
Exponential-Time Approximation of Weighted Set Cover∗

Marek Cygan, Lukasz Kowalik and Mateusz Wykurz
Institute of Informatics, University of Warsaw, Poland.

cygan@mimuw.edu.pl, kowalik@mimuw.edu.pl, wykurz@gmail.com.

Abstract

The Set Cover problem belongs to a group of hard problems which are neither
approximable in polynomial time (at least with a constant factor) nor fixed parame-
ter tractable, under widely believed complexity assumptions. In recent years, many re-
searchers design exact exponential-time algorithms for problems of that kind. The goal
is getting the time complexity still of order O(cn), but with the constant c as small as
possible. In this work we extend this line of research and we investigate whether the
constant c can be made even smaller when one allows constant factor approximation.

In fact, we describe a kind of approximation schemes — trade-offs between approxi-
mation factor and the time complexity. We use general transformations from exponential-
time exact algorithms to approximations that are faster but still exponential-time. For
example, we show that for any reduction rate r, one can transform any O∗(cn)-time1 algo-
rithm for Set Cover into a (1+ln r)-approximation algorithm running in time O∗(cn/r).
We believe that results of that kind extend the applicability of exact algorithms for NP-
hard problems.

1 Introduction

1.1 Motivation

One way of coping with NP-hardness is polynomial-time approximation, i.e. looking for so-
lutions that are relatively close to optimal. Unfortunately it turns out that there are still
many problems which do not allow for good approximation. Let us recall some examples.
H̊astad [14] showed that Independent Set cannot be approximated in polynomial time
with factor n1−ε for any ε > 0 unless NP = ZPP. The same holds for Vertex Coloring
due to Feige and Kilian [11]. By another result of Feige [10], Set Cover cannot be approxi-
mated in polynomial time with factor (1− ε) lnn, where n is the size of the set to cover, for
any ε > 0 unless NP ⊆ DTIME(nlog logn).

Another approach is the area of parametrized complexity (see e.g. [9]). Then the goal
is to find an algorithm with time exponential only in a parameter unrelated to the instance
size (then we say the problem is fixed parameter tractable, FPT in short). This parameter
may reflect complexity of the instance – like treewidth, but then we get an efficient algorithm
only for some subclass of possible instances. Another choice of the parameter is the measure
of the solution quality. For example, one can verify whether in an n-vertex graph there is a

∗This research is partially supported by a grant from the Polish Ministry of Science and Higher Education,
project N206 005 32/0807.

1O∗(f(n)) notation suppresses polynomial factors

1

vertex cover of size k in O(1.2738k + kn) time [6]. Again, the parametrized approach does
not succeed in some cases. Verifying whether a graph is k-colorable is NP-complete for any
k ≥ 3, while Independent Set and Set Cover are W [1]- and W [2]-complete respectively,
meaning roughly that an FPT algorithm for Independent Set or Set Cover would imply
algorithms of that kind for a host of other hard problems.

The aforementioned hardness results motivate the study of “moderately exponential time”
algorithms. The goal here is to devise algorithms with exponential running time O(2n/r) with
r big enough. Indeed, a O(2n/50)-time algorithm may appear practical for some range of n, say
n ≤ 1000. Despite some progress in this area we are still far from exact algorithms with time
complexity of that order. One of the most researched problems in this field is Independent
Set. Exhaustive search for that problem gives O(2n) time bound while the currently best
published result [12] isO(2n/3.47). For Vertex Coloring the firstO∗(2n/0.77)-time algorithm
by Lawler was then improved in a series of papers culminating in a breakthroughO∗(2n) bound
of Björklund, Husfeldt and Koivisto [3].

