b,

(2) b
.= a, or (3) there exists a value c such that a

.= c and
b = c. For example, “United Kingdom”

.= “UK”.
The operator

.= naturally extends to tuples: (a1, . . . ,ak)
.= (b1, . . . ,bk) iff for all i ∈ [1,k], ai

.= bi . Observe that
given a fixed Rc , whether a

.= b can be decided in poly-
nomial time.

Matching operator. We revise the binary operator � of [14]
defined on constants and ‘_’ as follows: η1 � η2 if either
(a) η1 and η2 are constants and η1

.= η2, or (b) one of
η1, η2 is ‘_’. The operator � extends to tuples, e.g., (a,b)

� (_,b) but (a,b) �� (_, c) if b � .= c.

Semantics. Based on
.= and �, we now give the semantics

of CFDc ϕ = R(X → Y , tp, c).
An instance D of schema R satisfies ϕ , denoted by

D |	 ϕ , iff for each tuple t in D , if t[X] � tp[X], then
(1) t[Y ] � tp[Y ], and (2) |πY (σX

.=t[X]D)| � c, i.e., for all tu-
ples t′ in D such that t′[X] .= t[X], there exist at most c
distinct t′[Y ] values. Here π and σ are the projection and
selection operators in relational algebra, respectively; and
|S| denotes the cardinality of a set S in which no two ele-
ments a,b are comparable by a

.= b.
Intuitively, ϕ is a constraint defined on the set of tuples

Dϕ = {t | t ∈ D, t[X] � tp[X]} such that (a) for each t ∈ Dϕ ,
the pattern tp[Y ] is enforced on t[Y ]; (b) for each set of
tuples in Dϕ grouped by X attribute values, the number
of their distinct Y values is bounded by the constant c;
that is, ϕ expresses a cardinality constraint on the Y val-
ues of those tuples grouped by X ; and (c) synonym rules
are captured by the extension

.= of the equality relation.
Note that ϕ is defined on the subset Dϕ of D identified by
tp[X], rather than on the entire D .

An instance D of R satisfies a set Σ of CFDcs, denoted by
D |	 Σ , if D |	 ϕ for each ϕ in Σ .

Example 2.2. Assume that Rc consists of (“United King-
dom”, “UK”) and (“William”, “Bill”). Recall instance D0
of Fig. 1 and CFDcs ϕ1,ϕ2 and ϕ3 of Example 2.1. Ob-
serve the following: (a) tuple t2 in D0 violates ϕ2, since
t2[country] � UK but t2[state] �� N/A; (b) t1, t2 and t3 vio-
late ϕ1 since they are UK records with the same zip code,
but they have different streets; (c) t4, t5 and t6 violate ϕ3,
since they agree on name and address (note that William
.= Bill), all have type = sale, but they have three distinct

items, beyond the bound 2.
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Three special cases of CFDcs are worth mentioning.
(a) Traditional FDs are CFDcs in which c is 1 and the pat-
tern tuple consists of ‘_’ only. (b) CFDs of [14] are CFDcs
in which c is fixed to be 1. (c) Constant CFDcs are CFDcs
in which the pattern tuples consist of constants only, i.e.,
they do not contain ‘_’.

3. The satisfiability analysis

A central technical problem associated with CFDcs is
the satisfiability problem.

The satisfiability problem for CFDcs is to determine,
given a set Σ of CFDcs on a schema R , whether or not
there exists a nonempty instance D of R such that D |	 Σ .
The set Σ is said to be satisfiable if such an instance exists.

Intuitively, the satisfiability problem is to decide wheth-
er a set of CFDcs makes sense or not. When CFDcs are used
as data quality rules, the satisfiability analysis helps us de-
tect whether the rules are dirty themselves.

Any set of FDs is satisfied by a nonempty relation. In
contrast, the satisfiability problem becomes NP-complete
for CFDs [14]. Since CFDcs subsume CFDs, the satisfiability
problem for CFDcs is at least as hard as for CFDs.

Example 3.1. Consider a schema R(A, B, C), and a set Σ1
consisting of three CFDcs defined on R: ψ1 = (A → B,

(true ‖ b),1), ψ2 = (A → B, (false ‖ b),1), and ψ3 = (C → B,

(_ ‖ b′),1), where dom(A) is Boolean, and b � .= b′ . Then Σ1
is not satisfiable. Indeed, for any nonempty instance D of
R and any tuple t in D , ψ3 requires t[B] to be b′ no mat-
ter what value t[C] is, whereas ψ1 and ψ2 force t[B] to be
b no matter whether t[A] is true or false.

