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Abstract

) The question whether a set of formulaenplies a formulap is fundamental. The present paper studies the complexityecdibove
© ‘implication problem for propositional formulae that arelbiitom a systematically restricted set of Boolean conivest We give
O\l a complete complexity-theoretic classification for allsset Boolean functions in the meaning of Post’s lattice anulsthat the

implication problem is ficiently solvable only if the connectives are definable usirggconstant§0, 1} and only one ofA, v, &}.
— The problem remains coNP-complete in all other cases. Vecalssider the restriction éfto singletons which makes the problem
<E strictly easier in some cases.

C\J Key words: Computational complexity, propositional implication,&?s lattice
—

—11. Introduction Since then, many problems related to propositional formu-
o » ) lae and Boolean circuits have been studied for restrictesdode
SAT, the satisfiability problem for propositional formula®@  .onnectives or gates, and their computational complesity h
(/5 the most fundamental and historically thg first NP-completg)gep classified, depending on a paramBteas just explained
O problem (proven by S. Cook and L. Levin [6, 7]). A natu-for SAT. These include, e.g., the equivalence probler [12],
——ral question, posed by H. Lewis in 1979, is what the sourcége circuit value problem [13], the quantified Boolean formu
of hardness in the Cook-Levin Theorem are. More preciselyge proplem QBF/[13], but also more recent questions related
(") Lewis systematically restricted the language of proposél to non-classical logics like LTL [1], CTL[9], or default lag
formulae and determined the computational complexity ef th [ 1 An important part of the proof of the classification of
L0 satisfiability problem depending on the set of allowed c@Ane gjgrerent reasoning tasks for default logic in the latter paper [
tives. E.g., if only logical "and” {) and “or” (v) are allowed, 1 a5 the identification of the coNP-complete and polynomial
we deal withmonotone formulador which the satisfiability  ime solvable fragments of theropositional implication prob-
- problem obviously is easy to solve (in polynomial time). i®w o Though implication is without doubt a very fundamental
proved that SAT is NP-complet# the negation of implication, 544 natural problem, its computational complexity has reat y

00 XA is among the allowed connectives or can be simulategyeen, fylly classified. This is the purpose of the present.note
S by the allowed connectives! [8]. To simulate a logical connec

. tive f by a set of logical connectives (or, in other words, a set ) .

= of Boolean functionsB formally means thaf can be obtained Ve study the problem, given a sEtof propositional for-

"~ from functions fromB by superposition, i. ., general compo-Mulae and a formulg, to decide whethep is implied byT.

. sition of functions. Equivalently, we can express this fagt DePending on the set of allowed connectives in the occurring

® saying thatf is a member of thelonegenerated by, in sym- formulae, we determine the computatpnal comple_xny o$ thi
bols f € [B]. problem as coNP-completel-complete, in AC[2], or in ACP.

This brings us into the realm of Post’s lattice, the lattitalb The type of reduction we use a;enst_ant-depth reduct|or_i§]
Boolean clones [11]. In this framework, Lewis’ result can bean((j)the weaker Amany-one reductiong-or both reductions,
restated as follows. Let SAB] denote the satisfiability prob- AC" forms the0-degree. We also consider the case of the prob-
lem for propositional formulae with connectives restritte €M restricted to singleton sefs the singleton-premise impli-
the setB of Boolean functions. Then SABJ is NP-complete cation problem Interestingly, the complexity of the prgwously
iff S; C [B]: otherwise the problem is polynomial-time solv- eL-complete cases now drops down to the clas$[&T in all

able. Note that the 2-ary Boolean functien —y forms a basis other cases the complexity remains the same as for the unre-
for S,. stricted problem. Finally, as an easy consequence ourtsesul

give a refinement of Reith’s previous classification of theieq
alence problem for propositional formulae [[12]. While Reit
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2. Preliminaries o fisc-separatingfthere exists an indexe {1, ...,n} such

) ) ) thatf(ay,...,a,) = cimpliesa =c, c € {0, 1}.
In this paper we make use of standard notions of complexity

theory. The arising complexity degrees encompass theedass © f IS self-dualif f = dual(f), where dualf)(xs, ..., Xn) =
AC®, AC’[2], eL, P, and coNP (cf..[10, 15] for background ~ (=X, = %n).
information). e fislinearif f = co® X1 & -+ ® CyX, ® C fOr constants