Now consider the (weighted) Set Cover problem. The instance consists of a family of sets
S = {S1, . . . , Sm}, and each of the sets Si is assigned a weight w(Si). The set U =

⋃
S is called

the universe and we denote n = |U |. The goal is to find a subfamily C ⊆ S such that
⋃

C = U
so as to minimize the total weight of the sets in C. Assume that the size of our instance is
relatively small but big enough that finding an optimal solution using an exact algorithm is
out of question, say m = 150, n = 200. If we use the (best known) greedy approximation
algorithm (see e.g. [18]), we get the approximation ratio of Hn < lnn + 1, which is roughly
6.3 in this case. A simple implementation of this algorithm runs in O((

∑m
i=1 |Si|) logm)

time, so we would get an answer very fast. A natural question is: can we get a better
approximation guarantee by investing more computing time? Motivated by this question we
look for approximation algorithms with good (e.g. constant) approximation guarantee and
with running time exponential but substantially lower than the best known exact algorithm.
Ideally, one would like to have a kind of trade-off between the running-time and approximation
ratio – then one gets as much accuracy as one can afford.

1.2 Our Results

In this paper we present the following results (as in the previous section, n and m denote the
size of the universe and the number of sets respectively):

• For any reduction rate r, one can transform any O∗(cn)-time algorithm for (weighted)
Set Cover into an (1 + ln r)-approximation algorithm running in O∗(cn/r) time.

• For any reduction rate r, one can transform any O∗(cm)-time algorithm for (weighted)
Set Cover into an r-approximation algorithm running in O∗(cm/r) time.

• There is anO∗(min{4nmlogn, 9n})-time, polynomial space exact algorithm for (weighted)
Set Cover.

Let us note that the best known exact algorithm for Set Cover with the time complexity
depending exponentially only on the number of sets m is the trivial O∗(2m)-time algorithm. If
we are interested in time complexity depending exponentially only on the size of the universe
n, a simple dynamic programming can be used to get a O∗(2n)-time, O(2n)-space exact
algorithm. We are not aware of any previous polynomial space exact algorithm with time
complexity O∗(cn), with c being a constant.

2

Note that by putting r = n/ log n in the first result above, we get a polynomial time
approximation with approximation ratio 1 + lnn, which roughly matches the ratio of the
(essentially optimal) greedy algorithm. Thus, our approach can be viewed as a continuous
scaling between the best possible polynomial time approximation and the best known expo-
nential time algorithm. In other words, one can get as good solution as he can afford, by
using as much time as is available.

1.3 Our Approach

Our approach is very natural: we transform the input instance into a number of (r times)
smaller instances. Then, for each of the smaller instances, the problem is solved separately
by an exact algorithm. Finally, we describe a method for building an approximate solution
for the original instance, using the solutions for the smaller instances. The approximation
ratio is a function of r. We will call this method a reduction. For some basic properties of
this method, and its application to such problems as Maximum Independent Set, Vertex
Coloring, Bandwidth and Semi-Metric TSP, see our technical report [7].

Note that in the case of Set Cover there are two natural measures for size of the instance:
the size of the universe U and the number of sets in the family S. As it was mentioned, we
will present reductions for both measures: in sections 2 and 3 respectively.

1.4 Related Work

The concept of algorithms with a trade-off between the approximation ratio and the running-
time is quite old, though researchers focused on polynomial-time algorithms – so called
polynomial-time approximation schemes (PTAS). Probably one of the earliest and most widely
known examples of this kind is the PTAS for the knapsack problem, due to Ibarra and
Kim [15], which has approximation ratio of (1 − ε) and time complexity O(n3/ε), for any
ε > 0. For more examples of PTASes see the textbook of Vazirani [18].

The first work on exponential-time approximation algorithms we are aware of concerns
the Max Sat problem and it is due to Dantsin, Gavrilovich, Hirsch and Konev [8].

Later, Björklund and Husfeldt in [2] showed that any O∗(cn)-time algorithm for the vertex
coloring problem can be transformed into a (1+ln r)-approximation algorithm running in time
O∗(cn/r + 1.2209n). In a way, they also use the method of reduction and this is probably the
first application of this method in exponential-time approximation.