The intractability. Despite the increased expressive power,
CFDcs do not complicate the satisfiability analysis. Indeed,
the satisfiability problem for CFDcs remains in NP. The
proof for the result below is an extension of Theorem 3.2
in [14], its counterpart for CFDs.

Theorem 3.1. The satisfiability problem for CFDcs is NP-com-
plete.

Proof. It is known that the satisfiability problem is already
NP-hard even for constant CFDs [14]. Since CFDcs subsume
CFDs, the NP lower bound for CFDs carries over to CFDcs.

We show the upper bound by presenting an NP algo-
rithm that, given a set Σ of CFDcs on a schema R , checks
whether Σ is satisfiable. Similar to CFDs [14], CFDcs have a
small model property: if there is a nonempty instance D of
R such that D |	 Σ , then for any t ∈ D , {t} is an instance
of R and {t} |	 Σ . Thus it suffices to consider single-tuple
instances {t} for deciding whether Σ is satisfiable.

Assume without loss of generality that attr(R) =
{A1, . . . , An}. For each i ∈ [1,n], define the active domain
of Ai to be a set adom(Ai) consisting of all constants of
tp[Ai] for all pattern tuples tp in Σ , plus an extra dis-
tinct value in dom(Ai) (if there exists one). Then it is easy
to verify that Σ is satisfiable iff there exists a mapping ρ
that assigns a value in adom(Ai) to t[Ai] for each i ∈ [1,n]
such that D = {(ρ(t[A1]), . . . , ρ(t[An]))} and D |	 Σ .

Based on these, we give the NP algorithm as follows:
(a) Guess a single tuple t of R such that t[Ai] ∈ adom(Ai)

for each i ∈ [1,n]. (b) Check whether {t} |	 Σ . If so it re-
turns “yes”, and otherwise it repeats steps (a) and (b). Note
that step (b) involves checking whether x

.= y, which can
be done in PTIME in the sizes of Σ and Rc , where Rc is
the relation given in the definition of

.=. Hence the algo-
rithm is in NP, and so is the satisfiability problem. �
A tractable case. As shown by Example 3.1, the complexity
is introduced by attributes in CFDcs with a finite domain.
This motivates us to consider the following special case.

A set Σ of CFDc is said to be bounded by a constant k
if at most k attributes in the CFDcs of Σ have a finite do-
main. In particular, when k = 0, all CFDcs in Σ are defined
in terms of attributes with an infinite domain.

Bounded CFDcs make our lives much easier. Indeed, an
extension of the proof of Proposition 3.5 in [14] suffices to
show the following.

Proposition 3.2. It is in PTIME to determine whether a set Σ of
CFDcs is satisfiable if Σ is bounded by a constant k.

Proof. When Σ is bounded by k, we develop a PTIME al-
gorithm to determine whether Σ is satisfiable, which is
based on a modified chase (see, e.g., [1] for the chase),
and the small model property identified in the proof of
Theorem 3.1. The algorithm is an extension of the one for
CFDs (Proposition 3.5 in [14]) to further deal with finite
domain attributes and the

.= operator. Assume without
loss of generality that Σ is defined on a schema R , and
only attributes Ai in CFDcs of Σ have a finite domain, for
i ∈ [1,k].

The algorithm checks whether there exists a tuple t of
R such that t |	 Σ . Initially t[A] is a distinct variable xA
for each A ∈ attr(R). For all i ∈ [1,k] and for each value in
dom(Ai) assigned to xAi , the algorithm does the following.

(a) For each CFDc φ = R(X → Y , tp, c) in Σ , chase t
using φ: if t[X] � tp[X], then change t[Y ] such that t[Y ] �
tp[Y ] as long as t[Y ] does not already contain a constant
that does not match the corresponding field in tp[Y ].

Here we extend the match operator � to accommodate
variables xB : xB � _, but xB �� η when η is a constant or a
variable.

(b) For each attribute B ∈ attr(R), if t[B] is still xB after
step (a), assign a distinct value from dom(B) to xB , which
does not appear in Σ and Rc ; note that dom(B) must be
infinite in this case by the definition of t .

(c) If t |	 Σ then return “yes”; “no” is returned if for all
possible valuations to xAi for i ∈ [1,k], it cannot instantiate
t such that t |	 Σ .