AC? forms the class of languages recognizable by logtime- ¢ € {0,1}, 0<i < n, and variablexq, .. ., Xn.
uniform Boolean circuits of constant depth and polynonii s ) _ ) i
over{A, v, -}, where the fan-in of gates of the first two types T_h_e clones relevant to this paper are listed in TEbIe 1. Tkie de
is not bounded. The class AR] is defined similarly as Ag,  Nition of all Boolean clones can be found, . g.,.in [3].
but in addition to{A, v, -} we also allows-gates of unbounded
fan-in. The classL is defined as the class of languadefor 4. The Complexity of the Implication Problem
which there exists a nhondeterministic logspace Turing rimech
M such that for allx, x € L iff M(X) has an odd number of Let B be a finite set of Boolean functions. Thmaplication
accepting paths. problemfor B-formulae is defined as

For the hardness results we usenstant-deptrand AC
many-one reductionsdefined as follows: A languagA is
constant-depth reducibl® a languageB (A <¢q B) if there
exists a logtime-unifordm A&circuit family {Cnlnso With
{A,V,-}-gates and oracle gates f& such that for allx,
Cx(X) = 1iff x € A[15]. A languageA is AC® many-one
reducibleto a languag® (A <AC° B) if there exists a functioff
computable by a logtime-uniform Azircuit family such that
x € Aiff f(x) € B.

For both reductions, the class A@rms the0-degree. Fur-
thermore, it is easy to see that

Problem  IMP(B)
Instance A finite setI" of B-formulae and @&-formulag.
Question Doesr [ ¢ hold?

In the general caseéB] = BF, verifying an instancel{, ¢) €
IMP(B) amounts to verifying that the formujal’ — ¢ is tauto-
logical. We hence obtain a coNP upper bound. The following
theorem classifies the complexity of the implication proble
for all possible set8.

Theorem 4.1. Let B be a finite set of Boolean functions. Then
the implication problem for propositional B-formula®)P(B),
wherelwj; = |{i | 1 <i < n, w; = 1}], is complete for A€[2]un- is
der<q-reductions, for AG[2] merely extends AEwith oracle 1
gates for MOD.

We assume familiarity with propositional logic. The set bf a
propositional formulae is denoted by, ForI' € £ andy € £,
we writeT" | ¢ iff all assignments satisfying all formulaelin
also satisfyp.

MOD; :={we {0,1}* I[W1 =1 (mod 2},

. coNRcomplete undexAC"reductions ifSgy < [B] or
S10 < [B] or D> € [B],

2. ®L-complete undex " reductions ifL, € [B] C L,

3. in AC%[2] andMOD; <A’ IMP(B) if N, C [B] € N, and

4. in ACO for all other cases.

In contrast to the first two cases, we do not state a complete-
3. Boolean Clones ness result for the third case, wheMe C [B] € N. Under
<ca-reductions, however, IMB) is AC°[2]-complete in this

In order to completely classify the complexity of the imphic  case. For<AC"reductions, the existence of a complete prob-
tion problem for all possible se® of Boolean functions, one |em A would state that any A%2]-circuit is equivalent to an
has to consider an infinite number of parameterized problemacC-computation followed by a single oracle callAo To date,
We introduce the notion of a clone to reduce the number ofhere is no such problem known.
problems to be considered to a finite set. We split the proof of Theoref4.1 into several lemmas.

A propositional formula using only connectives from a finite
setB of Boolean functions is calledB-formula. The setof all Lemma4.2. Let B be afinite set of Boolean functions such that
B-formulae is denoted by’(B). A cloneis a setB of Boolean  Sgp C [B] or S10 € [B]. ThenIMP(B) is coNRcomplete under
functions that is closed under superposition, i.®.¢ontains sﬁco-reductions.
all projections and is closed under arbitrary compositidve
denote by B] the smallest clone containirgjand callBabase  Proor. Membership in coNP is apparent, because givemd
for [B]. In [11] Post classified the lattice of all clones and found¢, We just have to check that for all assignmentto the vari-
a finite base for each clone, see Kify. 1. In order to introduee t ables ofl” andy, eithero T or o [ ¢.
clones relevant to this paper, we define the following nation The hardness proof is inspired by [12]. Observe that

for n-ary Boolean functions: IMP(B) =cq IMP(B U {1}) if A € [B], and that IMPB) =cq
) o IMP(BU{0}) if v € [B] (because ¢ < ¢y AtE Y

e fisc-reproducingf f(c,...,c) =c,ce {0,1}. andg ¥ < g/ E psn v f wheret, f are new vari-

e f is monotoneif a3 < by,...,a, < by implies ables). It hence dfices to show that IMM) is coNP-hard for
f(a]_, . an) < f(bl, cee bn) Mo = [SOQU{O}] = [{/\, vV, O}] andM; = [SloLJ{l}] = [{/\, V, 1}]