Very recently, exponential-time approximation algorithms for Set Cover were studied by
Bourjeois, Escoffier and Paschos [5]. Independently, they used a very similar approach to ours,
and they obtained approximation algorithms with the same performance as the two algorithms
we present here. Additionally, they show a randomized r-approximation algorithm with time
complexity smaller (by an exponential factor) than O∗(2m/r) that returns the correct answer
with high probability. However, all their algorithms apply to unweighted version of the
problem only and do not extend directly to the weighted version we consider here.

The same team investigated also exponential-time approximation algorithms for Inde-
pendent Set and Vertex Cover, see [4], getting some interesting results (also using the
reduction, among other methods).

The idea of joining the worlds of approximation algorithms and “moderately” exponential
algorithms appeared also in a recent work of Vassilevska, Williams and Woo [17]. However
their direction of research is completely different from ours, i.e. they consider so-called hybrid

3

algorithms. For example, they report to have an algorithm for bandwidth which for given
input either returns an O(log n)-approximate solution in polynomial time or returns a (1+ε)-
approximate solution in O(2n/ log logn) time. We see that the hybrid algorithm does not
guarantee constant approximation ratio and hence cannot be directly compared with our
work.

Another promising area is joining the worlds of parametrized complexity and polynomial-
time approximation algorithms — see the survey paper [16].

2 Reducing the size of universe

We use the notation for Set Cover from Section 1.1. In what follows, we write w(C) for the
total weight of a family of sets C. Any subfamily C ⊆ S such that

⋃
C = U will be called a

cover (of U).
An r-approximate solution of Set Cover can be found by dividing U into r parts, covering

each of them separately by an exact algorithm and returning the union of these covers. If
the exact algorithm works in O∗(cn) time for an instance with the universe of size n, this
method takes O∗(cn/r) time. In this section we describe an approach which gives much better
approximation ratio within the same time bound.

Let’s recall the greedy algorithm (see e.g. [18]), called Greedy from now. It selects sets to
the cover one by one. Let C be the family of sets chosen so far. Then Greedy takes a set that
covers new elements as cheap as possible, i.e. chooses S so as to minimize w(S)/|S \

⋃
C|. For

each element e ∈ S \
⋃

C the amount w(S)/|S \
⋃

C| is called the price of e and denoted as
price(e). This procedure continues until C covers the whole U . Let e1, . . . , en be the sequence
of all elements of U in the order of covering by Greedy (ties broken arbitrarily). The standard
analysis of Greedy uses the following lemma (see [18] for the proof).

Lemma 2.1. For each k ∈ 1, . . . , n, price(ek) ≤ w(OPT)/(n− k + 1)

The idea of our reduction is very simple. For example, assume we want to reduce the size
of the universe twice, and n is even. Lemma 2.1 tells us that Greedy starts from covering
elements very cheaply, and than pays more and more. So we just stop it before it pays much
but after it covers sufficiently many elements. Note that if we manage to stop it just after en/2
is covered the total price of the covered elements (and hence the weight of the sets chosen)
is at most (Hn −Hn/2)w(OPT) = ln 2 · w(OPT), where Hn is the n-th harmonic number. If
we cover the remaining elements, say, by exact algorithm we get a (1 + ln 2)-approximation.
However the set that covers en/2 may cover many elements ei, i > n/2. By Lemma 2.1 the
price of each of them is at most w(OPT)/(n/2) = 2w(OPT)/n. Hence this last set costs us
at most w(OPT) and together we get a (2 + ln 2)-approximation. Luckily, it turns out that
paying w(OPT) for the last set chosen by Greedy is not necessary: below we show a refined
algorithm which would yield a (1 + ln 2)-approximation in this particular case.

Theorem 2.2. Assume there is an exact algorithm for (weighted) Set Cover running in
time O∗(cn), for some constant c. Then, for any r ∈ Q there is an algorithm with approxi-
mation ratio 1 + ln r running in O∗(cn/r) time.

