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Abstract

Online termination techniques dynamically guarantee termination of computations by supervising them in such a way
that computations whose termination can no longer be guaranteed are stopped. Homeomorphic Embedding (HEm) has
proven to be very useful for online termination provided that the computations supervised are performed over a finite
signature, i.e., the number of constants and function symbols involved is finite. However, there are many situations,
for example numeric computations, which involve an infinite signature and thus HEm does not guarantee termination.
Some extensions to HEm for the case of infinite signatures have been proposed which guarantee termination. However,
the existing techniques either do not provide systematic means for generating such extensions or the extensions are
too simplistic and do not produce the expected results in practice. We propose Type-based Homeomorphic Embedding
(TbHEm) as an extension of the standard, untyped, HEm. By taking static information about the behavior of the
computation into account, expressed as types, TbHEm allows obtaining more precise results than those of the previous
extensions to HEm for the case of infinite signatures. We show that the existing extensions to HEm which are currently
used in state-of-the-art specialization tools can be reconstructed as instances of TbHEm. We illustrate the applicability
of our proposal in a realistic case study: partial evaluation of an interpreter. We argue that the results obtained
provide empirical evidence of the interest of our proposal.
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1. Introduction

Guaranteeing termination is a key aspect of areas
of computer science which have to deal with pos-
sibly infinite computations, namely in all areas of
automatic program analysis, synthesis, verification,
specialization and transformation. Broadly speak-
ing, guaranteeing termination can be tackled in an
offline or an online fashion. The main difference be-
tween these is that in offline termination we aim at
statically determining termination. This means that
we do not have the concrete values of arguments at
each point of the computation but rather just ab-
stractions of them. Usually these abstractions re-
fer to the size of values under some measure, such

as list length, term size, numeric value for natural
numbers, etc. In contrast, in online termination, we
guarantee termination by supervising the computa-
tion and stopping it as soon as we can no longer
guarantee termination.

The main advantage of the offline approach is that
if we can prove termination statically, there is no
longer any need to supervise the computation for
termination, which results in performance gains. In
the offline setting, powerful semi-automated termi-
nation proof techniques have been developed in the
context of term rewrite systems (TRS), the most
popular one being the recursive path ordering [6].

On the other hand, the online approach is more
precise, since we have the concrete values at hand
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and thus we can compare actual values instead of
abstractions of values. Thus, the online approach is
of interest in applications where precision is of great
importance and where the offline approach tends
to behave too conservatively in order to guaran-
tee termination. Another advantage of online tech-
niques is that they are usually simpler to implement
than offline techniques, which are based on sophis-
ticated static analyses. As a result, which of the two
approaches to take greatly depends on the appli-
cation area. For example, in the context of online
supervision of symbolic computations, well-founded
orders (wfos) [18] and especially well-quasi orders
(wqos) [4,21] have become widely used.

In order theory, a wqo is a quasi-order with an ad-
ditional restriction on sequences that ensures that
for any infinite sequence x1, x2, . . ., there exists i < j
with xi ≤ xj . In this article, we focus on the homeo-
morphic embedding (HEm) relation [11,13,14], a wqo
used in state-of-the-art online specialization tools.
Intuitively, HEm is a structural ordering under which
an expression e2 is greater than or equal to another
expression e1, written as e1E e2, if e1 can be ob-
tained from e2 by deleting some parts of e2. Under
these circumstances we say that e2 embeds e1. E.g.,
s(s(U + W)×(U+s(V))) embeds s(U× (U + V)).

The HEm relation was first defined over strings
by Higman [9] and later extended by Kruskal [11] to
ordered trees (and thus symbolic expressions). Since
then, HEm has been used for many applications.
Arguably, the heaviest use of HEm within computer
science was made in the context of TRS [7], to
automatically derive well-founded orders for static
termination analysis. The usefulness of HEm in the
context of online partial evaluation was first dis-
covered and advocated by Marlet [17]. It was later,
independently, rediscovered and adapted for super-
compilation by Sørensen and Glück [23]. Later on,
Leuschel and Martens [15,16] demonstrated that
HEm provides a mathematically simpler and still
more powerful way of ensuring termination of par-
tial deduction than existing wfos and wqos. The
latter was then witnessed by Leuschel [12]. A survey
on the theory and practice of HEm can be found
in [13].