Name | Definition Base
BF All Boolean functions {A, =}
Mo {f : f is monotone and 0- and 1-reproduding| {V, A}
Soo | {f : fis O-separating M, {xV(yA 2}
Si0 | {f : fis 1-separatingy M, (XA (YV 2}
D> {f : f is monotone and self-dual {(XAY) V(YA D V(XA 2}
L {f : fislineat {®, 1}
Lo {f : fislinear and O- and 1-reproducing {xoya®z
\Y; {f:f=cov Vi, cxforcef0,1,1<i<n} | {v,0,1)
E {f:f=cA AL cxforce{0,1},1<i<n}| {A 01}
N {f : f depends on at most one variaple {—=, 1}
N> {f : f is the negation or a projectipn {=}

Table 1: A list of Boolean clones with definitions and bases.

. coNP-complete
O @L-complete
Q) i AC

Q mac

Figure 1: Post’s lattice. Colors indicate the complexityMP(B), the implication problem foB-formulae.



We will show that IMP@) is coNP-hard for each bagwith
M2 = [{A, V]] € [B]. To prove this claim, we will provide a
reduction from TAUDnr to IMP(B), where TAUTnr is the

coNP-complete problem to decide, whether a given proposi-

tional formula in disjunctive normal form is a tautology.

Let ¢ be a propositional formula in disjunctive normal form

over the propositionX = {x, ..., %}. Theny = /L, /\?lllij,
wherel;; are literals oveX. Take new variable¥ = {yi, ..., Yk}
and replace ip each negative literd}; = -x by y;. Define the
resulting formula ag, and lety; = /\!‘:l(xi Vy;). We claim
that(p € TAUTpNne &= Y1 E Wvo.

Let us first assume € TAUTpnr and leto: XU 'Y — {0, 1}
be an assignment such that= 1. As ¢ is a tautologyg E ¢.

o) =0ando(f) =1: In this case, we obtain that
0(50,1),0,1) = dualgy) v 0 = dualf,) and
9(9(¥£(0,1),¢5(0, 1), 1),0,1) = (dual@s) v dual@)) v

0 = dualf1)vdual@,). As dual{y,) E dual@,)vdualf?)

is always valid, we conclude thet = v/, in this case.

o(t) = o(f) = cwith c € {0, 1}: Then bothy] andy/, are equiv-
alent toc. Thus, as in the previous casg, = v/,.

From this analysis, it follows that; E v iff ¥ E ¢5. Hence,
TAUT pne <AC° IMP(B) via the reduction > (i, /). O

Lemma4.4. Let B be a finite set of Boolean functions such
thatL, c [B] € L. ThenIMP(B) is eL-complete undegAC™

But alsoo k ¢, as we simply replaced the negated variables irfeductions.

¢ by positive ones andg, is monotone. It follows that; = yo,
sinceo- was arbitrarily chosen.

For the opposite direction, let ¢ TAUTpne. Then there
exists an assignmeot X — {0, 1} such thatr £ ¢. We extend
o to an assignment’: X UY — {0,1} by settingo”(y;) =
1-x fori =1,...,k. Theno’(x) = 0iff o/(y;) = 1, and
consequently”’ simulates ong’. As a resultg”’ [~ y,. Yet,
eithero’(x) = Loro’(y;) = L fori = 1,...,k Thuso’ E y1,
yieldingy F ». O

Proor. Observe thall E ¢ iff TU{p®t, t} is inconsistent, where
tis a new variable. Ldt’ denotd U {pat, t} rewritten such that
forally e IV, ¥ = CodC1X1 @ - -DCnXn, Wherecy, ..., ¢y € {0, 1}.
I is logspace constructible, sincg = 1 iff 4(0,...,0) = 1,
andforl<i<n,¢=1iff

¥(0,...,0) £ ¥(0,...,0,1,0,..
~———
i-1

.,0).

I” can now be transformed into a system of linear equat®ns

Lemma4.3. Let B be a finite set of Boolean functions suchvia

that D, C [B]. ThenIMP(B) is coNRcomplete undegAC™
reductions.

Proor. Again we just have to argue for coNP-hardness of;

IMP(B). We give a reduction from TAUgng to IMP(B) for
D, ¢ [B] by modifying the reduction given in the proof of
Lemmd4.2.