The algorithm is in O (|Σ |2|Rc |mk) time, i.e., in PTIME
when k is fixed, where |Σ | is the size of Σ , |Rc| is the
size of Rc (in the definition of

.=), and m is the maximum
cardinality of finite domains adom(Ai) for i ∈ [1,k].

We next show that the algorithm returns “yes” if and
only if Σ is satisfiable.

If the algorithm returns “yes”, there exists a tuple t
such that t |	 Σ . Thus Σ is satisfiable.

Conversely, if Σ is satisfiable, there exists a tuple t
such t |	 Σ . We show that the algorithm returns “yes”.
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Initialize a tuple t′ such that t′[Ai] = t[Ai] for i ∈ [1,k],
and t′[A] = xA for the rest of attributes A ∈ attr(R). After
step (a), for each attribute A ∈ attr(R), if t′[A] is a constant,
then t′[A] .= t[A]. Moreover, there exist no conflicts since
t |	 Σ . The assignments at step (b) are irrelevant since
t′[B]’s instantiated at that step are not constrained by pat-
tern tuples in Σ , and thus have no impact on whether {t′}
satisfies Σ . Thus after step (b), {t′} |	 Σ , and the algorithm
returns “yes”. �
4. The implication analysis

We next investigate another central technical problem
associated with CFDcs.

Consider a set Σ of CFDcs and a single CFDc defined on
the same schema R . We say that Σ implies ϕ , denoted by
Σ |	 ϕ , iff for all instances D of R , if D |	 Σ then D |	 ϕ .
We consider without loss of generality satisfiable Σ only.

The implication problem for CFDcs is to determine, given
a set Σ of CFDcs and a CFDc defined on the same schema,
whether Σ |	 ϕ .

The implication analysis helps us identify and eliminate
redundant data quality rules.

As examples of the implication analysis, we present two
simple results.

Proposition 4.1. For any CFDcs of the form:

ϕ: R(X → Y , tp, c), ϕ′: R(X → Y , tp, c′)

(a) ϕ |	 ϕ′ if c � c′; and
(b) if ϕ is a constant CFDc , ϕ |	 ϕ′ even when c′ = 1 and

c > c′ .

Proof. (a) This can be easily verified by the definition
of CFDcs. (b) We show that for any instance D of R , if
D |	 ϕ then D |	 ϕ′ . Observe that for any tuple t ∈ D , if
t[X] .= tp[X], then t[Y ] .= tp[Y ]. Hence for all tuples t′ in D ,
if t′[X] .= t[X], then t′[Y ] .= tp[Y ], i.e., |πY (σX

.=t[X]D)| � 1.
Thus D |	 ϕ′ . �
The intractability. We know that the implication problem
for CFDs is coNP-complete [14]. Below we show that the
upper bound remains intact for CFDcs, along the same
lines as its CFD counterpart (Theorem 4.3 in [14]).

In the rest of the section we consider a set Σ of CFDcs
and a CFDc ϕ = R(X → Y , tp, c) such that c is bounded by
a polynomial in the sizes of Σ and ϕ . This assumption is
acceptable since in practice, c is typically fairly small.

Theorem 4.2. The implication problem for CFDcs is coNP-
complete.

Proof. The implication problem for constant CFDs is coNP-
hard [14]. The lower bound carries over to CFDcs, which
subsume CFDs.

We show that the problem is in coNP by presenting an
NP algorithm for its complement, i.e., for deciding whether
Σ �|	 ϕ . The algorithm is based on a small model prop-
erty: if ϕ = R(X → Y , tp, c) and Σ �|	 ϕ , then there exists

an instance D of R with at most c + 1 tuples such that
D |	 Σ and D �|	 ϕ . That is, D consists of c + 1 tuples t1,

. . . , tc+1 such that for all i, j ∈ [1, c + 1], ti[X] � tp[X] and
ti[X] .= t j[X], but either there exists l ∈ [1, c + 1] such that
tl[Y ] �� tp[Y ], or for all i �= j, ti[Y ] � .= t j[Y ]. Thus it suf-
fices to consider instances D with c + 1 tuples for deciding
whether Σ �|	 ϕ .