The HEm relation can be used to guarantee ter-
mination when computing a sequence e1, e2, . . ., by
using HEm as a whistle. Whenever a new expression
en+1 is to be added to a finite sequence e1, . . . , en,
we first check whether en+1 embeds any of the ex-
pressions already in the sequence. If that is the case,
we say that HEm whistles, i.e., it has detected (po-

tential) non-termination and the computation has
to be stopped. If HEm does not whistle en+1 can be
safely added to the sequence and the computation
can proceed without endangering termination.

The reason for the success of HEm as an approach
for guaranteeing online termination is twofold. i) It
often allows sequences to grow quite large before the
whistle blows, to the point that in a good number of
finite sequences the full sequence can be computed
without the whistle blowing at all. This is essential
for instance, in program specialization, as allowing
a larger sequence implies further propagation of in-
formation and hence, as we will see in the paper, a
better specialization can often be obtained. ii) It of-
ten identifies redundant computations quickly, and
the whistle blows without unnecessarily further ex-
panding the sequence, thus avoiding irrelevant com-
putations. This is also essential in program special-
ization both for efficiency of the specialization pro-
cess and for quality of the resulting program.

While HEm has proven to be very useful for sym-
bolic computations (as required by program special-
ization and analysis techniques, see [12]), some diffi-
culties remain in the presence of infinite signatures,
such as the numbers. For instance, the is/2 Prolog
built-in is used to evaluate arithmetic expressions;
given two numbers, it can produce as output a num-
ber which does not appear in the program text. If
this can be infinitely repeated, we need to handle an
infinite signature. As further examples, in the case of
logic programs, infinite signatures appear as soon as
certain built-ins such as functor/3, name/2, =../2,
atom codes/2, etc. are used, since they allow creat-
ing fresh constants and function symbols. Some ex-
tensions to HEm over infinite signatures have been
defined and used in practice (e.g. [2,13]), but they
are often too ad hoc; for instance, they only handle
constants which appear explicitly in the program,
regardless of which part of the program (function,
argument position) they appear. As such approaches
are purely syntactic, in practice they sometimes turn
out to be too conservative (“whistling” too early) or
else too aggressive, and thus do not have either of
the features i) or ii) above.

In essence, while other works [2,13] take a simple
syntactic approach to extending the HEm relation,
we propose a semantic approach for such extension.
In particular, we introduce the type-based homeo-
morphic embedding (TbHEm) relation which, by tak-
ing information about the behavior of the compu-
tation into account, provides more precise results
in the presence of infinite signatures. For this, our
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typed relation is defined on types structured into a
(possibly empty) finite part and a (possibly empty)
infinite part. TbHEm allows expanding sequences as
long as the concrete values which appear in the ex-
pression remain within the finite part of the type.
Note that in computations with a finite signature it
is always possible to obtain types whose infinite part
is empty, which produces the same effect as the tra-
ditional HEm. Intuitively, this allows us to achieve
i) and ii) simultaneously as: i) finite sequences are
expected to have an empty infinite partition, or non-
empty but with a large finite part, and hence they
can grow considerably before the whistle blows; ii)
infinite sequences will have a non-empty partition
which forces the whistle to blow.

HEm has been extensively used for supervising
partial evaluation of logic programs. However, it is
important to stress that both the HEm and TbHEm
relations are of interest for supervising any compu-
tation which manipulates acyclic data structures,
such as lists (or equivalently, acyclic linked lists),
trees, etc. which can grow indefinitely large. This is
so regardless of the programming language in which
such computation is implemented.

The rest of the article is organized as follows. Sec-
tion 2 recalls some basic notions and introduces no-
tation. In Section 3, we introduce TbHEm, as a novel
extension to untyped HEm, and prove its soundness.
Section 5 shows how TbHEm generalizes existing
relations used in current systems. In Section 6 we
present some experimental results. Finally, Section 7
discusses the practicality of TbHEm in the context
of online termination approaches and concludes.

2. Preliminaries and Notation

We recall some preliminary concepts, in particular
on the HEm relation, and introduce some notation.