Given a formulap in disjunctive normal form, we define the
formulaey, andy, as above. AD, C [B], we know that
g(x,Y,2) := (XAY) V(YA 2D V(XA 2 e[B]. Clearly,g(x,y, 0) =
x Ayandg(xy,1) = x vy. Denote byB(t, f), i € {1,2}, the
formulay; with all occurrences ok Ay andx Vv y replaced by a
B-representation af(x, y, f) andg(x,y, t), respectively, where
tandf are new propositional variables. Th@ﬁ(l, 0) = y; and
¥B(0,1) = dual@). The variablex andy occur several times
in g, hencey®(t, f) andy3(t, f) might be exponential in the

CoBCIX @ ®ChXn > Co+CiXp + -+ ChXa =1 (mod 2)

Clearly, the resulting system of linear equations has atisolu
ff I is consistent. The equations are furthermore defined over
the field Z,, hence existence of a solution can be decided in
oL [4].

For the eL-hardness, note that solving a system of lin-
ear equations ovefZ, is indeed@lL-complete underﬁ’,;co—
reductions: let MOD-GAP denote thesL-complete problem
to decide whether a given directed acyclic gr&fvith nodes
s andt has an odd number of distinct paths leading fremo
t. Buntrock et al.[[4] give an N&Ereduction from MOD-GAR
to the problem whether a given matrix ov&s is non-singular.
The given reduction is actually an A@any-one reduction. We
reduce the latter problem to the complement of 1K@y & z})
and then generalize the result to arbitrary finite &ssich that

length ofy (recall thaty is ¢ with all negative literals replaced [B] = L,. The lower bound then follows fromL being closed
by new variables). That this is not the case follows from theynger complement.

associativity ofA andv: we insert parentheses in such away  First map the systei of linear equations into a set of linear

thaty® can be transformed into a tree of logarithmic depth.
We now map a painfy, ) to (47, ¥,) where

vy = 9Bt F).4 1) andys = gt 1.5 1), ).t 1),

We claim thaty; F y2 < ¢ E 5. To verify this claim,
let o be an arbitrary assignment for the variableginThenos
may be extended tft, f} in the following ways:

o(t) = 1 ando(f) = 0: This is the intended interpretation. In
this case, g5(1,0),1,0) = y1 A1 = y; and
g(0W(1,0),¥5(1,0),0),1,0) = (Y1 AY2) A 1= Y1 Ay,
Theny | o iff i | g Ay

formulaerl via
CiXp+--+CX=C (Mmod 2) > C' ®Ci1X & - D CrXn,

wherec’ = 1if ¢ = 0, andc’ = 0 otherwise. Next replace the
constant 1 with a fresh variabte pad all formulae having an
even number of non-fictive variables with another freshalzle
f,and letl” ;= T'U{t}. We claim thatS has a solutionff I }£ f.
Suppose thab has no solutions. If” is inconsistent, then
I E f. OtherwiseI” has a satisfying assignmemt Clearly,
o) = 1. If o(f) = 0, thenI"[t/1, f/0] is equivalent tol;
hence the transformation of[t/1, f/0] yields a system of lin-
ear equation$’ that is equivalent t& and that has a solution



corresponding te-— a contradiction to our assumption. Thus Corollary 4.6. Let B be a finite set of Boolean functions such

o(f) = 1 and, consequently; | f. thatN, < [B] € N. ThenIMP(B) is AC°[2]-complete under
On the other hand, i has a solution, theli possesses a <c4-reductions.

satisfying assignment with o(t) = 1 ando(f) = 0. Again

o ETiffc =T. Hencel” # f. Lemma4.7. Let B be afinite set of Boolean functions such that
It remains to show that® y @ z can be @iciently expressed [B] €V or [B] € E. ThenIMP(B) is in AC®.

in any setB such that B] = L, that is, there exists a function

fe € [B] such thatfg is equivalent tox@ y® zand each variable

occurs only once in the body df,. Let B be such thatB] =

L, and letg(x,y, 2) be a function from B] depending on three a
2 9(x.¥.2) B] dep g Let furtherT" be a finite set oB-formulae and letyp be aB-

variables. Such a functiog exists because®y® z € [B] = ¢ I hthal and | h bl .
L. Asgis a linear function, replacing two occurrences of any ormula such thal andp only use the variables, .. ., X. Let

variable with a fresh variabledoes not changgmodulo logical % = GV C1X1V: -V CaXn with constants; € {0, 1} for0<i <n.
equivalence. Leh denote the number of occurrencesxoin Equally, every formula fronir is gquwalent {0 an expression of
g and assume that is even. Replacing all occurrences sof thehformfo v C’l);]l VeV CanfW"[h G e_{O,,l}. Then,l" F ‘P,'ff
with an arbitrary symbol yields a formutg(y,2) = y@z ¢ L,  Sitnerco = 1orthere exists aformula= cg VX, v -V ey