Proof. Let I = (S, w) be an instance of Set Cover problem. Our algorithm works similarly
as Greedy. However, before adding a set T to the partial cover C it checks whether adding T

4

Pseudocode 2.1 (ln r + 1)-approximation algorithm for Set Cover

1: R← S.
2: C← ∅.
3: while

⋃
S ∪

⋃
C = U do

4: Find T ∈ S so as to minimize w(T)
|T\

S
C|

5: if n− |
⋃

C ∪ T | > n/r then
6: C← C ∪ {T}.
7: else
8: CT ← C (just for the analysis).
9: Create an instance IT = (ST , w), such that for each P ∈ S, ST contains set P \

(
⋃

C ∪ T), of weight w(P).
10: OPTIT ← the optimal solution for IT .
11: if w(CT) + w(T) + w(OPTIT) < w(R) then R← CT ∪ {T} ∪OPTIT .
12: S← S \ {T}
13: return R.

to C makes the number of non-covered elements at most n/r. If so, T is called a crossing set.
Instead of adding T to C, the algorithm creates an instance IT = (ST , w) of Set Cover that
will be used to cover the elements covered neither by C nor by T . Namely, for each P ∈ S,
ST contains set P \ (

⋃
C ∪ T), of weight w(P). Note that in the instance IT the size of the

universe is at most n/r. Then the optimal cover OPTIT for IT is found in O∗(cn/r) time using
the exact algorithm. Let CT denote the current collection C. Clearly, CT ∪ {T} ∪ OPTIT is
a cover of the initial universe U . Let us denote it by RT . Next, set T is removed from the
family of available sets S. If it turns out that the universe cannot be covered after removing
T , i.e.

⋃
S∪

⋃
C 6= U , the algorithm stops and returns the lightest cover of U found so far. See

Pseudocode 2.1 for details. Note that the algorithm finds at least 1 and at most |S| covers,
so the claimed time complexity follows.

Now we prove the bound on the approximation ratio. Let T ∗ be the first crossing set
found such that T ∗ belongs to OPTI , some optimal solution for instance I (note that at least
one crossing set is in OPTI). We need to bound the value of w(RT ∗) = w(CT ∗) + w(T ∗) +
w(OPTIT∗). Clearly OPTI \ {T ∗} covers

⋃
ST ∗ . Hence w(OPTIT∗) ≤ w(OPTI \ {T ∗}) so

w(T ∗)+w(OPTIT∗) ≤ w(OPTI). Since CT ∗ covers less than n−n/r elements, by Lemma 2.1

w(CT ∗) ≤
bn−n/rc∑
k=1

w(OPTI)
n− k + 1

=
n−dn/re∑
k=1

w(OPTI)
n− k + 1

= (Hn −Hdn/re)w(OPTI) =

≤ (lnn− ln dn/re)w(OPTI) ≤ ln r · w(OPTI).

The second last inequality follows from the fact that Hn− lnn decreases monotonically to the
Euler constant. We conclude that the algorithm returns a cover of weight≤ (1+ln r)w(OPTI).

Clearly, to make use of the above universe-scaling reduction we need a O∗(cn) exact
algorithm, where c is a constant. As noted in the Introduction, one can use a O∗(2n)-time,
O(2n)-space algorithm by dynamic programming or the polynomial space algorithm described
in Section 4.

5

3 Reducing the number of sets

Let us begin with a simple algorithm for the unweighted version of the problem (found in-
dependently by Bourjeois et al. [5]). Let S = {S1, . . . , Sm} be the input instance. Assume
m is even. Then create a new instance Z = {Z1, . . . , Zm/2} where Zi = S2i−1 ∪ S2i. Next
find an optimal solution OPTZ for Z using an exact algorithm. Let C = {S2i−1 | Zi ∈
OPTZ} ∪ {S2i | Zi ∈ OPTZ}. Clearly, |OPTZ| ≤ |OPTS| and hence |C| ≤ 2|OPTS|. Thus
we get a 2-approximation in T (m/2) time where T (m) is the best known bound for an exact
algorithm, so currently just T (m/2) = O∗(2m/2) after applying the exhaustive search. Of
course this method is scalable – similarly we get a 5-approximation in time O∗(2m/5).

In the weighted version the above algorithm fails, basically because the sets from the
optimal solution may be joined with some heavy sets. The natural thing to do is sorting the
sets according to their weight and joining only neighboring sets. This simple modification
does not succeed fully but with some more effort we can make it work.