2.1. Symbolic Expressions

For the sake of generality we consider the lan-
guage of symbolic expressions (first-order terms). Its
alphabet consists of the following classes of symbols:
1) variables (V) and 2) function symbols (Σ). Func-
tion symbols have an associated arity. Constants are
function symbols with arity 0. We refer to the set of
functions in an alphabet as its signature.
Definition 1 (Symbolic Expressions) The set
of symbolic expressions Eover some given alphabet,
Σ ∪ V, is inductively defined as follows:

(i) a variable v ∈ V is an expression,
(ii) a function symbol f ∈ Σ of arity n ≥ 0 applied

to a sequence e1, . . . , en of expressions, denoted
f(e1, . . . , en), is also an expression.

We will adhere to the following syntactical con-
ventions: Variables are denoted by upper-case let-
ters like X,Y, Z, . . ., constants by lower-case letters
like a, b, c, . . ., and non-constant function symbols
by lower-case letters like f, g, h, . . .

2.2. Homeomorphic Embedding

We now introduce some auxiliary definitions on
orders which are required to define the HEm relation.
Definition 2 (Quasi-order) A quasi-order is a
reflexive and transitive binary relation on E.

A well-quasi order is a well-binary relation which
is also a quasi-order, as stated below.
Definition 3 (wbr, wqo) Let≤ be a binary relation
on E. We say that ≤ is a well-binary relation (wbr)
iff for any infinite sequence e1, e2, . . . of expressions,
∃i, j : i < j ∧ ei ≤ ej. If ≤ is also a quasi-order
then ≤ is called a well-quasi order (wqo).

The next definition recalls the HEm relation on
expressions, as presented by Leuschel [12].
Definition 4 (HEm,E) The homeomorphic embed-
ding relation over expressions, written E, is defined
by the following rules:

(i) Y E X for all variables X,Y .
(ii) sE f(t1, . . . , tn) if s E ti for some i.

(iii) f(s1, . . . , sn)E f(t1, . . . , tn) if si E ti for all i,
1 ≤ i ≤ n.

As already discussed, e1E e2 iff e1 can be obtained
from e2 by removing some symbols. Hence, the struc-
ture of e1, split in parts, reappears within e2. For
finite signatures, HEm is a wqo (see, e.g., [12]).

2.3. Types

We adopt the syntax of Mercury [22] for type def-
initions. The set of type expressions (types), denoted
T , is constructed from an infinite set VT of type
variables (parameters) and a set ΣT of type symbols
with their associated arities; these are disjoint from
the set of variables V and the signature Σ. Types
and symbolic expressions are related by means of
type definitions.
Definition 5 (type definition) A type rule for a
type symbol h with arity n in ΣT is of one of these
two forms:
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h(T̄ ) −→ f1(τ̄1); . . . ; fk(τ̄k) (k ≥ 1), or
h(T̄ ) −→ f1(τ̄1); . . . (infinite sequence)

where the following conditions hold:
(i) T̄ is an n-tuple of distinct type variables,

(ii) f1, . . . , fk, . . . are distinct function symbols
from Σ,

(iii) each τ̄i (i ≥ 1) is an m-tuple from T , where m
is the arity of the corresponding fi,

(iv) type variables in the right-hand side, if any, are
from T̄ .

We say that f1(τ̄1); . . . ; fk(τ̄k) or f1(τ̄1); . . . are the,
possibly infinite, set of cases of the type.

A type definition is a finite set of type rules where
no two rules contain the same type symbol on the left
hand side, and there is a rule for each type symbol
occurring in the type rules.
Example 6 The following type natlist character-
izes lists of natural numbers:

natlist −→ nil; cons(nat, natlist)
nat −→ 0; 1; 2; . . .

A variable typing is a mapping σ : V → T . An
expression t ∈ E is of type τ ∈ T with respect to
a given type definition and a variable typing, writ-
ten t : τ , if (i) t ∈ V and σ(t) = τ , or (ii) t =
f(t1, . . . , tn), and there is an instance of a type rule,
τ −→ . . . ; f(τ1, . . . , τn); . . ., and ti :τi, 1 ≤ i ≤ n.