: . - fromI suchthat!” < ¢ forallO<i < nandc’ € {0, 1}
which gives a contradiction. Analogous arguments holdtfer t h | i = E) q “ined b II o 0
number of occurrences gfandz Hence, each of the variables he value offco can be etfrm_lne _y evaduatmg), -5 0).
X, ¥, andz occurs an odd number of times, and replacing aIIFurt ermore, forki<n,¢ =0iffco=0an
but one occurrence of eachy, andz with t yields a function
g(xy,zt) = x@ ya zin which each variable occurs exactly '
once. O -1

Lemma4.5. Let B be a finite set of Boolean functions suchThe values of the cdlicients of formulae it can be computed
thatN, C [B] < N. ThenIMP(B) is contained inAC°[2] and analogously. Thus IMR) can be computed in constant depth

Proor. We prove the claim for}] € V only. The caseB] C E
follows analogously.
Let B be a finite set of Boolean functions such thi} £ V.

¢(,...,0,1,0,...,0)= 0.
———

MOD- <A° IMP(B). using o_ra(_:le gates f@-formula evaluation. A8-formula eval-
2 =m ® uation is in NLOGTIME [14] and NLOGTIMEC AC?, the
Proor. LetB be a finite set of Boolean functions such tNatc claim follows. O

[B] € N. Lety be aB-formula andl’ be a set oB-formulae,
both over the set of propositiofis, . . ., X}.

We will argue on membership in A2] first. For all f € [B],
f is equivalent to some literal or a constant. let= {l; |
there existy € T': |; = ¢}, wherel; = x orl; = - for 1 < For a finite setB of Boolean functions, we define the

i <n. Lis computable froni using an AC-circuit with oracle  singleton-premise implication problefor B-formulae as
gates for MOD: for each formula i, we determine the atom

5. The Complexity of the Singleton-Premise Implication
Problem

and count the number of preceding negations modulo 2. In the Problem  IMP’(B)
case thal is unsatisfiable, eithdr = 0 or there exist;,|; € T Instance  Two B-formulaey andy.
with I; = -l;. Both conditions can be checked in Atence Question Doesy ¢ hold?

we may w. . 0. g. assume thBis satisfiable. It now holds that

ey = /\Iitch =i forsomeL'gL:gozAli.
liel lielr

We classify the complexity of this problem as follows:

Theorem 5.1. Let B be a finite set of Boolean functions. Then

IMP’(B) € AC%[2] and MOD, <AC° IMP’(B) if L, C [B] <

It remains to compute an equivalentformulaofthe fokmy Ii L. For all other sets B, the problenis1P(B) and IMP’(B) are

from ¢ and test whethel” C L. Itis easy to see that the former equivalent.

task can again be performed in 4], and the latter merely

requires AC. Thus we conclude IMF&) € AC°[2]. Before we prove TheoremB.1, let us try to give an intuitive
For MOD, <A IMP(B), we claim that, fow = w; ---w, ¢  €xplanation for the dierence in the complexity of IMEB) for

{0,1)", w € MOD, iff t | —"—%2...-W(~t), where=! := -, L2 € [B] € L stems from. Deciding IMAR) is equivalent to

-9 :— id andt is a variable. solving a set of linear equations corresponding to the set of
First observe that | —"i-"...-W(=t) iff for all assign- Premises. For IMRB), the premise is a single formula. It

mentso- of t to {0, 1}, o E t impliesoc | —W—%...-%(~t). hences sfiice to determine whether there exists an assignment

Now, if o(t) := O, thent £ —"i-%2...-“(t) is always Satisfying the premise and setting to true an even (resp) odd
true, whereas, itr(t) = 1, thent | —-Wi-"...-W(=t) iff ~ number of variables from the conclusion.