Theorem 3.1. Assume there is an exact algorithm for (weighted) Set Cover running in
time O∗(cm), for some constant c. Then, for any r ∈ N, r > 1, there is an r-approximation
algorithm running in O∗(cm/r) time.

Proof. The algorithm starts from sorting the sets in S in the order of non-decreasing weight. So
let S = {S1, . . . , Sm} so that w(S1) ≤ w(S2) ≤ . . . ≤ w(Sm). Next it partitions this sequence
into blocks Bi, i = 1, . . . , dm/re, each of size at most r, namely Bi = {Sj ∈ S | (i− 1)r < j ≤
ir}. Let Ui =

⋃
Bi be the union of all sets in Bi and define its weight as the total weight of

Bi, i.e. w(Ui) = w(Bi). For any k = 1, . . . ,m we also define Xk = {Sj ∈ Bdk/re | j < k} and
Vk =

⋃
Xk with w(Vk) = w(Xk). The algorithm creates m instances, namely Si = {Uj | Si 6∈

Bj} ∪ {Vi, Si} for i = 1, . . . ,m.
Of course any subfamily (or a cover) C ⊆ Si corresponds to Ĉ, a subfamily of S with

the same weight obtained from C by splitting the previously joined sets (we will use this
denotation further). Clearly

⋃
C =

⋃
Ĉ, in particular if C is a cover, so is Ĉ.

Next, for each instance Si, i = 1, . . . ,m, the optimum solution Ci is found in O∗(cm/r)
time. Finally, the algorithm chooses the lightest of them, say Cq, and returns Ĉq, a cover of
U .

Now it suffices to show that one of the instances has a cover that is light enough. Let
i∗ = max{i | Si ∈ OPT}. We focus on instance Si∗ . If Xi∗ ∩ OPT = ∅ we choose its cover
R = {Uj ∈ Si∗ | Bj ∩OPT 6= ∅}∪{Si∗}, otherwise R = {Uj ∈ Si∗ | Bj ∩OPT 6= ∅}∪{Vi∗ , Si∗}
Clearly it suffices to show that w(R̂ \OPT) ≤ (r − 1)w(OPT). Consider any Si ∈ R̂ \OPT.
If Si 6∈ Xi∗ we put f(i) = min{j | Sj ∈ OPT and dj/re > di/re}, otherwise f(i) = i∗. Then
w(Si) ≤ w(Sf(i)). We see that f maps at most r − 1 elements to a single index j of a set
from OPT, so indeed w(R̂ \ OPT) ≤ (r − 1)w(OPT) and hence w(R̂) ≤ rw(OPT). Since
w(R) = w(R̂), it follows that w(OPTSi∗) ≤ w(R) ≤ rw(OPT) so w(Ci∗) ≤ rw(OPT) and
finally w(Ĉq) ≤ rw(OPT).

4 O∗(cn)-time polynomial space exact algorithms for Set Cover

In this section we present the first O∗(cn)-time polynomial space exact algorithms for Set
Cover. We follow the divide-and-conquer approach of Gurevich and Shelah [13] rediscovered

6

recently by Björklund and Husfeldt [1] and we get a O∗(4nmlogn)-time algorithm. If m is big
we can use another, O∗(9n)-time version of it.

Let us note that for the unweighted case there is an O(2nmn)-time polynomial space
algorithm by Björklund et al. [3] using the inclusion-exclusion principle.

Theorem 4.1. There is a O∗(min{4nmlogn, 9n})-time polynomial-time algorithm that finds
a minimum-weight cover of the universe of size n by a family consisting of m sets.

Proof. The algorithm is as follows. For an instance with universe U of size n we recurse on
an exponential number of instances, each with universe of size smaller than n/2. Namely, we
choose one of m sets S and we divide the remaining elements, i.e. U \ S into two parts, each
of size at most n/2. We consider all choices of sets and all such partitions – there are O(m2n)
of them. For each such set S and partition U1, U2 we find recursively C1, an optimal cover of
U1 and C2, an optimal cover of U2. Clearly C1 ∪ C2 ∪ {S} forms a cover of U . We choose the
best cover out of the O∗(m2n) covers obtained like this.