Definition 5 permits overloading – a function sym-
bol can occur in several type rules. Thus, a given
expression may be of more than one type. We also
allow type rules containing an infinite number of dis-
tinct function symbols on the right-hand side. Thus,
standard infinite types such as integer are permit-
ted, defined by a rule with an infinite number of
cases containing the numeric constants.

In order to define TbHEm we need to handle types
with an infinite number of cases. This can be done
simply by using some sort of intensional notation for
them (e.g. N for natural numbers). However, at the
same time we need to distinguish some finite number
of elements of the type. Hence, we introduce the fol-
lowing extra annotation into type rules. The right-
hand side of each type rule consists of two disjoint
components, each possibly empty. More precisely,
type rules are of the form h(T̄ ) −→ F ; I, where the
union F ∪ I are the cases in the type rule, F ∪ I is
non-empty, F is either empty or finite and I is ei-
ther empty or infinite. We say that a type τ ∈ T is
of infinite component if I is non-empty in the rule
defining τ . Otherwise it is said to be of finite com-
ponent. Thus, for types of infinite component there

are infinitely many ways of splitting them into type
rules; for example nat −→ F ; I where F = ∅ and
I = N, or F = {0, 1, 2} and I = N \ {0, 1, 2}, etc.
The way in which infinite components are split af-
fects the behavior of TbHEm.

3. Type-based Homeomorphic Embedding

HEm turns out to be unsatisfactory, due to the re-
striction to finite signatures. Most real-life programs
involve infinite signatures. These, for example, ap-
pear quite easily if the program performs arithmetic
operations. Indeed, the fully general definition of
HEm which dates back to the 1960s [11,7], referred
to as the extended homeomorphic embedding (E∗),
allows infinite signatures. It is based on two generic
relations, �Σ and �S on function symbols and se-
quences of expressions respectively. It can be shown
that if these relations are wbrs (resp. wqos) then E∗

is a wbr (resp. wqo). The next definition is adapted
from Leuschel [13], but we use the symbol �Σ in-
stead of �F .
Definition 7 (extended HEm,E∗) Given a wqo
�Σ on the function symbols and a wqo �S on se-
quences of expressions, the extended homeomorphic
embedding on expressions is defined by the following
rules:

(i) XE∗Y if X and Y are variables
(ii) sE∗f(t1, . . . , tn) if sE∗ti for some i

(iii) f(s1, . . . , sn)E∗g(t1, . . . , tm) if
(a) f �Σ g,
(b) 〈s1, . . . , sn〉 �S 〈t1, . . . , tm〉, and
(c) ∃i1, . . . , in such that 1≤ i1< . . .< in≤m

and ∀j ∈ {1, . . . , n} : sjE∗tij .
The most important point in the above defini-

tion is that, in contrast to Definition 4, the left- and
right-hand expressions in rule (iii) do not have to
have the same function symbol. The two function
symbols are instead compared by using the relation
�Σ. Furthermore, the expressions do not have to be
of the same arity; the left-hand side expression can
have fewer arguments than the right-hand expres-
sion. In this case, m− n arguments from the right-
hand expression are ignored.

We do not use the full generality of this defini-
tion here; in particular the relation �S will be taken
as the relation that is always true, in which case
condition (iii.b) is trivially satisfied. As noted by
Leuschel [13], the relation �S could be used to give
a more refined treatment of variables as well as a
more refined treatment of associative operators. For
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example, it would be natural to have ∧(a, b, c) em-
bedded in ∧(a, b, c, d), but if ∧ is taken as a binary
functor then the embedding relation depends on the
nested structure of the expressions.

The above definition establishes a family of em-
bedding relations but leaves open the practical
problem of finding an effective embedding relation,
since there is no automated mechanism for finding
a “good” ordering relation �Σ on the function sym-
bols in the signature to ensure effective termination
control. This is the problem we address in the next
section, where we propose using types in order to
define the �Σ relation.

3.1. The Type-based Relation

We now introduce type-based homeomorphic em-
bedding (TbHEm). We outline how TbHEm can pro-
vide a way of generating instances of extended HEm
based on given type definitions. Note that this al-
lows taking into account program-specific factors by
using the type definition associated to a given pro-
gram. The types required for guiding TbHEm can be
automatically inferred by program analysis, as dis-
cussed in Section 7, or be provided manually.