1k -Wi-*2... %0 Hence, the claim applies and MERAC’

IM':P(B) follows. PP @ mD Proor. ForSgg C [B], S10 C [B], andD> C [B], observe that the

proofs of Lemma&4]2 and Lemnia ¥.3 actually establish coNP-
As an immediate consequence of the above lemma, we obtalmardness of IMKB). Analogously, folN, C [B], MOD, S/%co
the following corollary. IMP’(B) follows by the same reduction given in the proof of



LemmaZ4b. ForB] ¢ V and [B] C E, we have IMP(B) <A’
IMP(B) € ACC. It thus remains to show that IMfB) € AC°[2]
for [B] c L, and that MOR <AS" IMP’(B) for L C [B].

Let (p,y) be a pair of B-formulae over the variables
{X1,...,%}. As [B] C L, ¢ andy are equivalent to expressions
of the formy = Co®C1X1®- - -®CrXn andys = CHBCI X1 - - -BC X,
wherec;, ¢ € {0,1}forl <i<n. Ifcg=...=cy=0,then

[12]. He establishes a dichotomy between coNP-hardness and
membership in £. We split the second case into two complexity
degrees.

Corollary 5.2. Let B be a finite set of Boolean functions. Then
EQ(B) is coNRcomplete undekg-reductions ifSgpg C [B] or
S10 C [B] or D, C [B]; AC°[2]-complete undeg g-reductions

¢ E v apparently holds. Therefore, let us assume that not aif N2 € [B] € N; and in AC® for all other cases.

codficientsc; are 0. In this situation, we claim that =  is
in fact equivalent tap = y. To prove this claim observe that

e Eyiff
X =(CodCiXy @ - DCnXn) A (LB CHOCIX1 D+ D C)Xn)

is unsatisfiable. Let us assume ngw . We will construct a
satisfying assignmest for y. Letl :={i e {1,...,n} | ¢ = ¢}
and definer(x) := Ofori € 1. Asgp # y, the sel :={1,...,n}\

I is nonempty and foraile I, ¢, =1 <= ¢ = 0. Hence,
there is a partitioP; w P, = 1 such that

Tk &= ck(@eax)rleceHcx).

i€P1 i€P2

Here the subformulab"g)efaEBieF,1 cix and lacy® EBiePZ c/x are
over disjoint sets of variables. But still, both subformautre
satisfiable using an appropriate completiomrofConsequently,
o will also satisfyy and hence the claim holds.

Thusy E y if eitherco = ... = ¢, = 0 orp = . Similarly
to the proof of Lemm&4]7, it follows that the latter altemat
holds if ¢; = ¢ forall 0 < i < n. The codicientsc; can be

determined fronty = (0, . .., 0) and

Gi=¢0,...,0,1,0,...,0)® o
——
i-1

for 1 < i < n. The values of the’s can be computed analo-
gously. AsB-formula evaluation is equivalent to MQ[14] in
this case, IMRB) € AC?[2].

It remains to prove MOB sﬁco IMP’(B) for L, C [B]. Con-
sider the mapping : {0, 1}* — £L(B), recursively defined by

f X=g&

h(y) x =0y
tefahly) x=1y

h(x) =

wheree denotes the empty word andf are propositional vari-
ables. We claim that — (t, h(x)) computes aliéco-reduction
from MOD, to IMP’(B). To verify this claim, letx € {0, 1}* be
an instance of MOR Then

XeMOD; = h(X)=t = (t,h(x)) € IMP’(B),
X¢ MOD; = h(X)=f = (t,h(X)) ¢ IMP’(B).

Whence, MODR <A’ IMP’(B) for L, < [B]. O

Let EQ@B) denote the equivalence problem fdfformulae.
Obviously, ¢,y¥) € EQ(B) iff (¢,¥) € IMP’(B) and ¢, ¢) €
IMP’(B). As AC®, ACP[2], and coNP are all closed under in-

tersection, we obtain as an immediate corollary a finer elassq

fication of the complexity of EQ than the one given by Reith
6

6. Conclusion

In this paper we provided a complete classification
of the complexity of the implication problem, IMB],
and the singleton-premise implication problem, NB)—
fundamental problems in the area of propositional logic.
Though IMP(B) is a restricted version of IMB), the simplifi-
cation amounts to a fference folL, € [B] C L only: IMP'(B)
is AC°[2]-complete under constant-depth reductions, whereas
IMP(B) is @L-complete under A€ many-one reductions and
thus strictly harder. For all other clones, both problemgeha
the same complexity.

Due to the close relationship between the implication and
the equivalence problem, we were also able to slightly refine
the classification of the complexity of the equivalence peob
given in [12].
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