Assume that attr(R) = {A1, . . . , An}. For each i ∈ [1,n],
let adom(Ai) be a set consisting of (a) all constants of
tp[Ai] for all pattern tuples tp in Σ ∪ {ϕ}, and (b) c + 1
extra distinct values in dom(Ai) if they exist; if dom(Ai) is
finite and does not have c + 1 extra values, let adom(Ai)

be dom(Ai). Then one can verify that Σ �|	 ϕ iff there
exist mappings ρ1, . . . , ρc+1 such that ρi maps t[A j] to
a value in adom(A j) for each j ∈ [1,n], D = {(ρ1(t[A1]),
. . . , ρ1(t[An])), . . . , (ρc+1(t[A1]), . . . , ρc+1(t[An]))}, D |	 Σ

and D �|	 ϕ .
Based on these, we give the NP algorithm as follows:

(a) Guess c + 1 tuples t1, . . . , tc+1 of R such that t j[Ai] ∈
adom(Ai) for each i ∈ [1,n] and j ∈ [1, c + 1]. (b) Check
whether {t1, . . . , tc+1} satisfies Σ , but not ϕ . If so the al-
gorithm returns “yes”, and otherwise it repeats steps (a)
and (b). As argued in the proof of Theorem 3.1, step (b)
can be done in PTIME in the sizes of Σ , ϕ and Rc . Fur-
thermore, c is bounded by a polynomial by assumption. As
a result, the algorithm is in NP and thus the implication
problem is in coNP. �
Special cases. Proposition 3.2 shows that for a set of CFDcs
bounded by a constant k, the satisfiability analysis is in
PTIME. This is no longer the case for the implication prob-
lem.

Theorem 4.3. It is coNP-complete to decide, given CFDcs Σ and
ϕ , whether Σ |	 ϕ when Σ ∪ {ϕ} is bounded by a constant
k = 3.

Proof. The problem is in coNP by Theorem 4.2. We show
that it is coNP-hard by reduction from 3SAT to the com-
plement of the problem (i.e., to decide whether Σ �|	 ϕ),
where 3SAT is NP-complete (cf. [15]). Consider an instance
φ = C1 ∧ · · · ∧ Cn of 3SAT, where all the variables in φ are
x1, . . . , xm , C j is of the form y j1 ∨ y j2 ∨ y j3 , and moreover,
for i ∈ [1,3], y ji is either xp ji or xp ji for p ji ∈ [1,m]; here
we use xp ji to indicate the occurrence of a variable in lit-
eral i of clause C j . Given φ, we construct a relation schema
R , an empty relation Rc , and a set Σ ∪{ϕ} of CFDcs defined
on R , such that φ is satisfiable iff Σ �|	 ϕ .

(1) We define schema R(C, V c, X, V x, Z), where dom(C)

= {1, . . . ,n}, dom(V c) = {〈b1b2b3〉 | b1,b2,b3 ∈ {0,1}},
dom(X) = {x1, . . . , xm}, which is the set of variables in φ,
and moreover, both dom(V x) and dom(Z) are integer. Intu-
itively, for each R tuple t , t[C], t[V c], t[X], t[V x] and t[Z ]
specify a clause C , a truth assignment ξ (one of the eight
to its three variables), one of the three variables in C , the
truth value of the variable and the truth value of C deter-
mined by ξ .

(2) Let the set Σ of CFDcs be Σ1 ∪ Σ2 ∪ Σ3 ∪ Σ4.
(a) Σ1 encodes the relationships among attributes C ,

V c , X and V x . For each variable in a clause C j (1 � j � n)
and each value 〈b1b2b3〉 in dom(V c), there is a CFDc in Σ1.
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Thus there are 3 ∗ 8 CFDcs for each clause C j in Σ1, and in
total, there are 24 ∗ n CFDcs in Σ1.

Each CFDc for clause C j = y j1 ∨ y j2 ∨ y j3 is of the form
of R((C, V c, X → V x), tp,1) such that tp[C] = j, tp[V c] =
〈b1b2b3〉, and tp[X] = xp ji (1 � i � 3). The value of tp[V x]
is decided by the value of tp[V c] such that tp[V x] = bi if
y ji = xp ji and otherwise tp[V x] = 1 − bi if y ji = xp ji .

For example, if C j = xp j1 ∨ xp j2 ∨ xp j3 such that 1 �
p j1, p j2, p j3 � m, then some possible pattern tuples are
( j, 〈010〉, xp j1 ,0), ( j, 〈010〉, xp j2 ,0), and ( j, 〈010〉, xp j3 ,0).

(b) Σ2 prevents certain variables from appearing in
clauses. For each clause C j and each variable xi not in C j ,
two CFDcs are included in Σ2: μ j,i,1 = R((C, X → Z),

( j, xi ‖ 1),1) and μ j,i,2 = R((C, X → Z), ( j, xi ‖ 0),1). Thus
no tuple t satisfies t[C] = j and t[X] = xi , since otherwise
μ j,i,1 forces t[Z ] = 1 and μ j,i,2 forces t[Z ] = 0. There are
(m − 3) ∗ n CFDcs in Σ2.