Intuitively, termination control using TbHEm is
based on the following idea: embedding occurs be-
tween typed expressions with different function sym-
bols, if the function symbol of the “larger” expres-
sion is from the infinite component of its type. How-
ever, as long as we compare distinct expressions from
an infinite type whose function symbols are from
the finite component of the type, we can safely use
essentially the standard embedding relation. This
motivates the definition of the relation �Σ,D, which
plays the role of �Σ in Definition 7.
Definition 8 (�Σ,D) Given a type definitionD, let
�Σ,D be the following relation on the set of pairs
Σ× T . (f1, τ1) �Σ,D (f2, τ2) iff
– f1 = f2 ∧ τ1 E τ2, or
– f2 appears in the infinite component of some type

rule in D.
Here the relation E is the embedding relation
(Definition 4) applied to types. For example,
list(A) E list(list(A)) where list/1 is a type
symbol. As another example, given D containing
τ −→ F ; I with F = {1, 2} and I = N \ {1, 2} then
(1, τ) 6�Σ,D (2, τ) and (1, τ) �Σ,D (5, τ).
Lemma 1 Let D be a type definition, Σ a set of
function symbols and ΣT a finite set of type symbols.
Assume that every function symbol in Σ appears in

some type rule in D, and that every type symbol in
ΣT appears on the left of some rule in D. Then�Σ,D

is a wqo on the set Σ× T .

PROOF. It can easily be verified that �Σ,D is
reflexive and transitive, as required by Definition 2.
Now, we prove the wbr property (Definition 3).
The proof is by contradiction. Assume that there
is an infinite sequence of pairs from Σ × T of the
form (f0, τ0), (f1, τ1), . . ., and for all i, j, i < j →
(fi, τi) 6�Σ,D (fj , τj). We distinguish two cases:

(i) First, assume that there is a finite number
of function symbols from Σ occurring in the
sequence. Then there must exist some f oc-
curring infinitely often in the sequence, say
(f, τk1), (f, τk2), . . .. The relation E is a wqo
on T since ΣT is finite. Hence there must ex-
ist i, j such that i < j and τki

E τkj
. Hence

(f, τki) �Σ,D (f, τkj ) which contradicts the as-
sumption.

(ii) Second, assume that there is an infinite set of
function symbols from Σ occurring in the se-
quence. Then there must exist some j > 0,
such that fj is in the infinite component of
some type rule in D, in which case (fi, τi) �Σ

(fj , τj) for all i < j which contradicts the as-
sumption.

Hence, there are no such infinite sequences and to-
gether with reflexivity and transitivity this estab-
lishes that �Σ,D is a wqo.

The next definition presents our notion of type-
based homeomorphic embedding, ET , based on the
above relation �Σ,D. Since we assume that the rela-
tion�S is true for all arguments, we omit it together
with its associated condition (which is trivially true)
in the definition below.
Definition 9 (TbHEm, ET ) Given a type defini-
tionD and the relation�Σ,D, the embedding relation
over typed expressions, written ET , is defined by the
following rules:

(i) Y :τY ET X:τX for all variables X,Y ;
(ii) s : τ ET f(t1, . . . , tn) : τ ′ if s : τ ET ti : τ ′i for

some i, where τ ′ −→ . . . ; f(τ ′1, . . . , τ
′
n); . . . is

an instance of a type rule in D;
(iii) f(s1, . . . , sn) :τ ET g(t1, . . . , tm) :τ ′ if

(a) (f, τ) �Σ,D (g, τ ′) and
(b) ∃i1, . . . , in such that 1 ≤ i1 < · · · < in ≤

m and ∀j ∈ {1, . . . , n}, sj :τj ET tij :τ ′ij ,
where τ1, . . . , τn (resp. τ ′i1 , . . . , τ

′
in

) are
the types of s1, . . . sn (resp. ti1 , . . . , tin).
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The following theorem states the soundness of
TbHEm. Informally, it states that infinite sequences
cannot be built when the TbHEm relation is used to
blow the whistle. This guarantees that TbHEm can
be safely used in online tools (see Section 1).
Theorem 10 (soundness) For all infinite se-
quences e1 : τ1, e2 : τ2, . . . of typed expressions with
respect to a type definition D there exists i < j such
that ei : τi ET ej : τj.