Consider an optimal cover OPT. For each element e of U assign a unique set Se from OPT
such that e ∈ Se. For each S ∈ OPT let S∗ = {e ∈ U : S = Se}. Let P = {S∗ : S ∈ OPT}.
P is a partition of U . Clearly, after removing the biggest set Ŝ from OPT we can divide all
the sets in P into two groups, P1 and P2, each covering less than n/2 elements from U \ Ŝ. It
follows that one of the O∗(m2n) covers found by the algorithm has weight w(OPT), namely
the cover obtained for set Ŝ and partition (

⋃
P1 \ Ŝ,

⋃
P2 \ Ŝ).

It is clear that the above algorithm works in time O∗(4nmlogn). Similarly we can also get
a O∗(9n) bound – instead of at most m2n instances we recurse on at most 2 · 3n instances:
we consider all partitions of U into three sets A, B, C. Let |A| ≥ |B| ≥ |C|. If |A| ≤ n/2 we
recurse on A, B and C and otherwise we check whether A ∈ S and if so, we recurse on B and
C.

References

[1] A. Björklund and T. Husfeldt. Exact algorithms for exact satisfiability and number of
perfect matchings. In Proc. ICALP’06, pages 548–559, 2006.

[2] A. Björklund and T. Husfeldt. Inclusion–exclusion algorithms for counting set partitions.
In Proc. FOCS’06, pages 575–582, 2006.

[3] A. Björklund, T. Husfeldt, and M. Koivisto. Set partitioning via inclusion-exclusion.
SIAM J. Comput., Special Issue for FOCS 2006. To appear.

[4] N. Bourjeois, B. Escoffier, and V. T. Paschos. Efficient approximation by “low-
complexity” exponential algorithms. Technical Report 271, LAMSADE, Universite Paris
Dauphine, 2008.

[5] N. Bourjeois, B. Escoffier, and V. T. Paschos. Efficient approximation of MIN SET
COVER by “low-complexity” exponential algorithms. Technical Report 278, LAMSADE,
Universite Paris Dauphine, 2008.

[6] J. Chen, I. A. Kanj, and G. Xia. Improved parameterized upper bounds for vertex cover.
In Proc. MFCS’06, pages 238–249, 2006.

7

[7] M. Cygan, Lukasz Kowalik, M. Pilipczuk, and M. Wykurz. Exponential-time approxi-
mation of hard problems, 2008. arXiv:0810.4934, http://arxiv.org/abs/0810.4934.

[8] E. Dantsin, M. Gavrilovich, E. A. Hirsch, and B. Konev. MAX SAT approximation
beyond the limits of polynomial-time approximation. Ann. Pure Appl. Logic, 113(1-
3):81–94, 2001.

[9] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

[10] U. Feige. A threshold of lnn for approximating set cover. J. ACM, 45(4):634–652, 1998.

[11] U. Feige and J. Kilian. Zero knowledge and the chromatic number. J. Comput. Syst.
Sci., 57(2):187–199, 1998.

[12] F. V. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: a simple O(20.288n)
independent set algorithm. In Proc. SODA’06, pages 18–25, 2006.

[13] Y. Gurevich and S. Shelah. Expected computation time for hamiltonian path problem.
SIAM J. Comput., 16(3):486–502, 1987.

[14] J. H̊astad. Clique is hard to approximate within n1−ε. Acta Mathematica, 182(1):105–
142, 1999.

[15] O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and sum
of subset problems. J. ACM, 22(4):463–468, 1975.

[16] D. Marx. Parameterized complexity and approximation algorithms. The Computer
Journal, 51(1):60–78, 2008.

[17] V. Vassilevska, R. Williams, and S. L. M. Woo. Confronting hardness using a hybrid
approach. In Proc. SODA’06, pages 1–10, 2006.

[18] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

8