(c) Σ3 encodes the relationship between the truth
assignment V c of clause C and its corresponding truth
value Z of C . For clause C j and each h ∈ dom(V c), ωh =
R(V c → Z , tph ,1) is in Σ3, where tph [V c] = h, tph [Z ] = 0
if h = 〈000〉, i.e., C is not satisfied by the corresponding
truth assignment h, and tph [Z ] = 1 otherwise. In total, Σ3
consists of eight CFDcs.

(d) Σ4 includes μ1 = R(C → V c, (_ ‖ _ ),1) and μ2 =
R(X → V x, (_ ‖ _),1), ensuring that for each clause C and
each variable X , there is at most one truth assignment.

(3) CFDc ϕ is defined as R((Z → C, X), (1 ‖ _, _),
3 ∗n − 1). Intuitively, ϕ assures that no more than 3 ∗n − 1
tuples in an instance of R can have truth value 1 for their
clauses.

Observe that Σ consists of (m+21)∗n+10 CFDcs. Thus
the reduction is in PTIME.

We now show that φ is satisfiable iff Σ �|	 ϕ . Suppose
first that φ is satisfiable. Then there exists a truth assign-
ment ρ that makes φ true. Based on ρ , we construct an
instance D of R with 3∗n tuples as follows. For each clause
C j = y j1 ∨ y j2 ∨ y j3 and each variable xp ji (i ∈ [1,3]) in
C j , we create a tuple t , where (a) t[C] = j; (b) t[X] = xp ji ;
(c) t[Z ] = 1; (d) t[V x] = 1 if xp ji is assigned true by ρ ,
and otherwise t[V x] = 0; (e) t[V c] = 〈b1b2b2〉 such that for
each i ∈ [1,3], bi = 1 if y ji is assigned true by ρ , and oth-
erwise bi = 0. That is, t[V c] is determined by ρ to all of
its three variables. Observe that D |	 Σ but D �|	 ϕ . Hence
Σ �|	 ϕ .

Conversely, if Σ �|	 ϕ , then there exists an instance D of
R consisting of 3 ∗ n tuples such that D |	 Σ but D �|	 ϕ .
Observe that there exist at most n distinct values for at-
tribute C , and each value of C can be associated with at
most three distinct values of attribute X . Based on this,
we define a truth assignment ρ such that ρ(xi) = true if
πV x(σX=xi D) = {1} and ρ(xi) = false otherwise. Observe
that by D |	 Σ , (a) πV x(σX=xi D) (i ∈ [1,m]) contains ex-
actly one element, (b) πV c (σC= j D) ( j ∈ [1,n]) contains one
element, and (c) πC V c V x(D) has 3 ∗ n elements. Indeed,
since D |	 Σ , the truth assignment ρ makes φ true. Thus
φ is satisfiable. �

The proof of Theorem 4.3 actually yields a stronger re-
sult. Recall that a CFDc R(X → Y , tp, c) is a CFD of [14]
when c = 1.

Corollary 4.4. It remains coNP-complete to decide, given a set
Σ of CFDs and a CFDc ϕ , whether Σ |	 ϕ when Σ ∪ {ϕ} is
bounded by a constant k = 3.

Not all is lost. Below we identify two tractable spe-
cial cases. It should be remarked that while the second
case below can find a counterpart for CFDs (Corollary 4.4
of [14]), its proof is quite different from that of [14].
Putting this and Corollary 4.4 together, one can tell that
the extension of the equality operator and the presence
of cardinality constraints take their toll in the implication
analysis.

Proposition 4.5. It is in PTIME to decide, given a set Σ of CFDcs
and a CFDc ϕ , whether Σ |	 ϕ when Σ ∪ {ϕ} is bounded by a
constant k and one of the following conditions holds:

1. ϕ is a CFD while Σ is a set of CFDcs; or
2. Σ is a set of CFDs, ϕ is a CFDc and k = 0, i.e., all attributes

in Σ or ϕ have an infinite domain.

Proof. Observe that Σ �|	 ϕ iff there exists a nonempty
instance D of the schema R on which Σ and ϕ are de-
fined, such that D |	 Σ ∪ {¬ϕ}. Thus it suffices to develop
a PTIME algorithm to check the satisfiability of Σ ∪ {¬ϕ}.