PROOF. The proof amounts to demonstrating
that ET is a wqo (see Definition 3) on typed expres-
sions. By Theorem 4 from [13], this in turn follows
if �Σ,D is a wqo. As the sequence consists of typed
terms with respect to some type definition D, all
the types occurring in the sequence are constructed
from the finite set of type symbols occurring in D
and hence �Σ,D is a wqo by Lemma 1. Hence the
main result follows.

4. A Case-study in Online Partial Evaluation

Partial evaluation (PE) [10] is a semantics-based
program transformation technique whose purpose is
to specialize a program w.r.t. the part of its input
data which is known at specialization time. Essen-
tially, a partial evaluator dynamically expands pro-
gram states to propagate the known input data, giv-
ing rise to a (possibly infinite) sequence of expres-
sions which represent states. HEm has proven to be
very effective in practice to control PE: not only
does it ensure termination, it often allows sequences
to grow sufficiently large to obtain accurate results
while at the same time stopping the computation as
soon as potential redundancy is detected.

This section presents as case-study a classical and
non-trivial application of online PE: the specializa-
tion of interpreters. In particular, we consider an in-
terpreter (implemented in Prolog) for a simple, im-
perative, bytecode language. In theory [8], the spe-
cialization of such an interpreter w.r.t. a particular
bytecode program allows transforming the bytecode
program into a semantically equivalent version writ-
ten in Prolog. In practice, the quality and useful-
ness of the transformation depends on the particu-
lar techniques used to control the process. We have
implemented the proposed TbHEm relation within
a partial evaluator of logic programs [19], together
with the procedure for constructing a monomorphic
well-typing devised by Bruynooghe et al. [5] to au-
tomatically infer the types.

In PE of interpreters, termination problems oc-
cur as soon as the bytecode program w.r.t. which we
are specializing the interpreter has a loop or a re-
cursion whose termination condition is undecidable
at specialization time. Let us consider the bytecode
program fragment below, which corresponds to the
simple loop “for(i = 0; i < n; i++){}”:

0:push(0); 1:store(i); 2:load(i); 3:load(n);
4:ifge(7); 5:inc(i); 6:goto(2); 7:...

The two instructions at program counters 0 and 1
initialize i to 0. Note that the bytecode language
is stack-based, e.g., to perform the operation i <
n variables i and n are first pushed on the stack
(2, 3) so that the conditional branching ifge (i.e.
if greater or equal) uses them. To understand the
problem, it is enough to know that the interpreter
manipulates an environment of the form s(PC,LV )
where PC is the program counter and LV is the list
of local variables, in this case [N, I]. In the following
we ignore variable N and the list constructor for
simplicity, thus we write s(PC, I). Given a program,
the PC can only take a finite number of values, while
the local variables can, in general, change infinitely.
The well-typing analysis of [5] allocates the type τ
to every s(PC, I) expression such that:

τ −→ s(τ1, τ2)
τ1 −→ F ; I with F = {0, 1, . . . , 7} and I = N \ F
τ2 −→ ∅; N

During the specialization of the interpreter w.r.t.
this particular program, the partial evaluator ex-
pands the interpreter states to propagate the in-
formation known from the bytecode program. The
following (infinite) sequence of expressions arises
. . . , s(2, 0), s(3, 0), s(4, 0), s(5, 0), s(6, 0), s(2, 1),
s(3, 1), . . . , s(6, 1), s(2, 2), s(3, 2), . . .. The program
counter loops in the interval [2..6], while variable
I is infinitely incremented by one after each loop
iteration. An optimal strategy should only expand
the above sequence until the underlined expression
s(2, 1) appears, which actually corresponds to a
loop in the program. This allows transforming the
loop into the Prolog code:

p(I,N) :- I >= N.
p(I,N) :- I < N, I1 is I+1, p(I1,N).

Such an optimal behavior is achievable by using Tb-
HEm in combination with the above (automatically
inferred) types. Note that s(2, 0) : τ 6ET s(3, 0) : τ
as 2 : τ1 6ET 3 : τ1 while s(2, 0) : τ ET s(2, 1) : τ as
0:τ2 ET 1:τ2.
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However, stopping the derivation later causes un-
necessary unrollings of the loop, thus producing an
over-specialized program. E.g., this program is ob-
tained when the sequence is stopped at s(2, 2) (two
loop unrollings):

p(I,N) :- I >= N.
p(I,N) :- I < N, I1 is I+1, I1 >= N.
p(I,N) :- I < N, I1 is I+1, I1 < N,

I2 is I1+1, p(I2,N).

This often highly degrades both the efficiency of the
specialization process and the quality of the spe-
cialized program. Experimental evidence for this is
shown in Section 6 below.

On the other hand, stopping the derivation ear-
lier, e.g. at s(3, 0), as other techniques would do,
results in a very poor specialization. Note that, in
the limit, we could perform a single unfolding step
per atom. This basically results in obtaining exactly
the same interpreter we started from. Therefore, no
gains have been achieved at all and PE does not re-
move the interpretation layer. Also, if we stop too
early, many atoms will be filtered out in order to
guarantee termination. This may result in an impor-
tant information loss. Due to space limitations, we
do not present a full algorithm for PE of logic pro-
grams here (see, e.g., [14] for more details). Note that
as soon as we filter away the value of the PC, execu-
tion could proceed by any of the instructions in the
bytecode program, which results in large specializa-
tion times and in residual programs with plenty of
useless code.

5. Instances of Type-based Embedding

This section shows that existing relations based
on embedding, which are currently used in state-of-
the-art specialization tools (e.g. [2,14,13]) can be re-
constructed as instances of TbHEm just by provid-
ing a particular type. Let us make a distinction be-
tween the static symbols occurring in the program
and the goal, and the remaining ones, called the dy-
namic symbols. We use Sτ to denote the set of all
f(τ, ...., τ) where f is a static symbol.

5.1. Embedding with Number Filtering.

In programs which contain arithmetic as the only
way of generating an infinite number of symbols,
a relatively straightforward solution in order to re-
cover termination is to use the Enum relation. It is

an adaptation of HEm which filters out numeric val-
ues, i.e., any number embeds any other number. The
Enum relation could be reconstructed as a TbHEm
assuming that every argument in every predicate is
of type τnum which is defined as:

τnum −→ Sτnum
\num;num

where num is the infinite set of all numbers.
Example 11 Let us re-consider the example in Sec-
tion 4. The behavior of Enum is obtained using ET by
allocating the type τ to every expression of the form
s(PC, I), where:

τ −→ s(τnum, τnum)
τnum −→ ∅; N

Unfortunately, this modification to HEm is far too
conservative and leads to excessive precision loss.
Example 12 The sequence in Section 4 is stopped
too early by Enum as s(2, 0) Enum s(3, 0), thus break-
ing feature i) in Section 1.

5.2. Static vs. Dynamic Symbols.

TbHEm generalizes an idea sketched by Leuschel [13]
to build an extended homeomorphic embedding
based on a distinction between the static and the
dynamic symbols. This relation is denoted in the
following as E∗S . We introduce the following extra
notation. We use Dyn to denote the infinite num-
ber of cases of the form f(τd, ...., τd) where f is a
dynamic symbol and τd −→ ∅;Dyn.

Then, E∗S can be reconstructed as a TbHEm as-
suming that every argument in every predicate is of
type τS which is defined as:

τS −→ SτS
;Dyn

Example 13 For our working example, every ex-
pression s(PC, I) would be allocated the type τ :

τ −→ s(τS , τS)
τS −→ F ; I with F = {0, 1, . . . , 7} and I = N \ F

As discussed in Section 1, this relation lacks con-
trol over the different contexts in which static sym-
bols occur in the program. For example, this rela-
tion makes no distinction between the set of values
which an argument can take w.r.t. the set of values
for other arguments: all static symbols in the pro-
gram are put in the same set, regardless of where
they come from or where they are used. Further-
more, the result of specializing a piece of code de-
pends on whether in the same compilation unit there
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is a lot of (dead) code or not, since all static sym-
bols, even if they appear in the context of completely
unrelated subprograms will be considered as part of
the finite component.
Example 14 Let us re-consider the situation in
Section 4. Unlike Enum, in this case we have that
s(2, 0) 6E∗S s(3, 0). However, as both argument po-
sitions are given the same type, as opposed to the
type given in Section 4, the loop will not be detected
until an atom containing a number not occurring in
the program arises in the sequence, namely s(2, 8),
since s(2, 0) E∗S s(2, 8). As explained in Section 4,
this over expansion can highly degrade the efficiency
of the specialization and the quality of the specialized
programs.