Assume that ϕ is R(X → Y , tp, c).
(1) Since ϕ is a CFD, the proof of Theorem 4.2 tells

us that Σ ∪ {¬ϕ} is satisfiable iff there exists an in-
stance D1 of R such that D1 consists of two tuples t1 and
t2, D1 |	 Σ , t1[X] � tp[X] and t1[X] .= t2[X], but either
t1[Y ] � .= t2[Y ], or there exists l ∈ [1,2] such that tl[Y ] ��
tp[Y ]. In light of these, a minor extension of the PTIME al-
gorithm given in the proof of Proposition 3.2 suffices to
check whether Σ ∪ {¬ϕ} is satisfiable. Assume without
loss of generality that Σ is defined on a schema R , and
only attributes Ai in CFDcs of Σ have a finite domain, for
i ∈ [1,k].

The algorithm checks whether there exists an instance
D1 = {t1, t2} such that D1 |	 Σ , but D1 �|	 ϕ . Initially, for
each attribute A ∈ X , t1[A] and t2[A] are the same distinct
variable xA if tp[A] is ‘_’, and t1[A] = t2[A] = tp[A] if tp[A]
is a constant. For each other attribute A in attr(R) (but not
in X ), t1[A] and t2[A] are two distinct variables xA and y A ,
respectively.

For all i ∈ [1,k] and for each instantiation of variables
xAi and y Ai with values in dom(Ai), the algorithm does the
following.

(a) For each CFDc ϕ′ = R(X ′ → Y ′, t′
p, c′) in Σ , chase D1

using ϕ′ . If ti[X ′] � t′
p[X ′] (i ∈ [1,2]), then change ti[Y ′]

such that ti[Y ′] � t′
p[Y ′], as long as there exists no at-

tribute A ∈ Y ′ such that ti[A] is already a constant that
does not match t′

p[A]. Moreover, if t1[X ′] .= t2[X ′] and
c′ � c, then change t1[Y ′] .= t2[Y ′] as long as there exists
no attribute A ∈ Y ′ such that t1[A] and t2[A] are already
constants and t1[A] � .= t2[A]. Here c = 1 since ϕ is a CFD.

(b) For each attribute B ∈ attr(R), if ti[B] (i ∈ [1,2]) is a
variable after step (a), assign a distinct value from dom(B)

to ti[B]; note that dom(B) must be infinite in this case.
(c) If D1 |	 Σ and D1 �|	 ϕ , then return “yes”.



Author's personal copy

W. Chen et al. / Information Processing Letters 109 (2009) 783–789 789

The algorithm returns “no” if for all possible valuations
to xAi and y Ai for i ∈ [1,k], it cannot instantiate D1 such
that D1 |	 Σ but D1 �|	 ϕ .

From these it follows that the algorithm returns “yes”
iff Σ �|	 ϕ . In addition, similar to the proof of Proposi-
tion 3.2, it is easy to see that the algorithm is in PTIME
in the sizes of Σ , ϕ , relation Rc (in the definition of

.=),
and the maximum cardinality of the k finite domains.

(2) A PTIME algorithm similar to the one given in the
proof of (1) suffices to check whether Σ ∪ {¬ϕ} is sat-
isfiable. Here the algorithm operates on c + 1 tuples, as
described in the proof of Theorem 4.2. Since Σ consists
of CFDs only, the chase of the tuples using CFDs in Σ is
straightforward. Since all the attributes in Σ or ϕ have an
infinite domain, we no longer need to check valuations to
those variables denoting attributes with a finite domain.
One can verify that the algorithm is in PTIME. �
5. Concluding remarks

We have proposed CFDcs and shown that CFDcs have
the following properties. (a) CFDcs are able to express CFDs
of [14], cardinality constraints, and domain-specific abbre-
viations and conventions in a uniform constraint formal-
ism. (b) CFDcs do not complicate the static analyses: the
satisfiability and implication problems for CFDcs have the
same complexity bounds as their counterparts for CFDs.

One topic for future work is to develop a uniform con-
straint language to express CFDcs and other extensions of
CFDs, e.g., [9,16]. Such a language, however, comes at a
price of higher complexity bounds: Proposition 3.2, for ex-
ample, will no longer hold. This issue deserves a full treat-
ment. Another topic is to revise the algorithms for com-
puting a minimum cover of a set of CFDs [14], discovering
CFDs [11,16] and for repairing data based on CFDs [13], by
using CFDcs instead of CFDs.
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