6. Experimental Evaluation

In order to measure the performance of TbHEm,
we experimentally evaluated our case-study using
TbHEm and compared the results against those ob-
tained using E, Enum and E∗S . We measured two
aspects which are crucial in the specialization of in-
terpreters, the specialization time and the residual
program size. Both aspects are directly related to
the quality of the decompilation.

From the experiments we conclude that ET al-
ways guarantees termination (unlike E) and behaves
significantly better than Enum and E∗S . We compute
the gain as Old-Cost/New-Cost and obtain an aver-
age gain of 2.3 in time and 14.4 in size w.r.t. Enum,
and 8.9 in time and 4.23 in size w.r.t. E∗S . Further-
more, ET behaves at least as well as E in the exam-
ples in which E terminates, even after adding the ad-
ditional cost taken by the well-typing analysis. We
have observed that the largest gains are obtained
when the sets of numbers in the different contexts
do not intersect. In these cases, our method bene-
fits from the context-sensitivity of TbHEm which di-
rectly contributes to obtaining smaller decompiled
programs and times. As an example, for a linear
search algorithm, we produce a 1.7 KB Prolog pro-
gram in about 300 ms using ET , while we obtain a
9 KB Prolog program in 4 secs using E∗S . For this
one, Enum gets a 13.7 KB Prolog program in about
540 ms while E does not terminate.

7. Discussion

This note presents a novel, type-based, homeo-
morphic embedding relation (TbHEm) and proves

its soundness. We show that existing approaches
which extend the untyped embedding relation to
handle infinite signatures can be reconstructed as
instances of our TbHEm relation.

The practicality of our approach heavily depends
on automatically being able to infer suitable types
to be used in combination with TbHEm. We note
first that the problem does not allow a precise, com-
putable solution. Determining the exact set of sym-
bols that can appear at run-time at a specific pro-
gram point, and in particular determining whether
the set is finite, is closely related to termination de-
tection. Let us briefly describe existing methods de-
veloped in the context of logic programming to in-
fer the required types. As pointed out in Section 6,
a well-typing analysis for logic programs was de-
scribed by Bruynooghe et al. [5]. The procedure
scales well (roughly linear in program size) and is
robust, in that every program has a well-typing. We
have seen in Section 6 that one can first apply this
analysis to infer well-typings and then achieve good
specializations by using the well-typings in combi-
nation with TbHEm.

An important observation is that, in order to take
full advantage of TbHEm in practice, it is not al-
ways necessary to know the actual type definitions.
In particular it suffices to know whether the infinite
component of type rules is (transitively) empty or
not. As another way to infer the types, in a program
with built-ins, we can use existing static analyses
which allow determining that the type of an argu-
ment has a finite signature. We can provide this in-
formation without having to specify the exact type.
A similar idea has been recently outlined by Rug-
gieri and Mesnard [20], where a type system for lin-
ear constraints and its use in mode analysis of CLP
programs is presented.

Analyses exist that make over-approximations of
the set of values that a program’s numeric arguments
can have. Polyhedral analyses and interval analyses
are perhaps the most widely known of these and they
have successfully been applied to constraint logic
programs [3]. Such analyses can determine upper
and lower bounds for arguments. If an argument is
bounded from above and below, and it is known that
such argument takes on integral values, then it can
only take a finite set of values. In general, the bet-
ter the derived types are, the further the sequences
can be extended without risking non-termination. If
the derived types have finite components that are
too small, then it is more likely that sequences will
be stopped too early; if they are too large, then se-
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quences could be expanded too far, producing an
unnecessary expansion.

Though we have outlined procedures to infer types
in the context of logic programming, our type-based
relation is not tied to any programming paradigm.
Moreover, it can be used for a wide range of appli-
cations (as those mentioned in Section 1).
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